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Abstract: - The structural behavior fire-resistant steel is essential; fire-resistant steel is proven to have higher 
strength at elevated temperature than that of conventional steel. Also, the requirement of fire protection in the 
fire-resisting steel can be relaxed as compared with conventional steel structures. However, the design criteria 
for the application of the fire-resisting steel in steel columns are still limited. Experimental approach into the 
analysis of fire-resistant steel frames is costly and expensive. Such analyses aim at evaluating the variations of 
the ultimate strength of steel frames due to the reduction effects on strength resulting in the increasing 
temperature. An alternative approach to model the mechanical behaviour of steel frames when exposed 
to fire at high temperatures is presented in this work. The concept is based on a series of stress-strain 
curves obtained experimentally at various temperature levels. An artificial neural network (ANN) is 
employed to predict the stress-strain curve under such condition. The numerical results obtained from 
ANNs of stress levels for the material were compared with the experimental data. A New model for 
reduction factor is introduced and compared with other models. Using ANN was found to be an 
efficient tool for modelling the material properties of steel frames for high temperature applications. 
 
Key-Words: - Material models, artificial neural networks, fire-resistant steel, fire load, stress strain 
curves, strength of materials, elevated temperature. 
 

 
1 Introduction 
It is well known that the strength of engineering 
materials decrease with the increase of their 
temperature. Steel, which is incombustible, can 
absorb a significant amount of thermal energy 
when exposed to elevated temperatures such in 
the case of a fire. It will, nevertheless, recover 
its strength after cooling to ambient 
temperature. The behaviour of steel at high 
temperatures, as when subjected to a fire, is of a 
prime concern to many researchers and a vast 
number of researchers investigated this 
particular subject in great depth particularly 
Fire Resistance Steel (FRS). 

Fire resistance steel (FRS) means steels that 
are basically thermo-mechanically treated 
(TMT) to perform much better structurally 
under fire than the ordinary steel and these type 
of steels have the ferrite-pearlite microstructure 

of ordinary structural steels but the presence of 
Molybdenum and Chromium stabilizes the 
microstructure. And the fire rating of steel are 
expressed in units of time 1/2, 1,2,3,4 hours etc. 
Fire testing methods performance of any system 
varies depending on the heating consideration 
to which it is exposed.  

Experimental evaluation of mechanical 
properties of FRS, namely ultimate strength, 
usually requires complex experimental work, 
experts and special equipment. It also requires 
extensive experimental setup which would be 
time consuming and will result is high costs [1].  
 
 
2 Artificial Neural Networks 
In the past few years, ANNs have been 
extensively used for many different industrial 
applications such as control, prediction, pattern 
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recognition, classification, material modelling, 
speech and vision. ANNs have been trained to 
solve nonlinear and complex problems that are 
not exactly modelled mathematically [2]. 

ANNs eliminate the limitations of the 
classical approaches by extracting the desired 
information using the input data [3]. Applying 
ANN to a system needs sufficient input and 
output data instead of a mathematical equation. 
Furthermore, it can continuously re-train for 
new data during in operation, thus it can adapt 
to changing of the system. Another merit of 
ANNs is that it can be used to deal with the 
complications related to incomplete and loose 
input data [4,5].  

This study aims at evaluating stress-strain 
curves depending on ANNs by using 
experimental data from a previous research 
work [6]. Furthermore, this work evaluates the 
variation between experimental data and the 
resulted data from ANNs, and shows the 
importance of ANNs to verify the experimental 
data and the accuracy of the results. 

An Artificial Neural Network (ANN) is an 
information processing paradigm that is 
inspired by the way biological nervous systems, 
such as the brain, process information. An ANN 
can be configured for a specific application, 
such as pattern recognition or data 
classification, through a learning process. Two 
phases in all NN application exist: the phase of 
learning or training and the phase of test. Once 
trained the model with the type of selected 
learning, the phase of test is followed, in which 
the representative features of the inputs, called 
training patterns, are processed. After calculated 
the weights of the network, the values of the 
last layer neurons, they are compared with the 
wished output to state the suitability of the 
design [7]. ANNs have different layers, 
interconnected through a complex network. A 
typical feedforward ANN is depicted in Fig. 1, 
with m inputs and p outputs, and each circle 
representing a single neuron. The name 
feedforward implies that the flow is one way 
and there are not feedback paths between 
neurons. The output of each neuron from one 
layer is an input to each neuron of the next layer 
[8]. 

