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1 Mathematical modelling 
Mathematical modelling appears today as a dynamic 

tool for teaching mathematics, because it connects 

mathematics with the real world and our everyday 

life, thus giving students the opportunity to realize 

its usefulness in practical applications [34]. We 

recall that the main stages of the mathematical 

modelling process involve:   

Analysis of the given real world problem, i.e. 

understanding the statement and recognizing 

limitations, restrictions and requirements of the real 

system. 
Mathematising, i.e. formulation of the real situation 

in such a way that it will be ready for mathematical 

treatment, and construction of the model.  

Solution of the model, achieved by proper 

mathematical manipulation.  

Validation (control) of the model, usually achieved 

by reproducing through it the behaviour of the real 

system under the conditions existing before the 

solution of the model (empirical results, special 

cases etc). 

  Implementation of the final mathematical results to 

the real system, i.e. “translation” of the 

mathematical solution obtained in terms of the 

corresponding real situation in order to reach the 

solution of the given real problem. 

From the above brief description becomes evident 

that mathematising, solution and validation are the 

most important stages of the modelling process. In 

fact, the analysis of the problem, although it 

deserves some attention as being a prerequisite for 

mathematising, it could be considered as an 

introductory stage of the whole process. Further the 

stage of implementation is not expected to hide any 

“surprises”, at least for the type of modelling 

problems solved usually by students at school. In 

other words, a student who obtained a correct 

mathematical solution is normally expected to be 

able to “translate” it correctly in terms of the 

corresponding real situation. 

A central object of educational research taking place 

in the area of Mathematical Modelling and 

Applications is to recognize the attainment level of 

students at defined stages of the modelling process. 

In an earlier paper [29] we presented a stochastic 

model for the description of the process of 

mathematical modelling in situations where the 

teacher provides such modelling problems to 

students for solution. Namely, we introduced a finite 

Markov chain having as states the five main stages 

of the modeling process (analysis, mathematising, 

solution, validation and implementation). Each state 

is defined in terms of expected outcomes and 

transition from one state to the next is wholly 

dependent upon the successful completion of the 

previous state. Through this model we succeeded in 

obtaining a measure of students’ mathematical 

model building abilities. An improved version of the 

above model has been presented in [35] (see also 

Figure 2 in [7]). 

Models for the mathematical modelling process like 

the above and the analogous ones described in [17] 

and the second paragraph of [7], are helpful in 

understanding what is termed in [7] as “ideal 

behaviour”, in which modellers proceed from real 

world problems through a mathematical model to 
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acceptable solutions and report on them. However 

life in the classroom is not like that. Recent research, 

([4], [5] and [10]), reports that students in school 

take individual modelling routes when tackling 

mathematical modelling problems, associated with 

their individual learning styles. Students’ cognition 

utilizes in general concepts that are inherently 

graded and therefore fuzzy. On the other hand, from 

the teacher’s point of view there usually exists 

vagueness about the degree of success of students in 

each of the stages of the modelling process. All 

these gave us the impulsion to introduce principles 

of fuzzy sets theory in order to describe in a more 

effective way the process of mathematical modelling 

in classroom. The concept of uncertainty, which 

emerges naturally within the broad framework of 

fuzzy sets theory, is involved in any problem-

solving situation, especially when dealing with real-

world problems. Uncertainty is a result of some 

information deficiency. In fact, information 

pertaining to the model within which a real situation 

is conceptualized may be incomplete, fragmentary, 

not full reliable, vague, contradictory, or deficient in 

some other way. Thus the amount of information 

obtained by an action can be measured in general by 

the reduction of uncertainty resulting from the 

action. In other words the amount of uncertainty 

regarding some situation represents the total amount 

of potential information in this situation.  

Accordingly students’ uncertainty during the 

modelling process is connected to students’ capacity 

in obtaining relevant information. Therefore a 

measure of uncertainty could be adopted as a 

measure of students modelling capacities.     

For special facts on fuzzy sets and uncertainty 

theory we refer freely to [11] and [12]. 

 

2 The fuzzy model for the modelling 

process 
Let us consider a group of n students, n≥2, during 

the modelling process in classroom. Denote by Ai , 

i=1,2,3 , the stages of mathematising, solution and 

validation of the model respectively, and by a, b, c, 

d, and e the linguistic labels of negligible, low, 

intermediate, high and complete success 

respectively of a student in each of the Ai’s. Set 

U={a,d,c,d,e}. We are going to represent Ai’s as 

fuzzy sets in U. For this, if nia, nib, nic, nid and nie 

denote the number of students that had negligible, 

low, high and complete success at state Ai 

respectively, i=1,2,3, we define the membership 

function mAi in terms of the frequencies, i.e. by 

mAi(x)=
n

nix
 for each x in U.  Thus we can write  

Ai = {(x, 
n

nix
) :  x∈U}. 

In the same way we could also represent the stages 

of analysis and implementation as fuzzy sets in U. 

However this, making the presentation of our fuzzy 

model technically much more complicated, it is not 

so important, as we have already explained above 

and therefore we will not attempt it.  This 

manipulation is actually a general technique applied 

frequently during the modelling process of a real-

world problem by eliminating the variables of the 

real system that are not necessary for the study and 

solution of it. In this way we transfer from the real 

system to the, so called, “assumed real system”, that 

helps towards the formulation of the problem in a 

form ready for mathematical treatment (cf. [35]; 

section 1). 
In order to represent all possible student profiles 

(overall states) during the modelling process we 

consider a fuzzy relation, say R, in U
3
 of the form  

 

R= {(s, mR(s)): s=(x, y ,z) ∈U
3
}. 

