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Abstract: This paper concentrates on the study on the map fusion problem in the context of a multi-robot map
building approach. Concretely it is seen as one of the steps towards the independent multi-robot map building.
In the situation proposed a set of several robots performs map building tasks without the notion of other robots’
existence. Each robot builds its own local map using its observations and estimates its path independently. As
a result, there will be a set of local maps that can be fused into a global one. This is the case when the map
fusion takes importance. Particularly, we focus our experiments on landmark-based maps constructed using visual
information and by means of a particle filter. When fusing two maps, we consider the uncertainty of the landmarks
integrated by each different robot to its map.
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1 Introduction

Map building is one of the fundamental tasks that has
to be accomplished by a robot to be considered as au-
tonomous. The capability of building a map of the
environment while simultaneously the robot localizes
in it is known as SLAM (Simultaneous Localization
and Mapping) and has received great attention over
the last years [19].

A single robot is able to carry out the construction
of a map. However, this task will be more efficiently
performed if there is a team of robots that cooperate
in the consecution of this objective [15, 18]. In this
case the map building will be performed more quickly
and robustly than with a single robot [22]. However,
the trajectories of several robots have to be estimated
meanwhile information from different entities is fused
to estimate a single map. As a consequence, the di-
mensionality of the problem is higher.

Regarding the sensors used to extract information
from the environment, some authors employ range
sensors such as LASER [31, 32] or SONAR [34].
However, there is an increasing interest on using cam-
eras as sensors [30]. This approach is denoted as vi-
sual SLAM [33, 7]. These devices obtain a higher
amount of information from the environment and are
less expensive than other sensors such as LASER.
Moreover, 3D information can be directly obtained
when using stereo vision [10]. Finally, in order to
build the maps, a recent proposal is the FastSLAM
algorithm [25]. The main idea of this algorithm is the

use of a particle set that represents the uncertainty in
the pose of the robot. Each particle is an hypothesis
of the real path followed by the robot and has an asso-
ciated map of the environment. The SLAM problem
is seen as the sum of two fundamental aspects: the
estimate of the pose of the robot and the estimate of
the map. Although these aspects are intrinsically re-
lated, they can be considered separately. That is to
say, if the robot’s path is known, then the estimate of
the map would be trivial. In a similar way, if the map
is known, it would be easy to localize the robot in it.
The FastSLAM algorithm divides the SLAM problem
into a localization problem and several individual es-
timates of the map. These steps are repeated succes-
sively during the SLAM process.

Our work focuses towards the approach in which
there is a team of robots that colaborates in the con-
struction of a map of the environment. In this ap-
proach the map and the trajectories are not built jointly
such as in other multi-robot proposals [9]. On the
contrary, we propose an alternative solution in which
the robots initiate the SLAM process independently,
i.e., they have no knowledge about other robots’ poses
and observations. The map building can be performed
without knowing the relative positions of the robots.
The SLAM problem is therefore solved by means of
several independent particle filters. After a while,
each robot will have built a local map with its own
reference system. In order to obtain a global map, the
set of local maps have to be fused into a single one.
In this paper, we focus on this step. First, it is neces-
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sary to estimate the relative position in order to find
a common reference system for the local maps. This
is denoted as map alignment and consist in computing
the tranformation that relates two reference systems.
This is done by establishing correspondences between
the local maps. Finally the global map is obtained in
the map merging step, in which the data is fused. The
study of the map alignment and map merging, tack-
led in this paper, is a necessary preliminary step in
order to achieve an independent multi-robot SLAM
platform.

2 Related work
Different solutions to the multi-robot SLAM problem
have emerged so far. These solutions can be classified
into two different groups:

1. Solutions in which the estimate of the map and
the robot trajectories is performed jointly. In this
case, the construction of a single map is cen-
tralized using the observations of all the robots,
updating the trajectories and the map jointly
([31, 9, 12, 15]). In this case, the robots will
have a global notion of the space, what facili-
tates the map exploration tasks. Nevertheless, the
problem is that the initial relative position of the
robots should be known, which is something that
may not be possible in practice.