 
Figure 1: A typical ANN structure 

 
In order to select a good Neural Network 

configuration, there are several factors to take 
into consideration. The major points of interest 
regarding the ANN topology selection are 
related to (1) network design, (2) training and 
(3) some practical considerations. A Multilayer 
Perceptron (MLP) was used in this work.  

An MLP is a network of simple neurons 
called perceptrons. The basic concept of a 
single perceptron was introduced by Rosenblatt 
in 1958 [15]. The perceptron computes a single 
output from multiple real-valued inputs by 
forming a linear combination according to its 
input weights and then possibly putting the 
output through some nonlinear activation 
function. They are supervised networks, so they 
require a desired response to be trained. They 
learn how to transform input data into a desired 
response, so they are widely used for pattern 
classification. MLP can approximate virtually 
any input-output map. They have been shown to 
approximate the performance of optimal 
statistical classifiers in difficult problems. The 
most NN applications involve MLPs [7]. 
 
 
3 Fire resistance Steel Investigations 
Steel properties at elevated temperature were 
the focus of a number of research studies 
particularly experimentally [6, 9, 10, and 11]. 
The effect of width-thickness ratios, slenderness 
ratio and residual stress on the performance of 
fire-resistant steel was investigated [6] for a 
series of fire resistance steel columns loaded to 
their ultimate stress at specified temperature. In 
the same work, researcher evaluated the 
variations of the ultimate strength of steel 
columns due to different width-to-thickness 
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ratios under specific elevated temperature and 
investigated the reduction effects on column 
strength resulting in increasing temperature and 
finally established design guidelines of steel 
columns using fire resisting steel. 

An investigation into the deterioration of 
mechanical properties of light gauge cold-
formed steels, tensile test coupon tests was 
carried out [9] to determine the mechanical 
properties of these steels made of both low- and 
high-strength steels and thicknesses of 0.6, 0.8 
and 0.95 mm at temperatures ranging from 20 
to 800 oC. It was reported that the currently 
available reduction factors are unsafe in the fire 
safety design of cold-formed steel structures 
[9]. 

A few researchers employed the ANN 
modelling technique to predict the mechanical 
properties in various applications [10] an 
Artificial Neural Network (ANN) was used to 
analysis steel frames subjected to fire in plastic 
range. The study was based on a series of stress 
strain curve obtained experimentally for various 
temperature levels. This study was carried out 
for steel of strength 35.5 kN/cm2 and heating 
rate 10˚C/min. Input data to the ANN was strain 
and temperature. Stress was output. A non-
linear analysis of steel frames subjected to fire 
was presented but the resulted were limited to a 
steel strength of 35.5 kN/cm2 and heating rate 
of 10 0C/min.  

Another research work considered the effect 
of changing heating rate on parameters 
characterizing steel behaviour under fire [11]. 
Two structural steel grades were used for the 
study. Heating rate and stress level were used 
for the input, while deformations versus time 
relation and strength profiles were output. 
Metallographic analysis was carried out to 
analyse data after strength tests. 

A neural network model to predict 
mechanical properties of dual phase steel at 
high temperature was developed in a different 
research work [12].  Martensitic morphology, 
marten site volume fraction range of 
deformation temperature and pre-strain 
percentage as input data. Yield strength and 
tensile strength were the output. 

The effectiveness of three back-propagation 
artificial neural network models that predict the 

impact toughness of quenched and tempered 
pressure vessel steel exposed to multiple post 
weld heat treatment cycles was reported [6], the 
hardness of simulated heat affected zone in 
pipeline and tap fitting steels after in-service 
welding and the hot ductility and hot strength of 
various micro-alloyed steels over the 
temperature range for strand or slab 
straightening in continuous casting process. 
Predicted and actual values of each model were 
well matched. 
 
4 Material Model 
The material model was constructed by an 
artificial neural network (ANN) on the basis of 
experimental data [6].  The structural behavior 
of stub columns using fire-resistant steel has 
been investigated experimentally under uniform 
fire load where fire-resistant steel was proven to 
have higher strength at elevated temperature 
than that of conventional steel. The main 
purpose of the reported experimental studies 
was to evaluate the variations of the ultimate 
strength of steel columns due to different width-
to-thickness ratios under specified elevated 
temperature; in addition, to investigate the 
reduction effects on column strength resulting 
in the increasing temperature; and finally, to 
establish the design guidelines of steel columns 
using fire-resisting steel [6]. 
 Several types of ANN geometries exist. A 
review of different ANNs is widely available 
and given in the literature [10,11 from ref 3]. 
The multi-layer feed-forward network is usually 
chosen if a functional approximation is sought. 
Since it is our aim to approximate the strain–
stress relation, the multilayer feed-forward 
network trained by supervised learning was 
chosen in this work. 
 In this work, the designed neural network is 
meant to estimate stress (σ) while strain (ε) and 
temperature T were used as input data. A total 
of 320 input output pairs were used. Those were 
divided into three sets: training, validation and 
testing sets. 
 A neural network has to be configured such 
that the application of a set of inputs produces 
(either 'direct' or via a relaxation process) the 
desired set of outputs. Various methods to set 
the strengths of the connections exist. One way 
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is to set the weights explicitly, using a priori 
knowledge. Another way is to 'train' the neural 
network by feeding it teaching patterns and 
letting it change its weights according to some 
learning rule [13]. Supervised learning or 
Associative learning in which the network is 
trained by providing it with input and matching 
output patterns. These input-output pairs can be 
provided by an external teacher, or by the 
system which contains the neural network (self-
supervised).  
 Unsupervised learning or Self-organisation 
in which an (output) unit is trained to respond to 
clusters of pattern within the input. In this 
paradigm the system is supposed to discover 
statistically salient features of the input 
population. Unlike the supervised learning 
paradigm, there is no a priori set of categories 
into which the patterns are to be classified; 
rather the system must develop its own 
representation of the input stimuli. Last method 
of training is the Reinforcement Learning. This 
type of learning may be considered as an 
intermediate form of the above two types of 
learning. Here the learning machine does some 
action on the environment and gets a feedback 
response from the environment. The learning 
system grades its action good (rewarding) or 
bad (punishable) based on the environmental 
response and accordingly adjusts its parameters. 
Generally, parameter adjustment is continued 
until an equilibrium state occurs, following 
which there will be no more changes in its 
parameters. The self-organizing neural learning 
may be categorized under this type of learning. 
 The validation set is used after the neural 
network has been training to assess the 
performance of the trained neural network. The 
validation set is similar to the training set but 
not equal. Many practitioners of Neural 
Networks forget to validate the trained neural 
network using the validation set. A mistake 
which can be made with artificial neural 
networks is to use the validation data set for 
training. The network would learn for the 
training data and incorporate it into its strategy 
to achieve perfect accuracy. However, with a 
different data set the network may not perform 
well at all, even if they are similar. More 

problematic is that there would be no way of 
telling whether the network is performing well. 
 The purpose of these two sets (the training 
set and the validation set) is to assess how well 
the neural network will behave with other sets 
during simulation. As a general rule, the 
training set must include all different training 
cases. This will guarantee that the neural 
network will behave similar with the validation 
set and the training set. In some real life 
problems, however, it is not possible to include 
all cases in the training sets. 
 To assess the quality of the behavior of an 
artificial neural network the mean squared error 
(MSE) is typically used for comparison 
purposes. It is computed between the actual 
network output and the desired output (also 
known as target). Typically, the number of 
hidden neurons can be increased to reduce the 
MSE. However, this must be done with caution 
as over-fitting may occur. It is very easy to 
commit over-fitting, as many tools to simulate 
neural networks do not caution the user when 
this happens. If the MSE obtained during 
training is much smaller than the MSE obtained 
during validation, over-fitting has been for sure 
committed; in this case the training and the 
neural network are useless. 
 The neural network performance is tested 
with a testing set which is not part of the 
training set. The testing set can be seen as the 
representative cases of the general 
phenomenon, stress-strain data in this research. 
If the network performs well on the testing set, 
it can be expected to perform well on the 
general case, as well.  Cross-validation methods 
can also be used to avoid overlearning. In cross-
validation, we switch the places of the training 
set and the testing set and compare the 
performance of the resulting networks.  
 Based on the previous understanding of the 
training, testing and validation sets, different 
sizes of learning and testing sets were 
attempted.  
 As a final conclusion of those attempts, 65% 
(240) pairs were used for training, 20% (64) for 
validation, and 5% (16) for testing. Table 1 
shows sample inputs and targets used 
throughout the modelling process. 
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Many calculations with different geometries 
of neural networks were carried out. The final 
solution was calculated with the geometry 2-1-
20-1 which means there was one hidden layer 
that included (20) neurons as shown in Fig. 2.  