2. Solutions in which each robot estimates an own
individual map using its observations indepen-
dently ([18, 36]). In this case, new observations
should only be compared with a limited number
of landmarks in the local maps. Additionally, the
construction of the local maps can be carried out
even if the relative poses of the robots are not
known. This is an advantage over the previous
case. However, the map fusion step is troubled
since the data association should be solved be-
tween the local maps.

In this paper, we focus on the latter approach. i.e.,
the robots start from different positions and build local
maps independently. Then, the fusion of these local
maps may be required. As a consequence, the trasfor-
mation between the different reference systems should
be known. In this situation, most approaches try to
find the relative position of the robots. In this sense,
the easiest case can be seen in [31], where the relative
position of the robots is supposed to be known. Nev-
ertheless, more difficult approaches are [18] and [36].
In these cases, the robots try to establish a meeting
point in order to measure their relative positions. In
many approaches the transformation between maps is
performed with the matching of landmarks [29].
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Figure 1: Tracking of Harris points described by u-
SURF

3 Visual Landmarks

As mentioned before, in our case, the robots build
their maps using visual information from the envi-
ronment. To do this, they use a stereo head mounted
on them. Most of maps using visual information are
landmark-based. Those landmarks represent the loca-
tion of a set of points from the environment with re-
spect to a global reference frame. The main advantage
of this representation is the compactness.

Since we use stereo vision, the landmarks repre-
sent the 3D position of the points. Mainly, two steps
must be distinguished in the selection of visual land-
marks. The first step involves the detection of interest
points in the environment. The detection should be as
stable as possible, since the points of the environment
are observed from different viewpoints. Then, at a
second step the interest points are described by a fea-
ture vector which is computed using local image infor-
mation. This descriptor is used in the data association
problem, i.e., when the robot has to decide whether
the current observation corresponds to one of the land-
marks in the map or to a new one. Different detectors
and descriptors have been used for mapping and lo-
calization using monocular or stereo vision, such as
SIFT [20, 13, 33], the Harris corner detector [8, 16],
Harris-Laplace [17] or SURF [26].

In a prior work, we performed a comparative
study in order to find the most suitable combination
detector-descriptor in the visual SLAM context [23,
2, 11]. As a result, we obtained that the best feature
extractor was the Harris Corner detector combined
with the u-SURF descriptor. This detector/descriptor
proved to be the most suitable for visual SLAM. The
u-SURF descriptor is not rotationally invariant [5].
However, this is not a problem in our case since the
stereo camera is fixed on the robot and it only per-
forms movements in a 2D plane. In a different situ-
ation with more DOGs, the SURF descriptor would
work properly.

4 Map building

In this work, we use Pioneer-P3AT robots, provided
with a laser sensor and a STH-MDCS2 stereo head
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Figure 2: Example of map building using FastSLAM.
Two robots share the same space (R1 andR2), but the
map building is performed independently.

from Videre Design. This stereo camera is used to ex-
tract visual information from the environment. Con-
cretely, we use the Harris corner detector [14] to ob-
tain distinctive points of the scene. Moreover, these
points are characterized by a visual descriptor known
as U-SURF [5]. The selection of this combination de-
tector/descriptor is the result of a previous work [11].

As mentioned before, in this paper the SLAM
problem is solved using the FastSLAM algorithm .
The main idea of the FastSLAM algorithm is that the
SLAM problem can be separated into two main sub-
problems: the estimate of the trayectory of the robot
and the estimate of the map [25]. This can be ex-
pressed as:

p(xt, L|zt, ut, ct) = p(xt|zt, ut, ct)
N
∏

k=1

p(lk|x
t, zt, ut, ct)

(1)
This equation states that the SLAM posterior is

decomposed into two parts: the estimate of the robot
path and N independent estimators of the landmark
positions, each conditioned to the path estimate. We
approximatep(xt|zt, ut, ct) by means of a set ofM
particles. Thus, each particle hasN independent land-
mark estimators (implemented as EKFs), one for each
landmark. Each particle is therefore defined as:

S
[m]
t = {xt,[m], µ

[m]
t,1 ,Σ

[m]
t,1 , d

[m]
1 , . . . ,mu

[m]
t,N ,Σ

[m]
t,N , d

[m]
N },

(2)
whereµ

[m]
t,k is the best estimation at timet for

the position of landmarklk based on the path of the
particle m and Σ

[m]
t,k the associated covariance ma-

trix. The visual descriptor associated to the land-
mark j is represented byd[m]

j . The particle set

St = {S
[1]
t , S

[2]
t , . . . , S

[M ]
t } is calculated incremen-

tally from the setSt−1 in time t − 1 and the control
ut.