 

 
Figure 2: Neural Network geometry 

 
The material model, later used in the 
mechanical analysis, was constructed by the 
ANN on the basis of experimental data [6]. The 
neural network was meant to estimate stress, 
while strain and temperature were used as input 
data. The calculation was carried out for steel. 
Different sizes of learning and testing sets were 
tried; however the results did not differ 
considerably. 

The relative error allowed was set to 0.05, 
which is a relatively low value in an ANN 
training procedure. Many calculations with 
different geometries of neural networks were 
carried out.  

The efficiency of the learning procedure was 
explored where actual and calculated values 
belonging to the testing set are compared. In 
this case, the coefficient of correlation was very 
high: R = 0.99974. The training performance is 
illustrated in Fig. 3. 

A feed-forward procedure was used to train 
the algorithm. The strain and temperature were 
used as inputs; stress was the output of neural 
network model.  

The consensus between the calculated values 
obtained by the ANN and the experimental ones 
is very good along the entire stress-strain curve 
for all temperature levels. 

However, some difficulties appear within the 
course of modelling the properties of steel at 
elevated temperatures by the ANN. Values of 
the yield points of particular stress–strain 
curves were under predicted because of the 
shape of the stress-strain curve itself and since 
those points are not explicitly defined by the 

curve shape. This problem was overcome by 
manually evaluating those points using a slope 
method using the experimentally obtained 
stress–strain relations. Furthermore, due to the 
regressions used in the ANN, the 
approximations for the stress–strain relations 
below the yield limit exhibited a certain 
deviations from a linear shape, which has also 
been reported in an earlier research work [10].  

Knowing that an ideal linear relationship 
exists between stress and strain below this yield 
region, a linear regression based on actual 
experimental data has been used to cover this 
range. This is a valid approach for most metals 
and where the behaviour is governed by Hooks 
law. The approach used in this work can predict 
data for up to 2% strain (which is the range of 
experimental data). Predictions beyond this 
level of strain cannot be validated due to the 
lack of experimental data. However, strain 
hardening approach can be used with 
reasonable precision to extend the existing 
predictions beyond the availability of 
experimental data. Predictions obtained for the 
various temperatures (T = 20 oC to 700 oC) are 
shown in Figs. 4a-h. The figures show the 
“raw” ANN predictions which somewhat 
underestimate or overestimate the experimental 
data. The differences are quite minimal and one 
can remain confident that the accuracy of 
predictions is quite acceptable. Fig. 5 shows the 
final ANN results for the whole temperature 
range used in this study.  

The predictions in their current form (strain-
versus stress) are very useful. However, 
researchers in the related fields (i.e. structures) 
would be more interested in a using a strength 
reduction factor rather than raw data.  

 
5 Reduction Factor 
All researchers interested in studying material 
properties at high temperature deal with a term 
called reduction factor (Kd). Reduction factor 
denotes the ratio between the value of a 
property at interested temperature to the value 
of this property at room temperature, this term 
gives a good understanding on the effect of 
elevated temperature on the material properties. 
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Figure 3: ANN training performance 

 

 
(a) T=20 oC (room temperature). 

 
(b) T=100 oC. 

 
(c) T=200 oC. 

 
(d) T=300 oC. 

 
Figure 4: stress-strain curve from actual 
experimental data and ANN predictions 
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(e) T=400 oC. 

 
(f) T=500 oC. 

 
(g) T=600 oC. 

 
(h) T=700 oC. 

 
Figure 4 (cont.): stress-strain curve from actual 

experimental data and ANN predictions 

 
Figure 5: ANN stress-strain curves at elevated 

temperature 
 
 
Many researchers stated models on the 
behaviour of material properties at a certain 
temperature experimentally or by using ANN 
models, these models come in mathematical 
formulae or tabular ones, pervious verified 
models [9, 10, 14, 15 and 16] stated the 
mathematical relationship for the reduction 
factor as: 
 
Kd = 1.876x10-11T3.98 – 1.91x10-8T3 

           +3.625x10-6T1.996+-10-4T+0.99                (1) 
 
In this work, the reduction factor is obtained 
from the ANN model; The data is acquired by 
comparing the strength value (in this case the 
ultimate strength of the selected steel) to that 
extracted from the ANN predictions. The final 
values are shown in Table 2 together with 
comparisons to previous reduction factor 
models. Fig. 6 shows a graphical representation 
of the ANN reduction factor and also shows a 
comparison with previous experimentally 
obtained data from previous research works. 