This algorithm can be summarized in the follow-
ing steps:

1. New particle set generation. In a first step, a new
set of particles representing the location of the
robot are obtained from the previous set. That is
to say, these particles evolve taking into account
the previous position each particlext−1 and the
movement performed by the robotut. For each
particlem, this can be expressed as:

x
[m]
t ∼ p(xt|xt−1, ut) (3)

These particle follow a gaussian distribution. At
the initial position of the robot, all particles are
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Figure 3: The dispersion of the particle set grows as
the robot moves, representing the uncertainty in the
robot’s pose. This figure shows the evolution of the
particle set along the path of three different robots.

concentrated in the same location. Afterwards,
as long as the robot moves, the uncertainty on
its pose grows and therefore the dispersion of the
particles is higher. This uncertainty can be re-
duced if, for example, the robot revisits an area.
Both situations are shown in figure 4. Fig. 4(a)
presents the moment in which the robot closes a
loop and thus it reobserves landmarks previously
integrated in the map. In this case, the uncer-
tainty of the pose of the robot is small so the par-
ticles are concentrated. On the contrary, in Fig.
4(b) presents the situation in which the robot is
performing several movements in a new area. In
this case the set of particles is more dispersed in-
dicating that the uncertainty is higher.

2. Landmark estimation.

The next step consist on updating the estimate of
the landmarks in the map. When a robot per-
forms an observation, it identifies whether the
landmark is observed for the first time or, on
the contrary, it corresponds to a landmark pre-
viously integrated in the map. This problem is
known as data association. In this step we con-
centrate on how the estimate of the landmarks is
updated based on the pose of the robot, having
made the observationot = {zt, dt} (zt represents
the coordinates of the point detected anddt the
descriptor) with data associationct. The update
of each landmarkθct

is performed independently
for each particle by means of the EKF (Extended
Kalman Filter) equations as detailed here:

ẑt = g(x
[m]
t , µ

[m]
ct,t−1) (4)

Glct
= ∇lct

g(xt, lct
)
xt=x

[m]
t ;lct=µ

[m]
ct,t−1

(5)

Zct,t = Glct
Σ

[m]
ct,t−1G

T
lct

+ Rt (6)

Kt = Σ
[m]
ct,t−1G

T
lct

Z−1
ct,t

(7)

µ
[m]
ct,t

= µ
[m]
ct,t−1 + Kt(zt − ẑt) (8)

Σ
[m]
ct,t = (I − KtGlct

)Σ
[m]
ct,t−1 (9)

where ẑt is the prediction for the current mea-
surementzt assuming that it has been associated
with landmarkct in the map. The observation
modelg(xt, lct

) is linearly approximated by the
Jacobian matrixGlct

. It is assumed here that the
noise in the observation is Gaussian and can be
modeled with the covariance matrixRt. Equa-
tion (8) represents the update of the estimate of
the landmarkct: µ

[m]
ct,t−1 based on the innovation

z = (zt − ẑt). Finally, Equation (9) updates the

covariance matrixΣ[m]
ct,t

, which is associated to
them particle and the landmarkct. Note that we
implicitly assume that the observationzt corre-
sponds to the landmarklct

in the map.

3. Assigning a weight to each particle.

Next, a weight is given to each particle based on
the quality of the correspondence between the
observations performed and its associated map.
This weight is computed as:

ω
[m]
t =

1
√

|2πZct
|
e{−

1
2
(vt−v̂t,ct )

T [Zct ]
−1(vt−v̂t,ct )}

(10)

The particles with the highest values of the
weights, will be the most probable particles.

4. Importance reampling.

Finally, a resampling process is made in order
to keep the particles with high weights. Those
with lower weight values are replaced by other
with higher ones. This step is not performed at
each iteration of the FastSLAM algorithm, since
this would reduce the particles variety, affecting
negatively to the results.

Figure 2 shows an example of the map building
using the FastSLAM algorithm. Two robots share the
same scenario although they do not have any knowl-
edge about the other robot’s existence. Each robot per-
foms an independent particle filter. In the figure, we
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Figure 4: Traslation error.

can see the reference system of each robot (SR1 and
SR1). Figure 2(b) presents the same scene of Figure
2 (a), but rotated asSR2. The reference systems are
located at the (0,0,0) position of the respective robots.
In the figure, we apreciate how the pose of each robot
is represented by a particle set.R1 (Figure 2(a)) has
a lower uncertainty in the pose since the robot has al-
ready closed a loop (revisits an area). On the contrary,
in Figure 2(b), we observe that the uncertainty in the
pose ofR2 is higher since the particle set is more dis-
perse. Additionally, the path of the robots is also rep-
resented. For clarity reasons, we present only the path
of the most probable particle, which is the best esti-
mate at that moment. Regarding the map estimated,
it can be observed that the estimate of the landmarks
has more or less uncertainty depending on how many
times are these landmarks seen by the robots or the
distance from which they are observed. The uncer-
tainty is represented by an ellipse.

In the experiments presented in this paper, the
map alignment is evaluated at different stages of the
SLAM process. These experiments have been carried
out using 200 particles per robot.

5 Map Aligment

This section studies the aligment of landmark-based
maps. Concretely, the maps built are made of visual
landmarks. Aligning two maps means establishing
a common reference system for these maps by com-
puting three aligning parameters:tx, ty andθ. This
is done by computing the transformation between the
reference systems of the different local maps.

In this framework, our aim is to find a suitable
method that allows us to align this kind of maps. In
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Figure 5: Rotation error.

Algorithm 1 Computation of T, given m and m’
1: [u, d, v] = svd(m′)
2: z = uT m
3: sv = diag(d)
4: z1 = z(1 : n) {n is the number of eigenvalues (not equal to0)

in sv.}
5: w = z1./sv
6: T = (v ∗ w)T

order to do this, we have performed an evaluation of a
set of aligning methods that are enumerated below:

1. RANSAC (Random Sample Consensus). This
algorithm have been already used in map align-
ment in [29]. It is an iterative algorithm in which
the first step is to identify the correspondent land-
marks between both maps. Then two pairs of cor-
responcences are selected at random and an ini-
tial estimate of the alignment is computed. This
proces is repeated a number of times. At each
time, the set of correspondences that support the
solution obtained. The alignment computed is
that one with the higher number of supports.

2. SVD (Singular Value Decomposition) [1, 28].
This algorithm also begins with a list of corre-
spondences between the two maps. Then the
alignment is computed as it is shown in Algo-
rithm 1.

3. ICP (Iterative Closest Point) [6, 35]. This is an
iterative algorithm in which the objective is to
minimize the following expression:‖T·m

′−m‖,
wherem andm′ are the correspondences andT
is the transformation matrix constituted by the
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three alignment parameters as shown here:

T =











cos θ sin θ 0 tx
− sin θ cos θ 0 ty

0 0 1 0
0 0 0 1











(11)

4. ImpICP(Improved ICP) [4, 3]. The ImpICP
method is a modification of ICP implementedad
hocin order to increase the probability of obtain-
ing a good estimate.

The rest of methods have been already applied to map
alignment or point registration [21, 24] . A more de-
tailed explanation of the functioning of these methods
can be seen in [3, 4]. Basically, all these methods es-
tablish correspondences between the landmaks of two
local maps, based on the descriptor similarity. Then,
given this set of correspondences, an estimate of the
alignment is computed.

It is noticeable that these methods obtain only
a first estimate of the aligning parameters. The set
of correspondences and this estimate are used as the
input of a least squares minimizationthat eliminates
outliers and obtains the final solution [27].