Designers use the reduction factor in the 
form represented by equation (1). In this work, 
curve fitting was undertaken to obtain a 
reduction factor calculated from ANN results. 
Matlab was used to fit the data and it resulted in 
a polynomial from of the 6th degree, giving the 
best fit to the data. The reduction factor as 
function of temperature is: 
 
Kd = 2x10-16T6 – 4x10-13T5+3x10-10T4 

          -10-7T3+10-5T2-1.3x10-3T+1.0209            (2) 
 

WSEAS TRANSACTIONS on SYSTEMS Moudar H. Zgoul

ISSN: 1109-2777 901 Issue 8, Volume 9, August 2010



 
Figure 6: reduction factors at elevated 

temperature 
 
Fig. 6 clearly indicates the closeness of the 
extracted reduction factors from this work 
compared to previous research works. 
Predictions beyond the available experimental 
data cannot be used without verification.  
 
 
6 Conclusion 
This paper predicted the stress at elevated 
temperature using an artificial neural network. 
A feed forward network was used, in which 
strain and temperature were treated as inputs 
while stress was the output. Temperature range 
from 20 up to 700 oC was investigated to 
predict the stress-strain curves at these 
temperatures. As a result, reduction factors 
were calculated, and thus a new reduction factor 
model was generated as an outcome and then 
compared with other factors obtained 
experimentally and numerically by ANN from 
previous research studies. The generated 
reduction factor model was shown to be an 
excellent correlation to the experimental data 
and proved that the adopted ANN approach was 
efficient and accurate. Furthermore, the 
suggested reduction factors were represented in 
polynomial form and thus enabling the use of 
the equation for simple calculations and to 
extend the data within and beyond the given 
experimental data. 
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Table 1: Sample inputs and targets 
(a) T = 20 oC 

Strain, (ε) Stress, (σ) 
0 0 

0.05 86.54 
0.1 161.69 
0.15 273.08 
0.2 340.38 
0.25 350 
0.3 351.92 
0.35 351.92 
0.4 351.92 
0.45 351.92 
0.5 351.92 
0.55 351.92 
0.6 351.92 
0.65 351.92 
0.7 351.92 
0.75 351.92 
0.8 351.92 
0.85 351.92 
0.9 351.92 
0.95 351.92 

1 351.92 
1.05 351.92 
1.1 351.92 
20 1.8 
20 1.85 
20 1.9 
20 2 
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Table 1: Sample inputs and targets (Cont.) 
(b) T = 100 oC 

Strain, (ε) Stress, (σ) 
0 0 

0.05 84.62 
0.1 159.62 
0.15 271.15 
0.2 328.85 
0.25 338.15 
0.3 342.31 
0.35 344.23 
0.4 346.15 
0.45 344.23 
0.5 344.23 
0.55 344.23 
0.6 344.23 
1 344.23 

1.05 344.23 
1.1 344.23 
1.15 344.23 
1.2 344.23 
1.25 346.15 
1.3 346.15 
1.35 346.15 
1.4 346.15 
1.45 346.15 
1.5 346.15 
1.55 346.15 
1.6 346.15 
1.65 346.15 
1.7 346.15 
1.75 346.15 
1.8 346.15 
1.85 348.07 
1.9 348.07 
2 348.07 

 
(c) T = 200 oC 

Strain, (ε) Stress, (σ) 
0 0 

0.05 75.93 
0.1 157.41 

 
 
 
 
 
 
 

 
Table 2: Reduction factor 

                         Model 
T oC Brandes 

[2]  
Hozjan 

[3] 
Mecozzi 

[8] 
ANN  

[this work] 
20 1 1 1 1 
50 0.99 __ __ __ 
100 0.98 0.922 1 0.951 
150 0.96 __ __ __ 
200 0.945 0.789 0.849 0.874 
250 0.92 __ __ __ 
300 0.9 0.526 0.63 0.73 
350 0.87 __ __ __ 
400 0.84 0.452 0.31 0.622 
450 0.795 __ __ __ 
500 0.72 0.319 0.203 0.466 
600 0.53 0.189 __ 0.28 
700 __ 0.07 0.064 0.127 
800 __ 0.056 __ __ 
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