Moreover, these aligning methods were evaluated
not only qualitatively but also in terms of their com-
putational efficiency. In Figure 6, a comparison of the
computational time of the aligning methods. In this
figure, we present the time that it takes to obtain the
aligning parameters (seconds)vs.different number of
correspondent points between the local maps. Logi-
cally, the time is higher as the common part between
the maps is bigger. It can be observed that the compu-
tational time of the different aligning methods is very
similar, so it can be deduced that this is not a deter-
minant factor in order to select one of these methods
as the most suitable to align visual landmark-based
maps.

In these experiments, the local maps have been
built by means of the FastSLAM algorithm. This al-
gorithm is performed in several iterations. Since the
aim of this study is to observe the behaviour of the
aligning methods at different stages of the SLAM pro-
cess, we obtain the most probable map at each se-
lected iteration. The most probable map is the map
of the most problable particle at that specific moment.
Then, given two maps, the alignment is carried out by
each aligning method. Finally, the solution is evalu-
ated as an error measure computing the Euclidean dis-
tance between that solution and aground truth. This
ground truth is a measure of the real relative initial
position of the robots.

Figures 4 and 5 show the results obtained af-
ter comparing the aligning methods previously men-
tioned. They present the error in the estimate of the
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Figure 6: Computational time vs. number of overlap-
ping points between the local maps.

aligning parametersvs. thek− Iteration of the Fast-
SLAM algorithm. Figure 4 shows the traslation error
(in meters), i.e., in the estimate oftx and ty. Then,
figure 5 presents the rotation error expressed in radi-
ans (estimate ofθ).

As the iteration of FastSLAM is higher, i. e.,
when the number of landmarks in the maps grows,
two situations may arise. On the one hand, it is prob-
able that the overlapping part between the local maps
is bigger, i.e., there will be more correspondences be-
tween the maps we want to align. In this situation,
the estimate of the aligning parameters will be bet-
ter. This fact is visible in the results obtained. Par-
ticularly, it can be seen in Figure 4 how the error of
the solutions obtained by ICP and ImpICP decreases
from k − Iteration = 200 till k − Iteration = 600.
On the other hand, having more landmarks does not
mean necesarily having more correspondences. For
this reason, when the size of the maps grows, it can
happen that the non-overlapping parts are bigger. This
fact adds complexity to the search of correspondences
(preliminary step of the aligning methods to compute
the alignment). In this cases, the aligning methods
are requested to be specially robust to false correspon-
dences. In Figures 4 and 5 it can be observed that the
error obtained is bigger aroundk−Iteration = 1000.
Nevertheless, it is worth noting that RANSAC is in-
variant to the situations described. Moreover, it ob-
tains a quite accurate estimate of the alignment, since
the error values are very close to zero. RANSAC is
therefore an aligning method robust to the percentage
of common landmarks and is able to obtain low er-
ror results. Regarding the rest of methods, SVD ob-
tain acceptable solutions although not so accurate as
RANSAC. ICP and ImpICP do not obtain good re-
sults, since obtain errors close to 4 meters in the esti-
mate of the traslation and close to -0.2 radians in rota-
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tion (ICP). Furthermore, they present results with high
variance, what denotes some randomness in the esti-
mate of the alingment.
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Figure 7: Correspondences established between two
maps to be aligned.

Figure 7 shows an example of two maps (repre-
sented by asterisks and stars) as the typical used to
be aligned is these experiments. These are 3D visual
maps that initially have different reference systems.
In the figure, it can be noticed that a set of common
landmarks (correspondences) have been identified be-
tween the maps. These correspondences are used to
compute the aligment between the maps.

6 Map merging

Once the aligment is performed, the local maps have
the same reference system. However, in order to ob-
tain a unique global map, these local maps have to be
merged. Figure 8 presents the situation in which the
same point of the scene (θ) has been observed by two
robots (ROBOT1 andROBOT2) from different po-
sitions. This point is incorporated by each robot as a
landmark in its respective local map. Particularly, the
landmark is added asLi andLj respectively, as shown
in Figure 8. Logically, the same landmark in differ-
ent local maps will have different uncertainty (Σi and
Σj). This uncertainty is represented in Figure 8 as
an ellipse and depends on several factors, such as the
distance between the robot and the landmark when it
is observed, the uncertainty on the pose of the robot
and the fact that this landmark can be reobserved dur-
ing the SLAM process. Those factors affect the mag-
nitude of the uncertainty in the estimate of the land-
marks represented by the size of the ellipse.

It is noticeable that when merging two local maps,
the uncertainty of the landmarks have to be taken into

Figure 8: The same landmarkθ has been observed by
two different robots and integrated in their respective
maps asLi andLj.

account. For this purpose, our proposal in this pa-
per is a Multivariable Stationary Kalman filter. Given
two maps (1 and 2), the fused map can be obtained by
means of the following formulation:

K{m} = Σi{m} · (Σi{m} + Σj{m})
−1 (12)

LF{m} = Li{m} + K{m} · (Li{m} − Lj{m}) (13)

ΣF{m} = (I − K{m}) · Σi{m} (14)

wherem is an index (m ∈ {1,M}, M : number
of correspondences between the local maps) that de-
notes each pair of correspondences between the maps
(in this case,i and j). Li, Lj and LF are the 3D
coordinates of the landmaks inmapi, mapj and the
fusedmapF respectively. It is noticeable thatmapi

andmapj have been already aligned and therefore the
landmarks are expressed in the same reference system.
Then,Σi, Σj andΣF represent, by means of a3 × 3
covariance matrix, the uncertainty of the landmarks
belonging tomapi, mapj andmapF . It is remark-
able that the aligment is not only applied to the co-
ordinates of the landmarks, but also to the uncertainty
ellipse. This is done by means of a rotation matrix (R)
as shown below:

Σj = RT · Σj0 · R (15)

R =







cos θ − sin θ 0
sin θ cos θ 0

0 0 1






(16)
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Figure 9: Results of map merging (2D view). (a)
Presents correspondences ofmap1 andmap2 aligned
and fused intomapF . Error ellipses are also repre-
sented. (b) Zoom of the black rectangle drawn in (a).
The fused landmarks (mapF ) present a lower uncer-
tainty (smaller ellipses).
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Figure 10: Maps of Figure 7 are merged into a global
one.

whereΣj0 is the covariance ofmapj before the
alignment.

In Figure 9 a real example of map merging is
shown. Concretely, Figure 9(a) presents a set of
landmarks identified as correspondences between two
maps (1 and2). In the figure, these maps have been al-
ready aligned so the correspondent landmarks almost
overlap. Moreover, the resulting fused map (mapF )
is also represented. Finally, the uncertainty in the esti-
mate of the landmarks is represented by ellipses. For
clarity reasons, a small area of this figure has been en-
larged. Thus, the dashed rectangle is broaden to Fig-
ure 9(b). In this case, the correspondences can be seen
connected by a line. Landmarks belonging tomap1

are represented by an asterisk and those ofmap2 are
represented by a star. Finally, the landmarks of the
obtainedmapF are represented by squares. As shown
in Figure 9(b), the new landmaks, i.e., the landmarks
of the fused map have lower uncertainty values since
the uncertainty ellipses are smaller. Finally, Figure 10
shows a 2D view of a fused map, which is the result
of merging the maps of Figure 7.

7 Conclusion

The approach proposed here consists in maintaining
independent particle filters in a multi-robot platform.
In this case the relative positions of the robots are not
neededa priori, since the robot initate their map build-
ing task without notion of other robots’ positions or
observations. Furthermore, it is less computationally
expensive than the case in which the map and trajec-
tories is performed jointly. In this case, the local maps
are smaller and each filter only computes the path of a
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single robot.
In a next step, we consider the situation in which

these robots want to fuse their local maps into a sin-
gle one. We therefore study the map fusion prob-
lem by dividing it into an alignment problem and a
merging problem. In the first case a comparison of
several aligning methods was made. As a result, we
concluded that RANSAC is the most suitable aligning
method for this kind of maps, i.e., visual landmark-
based maps. The experiments also show that the
global map obtained presents less uncertainty than the
original local maps, thanks to the Multivariable Sta-
tionary Kalman filter. The results obtained regarding
the map alignment and fusion problem are useful for
any application using landmark-based maps.
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