 

To determine properly the membership function mR 

we give the following definition:  
DEFINITION: A profile  s=(x,y,z), with x,y,z in U, 

is said to be well ordered if x corresponds to a 

degree of success equal or greater than y, and y 

corresponds to a degree of success equal or greater 

than z. For example, (c, c, a) is well ordered profile, 

while (b, a, c) is not.  
We define now the membership degree of a profile s 

to be   mR(s)=m
1A
(x)m

2A
 (y)m

3A
(z) (1) if s is well 

ordered, and zero otherwise. In fact, if for example 

profile (b, a, c) possessed a nonzero membership 

degree, how it could be possible for a student, who 

has failed during mathematisation, to validate 

satisfactorily the model?  
The above definition satisfies the axioms for 

aggregation operations on fuzzy sets (cf. [11]; p. 58-

59, and p. 283).  
In the next for reasons of brevity we shall write ms 

instead of mR(s). Then the possibility rs of profile s 

is defined by rs=
}max{ s

s

m

m
   (2) , where max{ms} 

denotes the maximal value of ms , for all s in U
3
. In 

other words rs expresses the “relative membership 

degree” of s with respect to max {ms}. 
Within the domain of possibility theory (cf. [12]) 

uncertainty consists of strife (or discord), which 

expresses conflicts among the various sets of 

alternatives, and non-specificity (or imprecision), 

which indicates that some alternatives are left 
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unspecified, i.e. it expresses conflicts among the 

sizes (cardinalities) of the various sets of 

alternatives. Strife is measured by the function ST(r) 

on the ordered possibility distribution r:  r1=1≥  r2 

≥…….≥  rm ≥ rm+1 of the student group (where m+1 

is the total number of all possible students’ profiles), 

defined by  

     ST(r) = ∑
∑=

=

+−
n

i
i

j

j

ii

r

i
rr

2

1

1 log)([
2log

1
]   (3)  

 

while non-specificity  is measured by  

 

N(r) = ∑
=

+−
n

i

ii irr
2

1 log)([
2log

1
]      (4). 

 

In particular during the modelling process 

students may use reasoning that involves 

amplified inferences, whose content is beyond 

the available evidence, and hence obtain 

conclusions not entailed in the given premises. 

These conclusions may produce a generalization 

whose amount of information will exceed the 

amount of information in the level of 

functioning, i.e. an overgeneralization. For 

mathematical calculations for example, such 

conclusions could be the illusion 

that baba +=+ , or that log (a+b)=log a + 

log b, etc. The appearance of conflict in 

conclusions requires that the conclusions be 

appropriately adjusted so that the resulting 

generalization is free of conflict.  
The sum   T(r)=ST(r)+N(r)   (5) is a measure of the 

total possibilistic uncertainty T(r) for ordered 

possibility distributions. The total possibilistic 

uncertainty T(r) of a student group during the 

modelling process can be adopted as a measure for 

its modelling capacity (see section 1). This is 

reinforced by Shackle [23], who argues that human 

reasoning can be formalized more adequately by 

possibility theory rather, than by probability theory. 

The lower is the value of T(r), the better the 

performance of the student group during the 

modelling process.  
Assume finally that one wants to study the 

combined results of behaviour of k different student 

groups, k≥2, during the modelling process of the 

same real situation. For this we introduce the fuzzy 

variables A1 (t), A2 (t) and A3 (t) with t=1, 2,…, k. 

The values of the above variables represent the 

states of the modelling process for each of the k 

student groups as fuzzy sets in U: e.g. A1 (2) 

represents the state of mathematising for the 

secondgroup (t=2). It becomes evident that, in order 

to measure the degree of evidence of combined 

results of the k groups, it is necessary to define the 

possibility r(s) of each student profile s with respect 

to the membership degrees of s for all student 

groups. For this reason we introduce the pseudo-

frequencies   f(s) =∑
=

k

t

s tm
1

)(    (6)  and we define  

r(s) =
)}(max{

)(

sf

sf
   (7),, where max {f(s)} denotes 

the maximal pseudo-frequency. Obviously the same 

method could be applied when one wants to study 

the behaviour of a student group during the 

modelling process of k different real problems. 

 

3 A classroom experiment 
In order to illustrate the results obtained in the 

previous section we performed the following 

experiment, which took place recently at the 

Graduate Technological Educational Institute 

(T.E.I.) of Patras, Greece. Our subjects were 35 

students of the School of Technological 

Applications, i.e. future engineers, and our basic tool 

was a list of 10 problems involving mathematical 

modelling given to students to solve them (time 

allowed 2 hours). Our characterizations of students’ 

performance at each stage of the modelling process 

involved: 
Negligible success, if they obtained positive results 

for less than 2 problems. 
Low success, if they obtained positive results for 2, 

3, or 4 problems. 
Intermediate success, if they obtained positive 

results for 5, 6, or 7 problems. 
High success, if they obtained positive results for 8, 

or 9 problems. 
Complete success, if they obtained positive results 

for all problems. 
Examining students’ papers we found that 17, 8 and 

10 students had intermediate, high and complete 

success respectively at stage of mathematising. 

Therefore we obtained that n1a=n1b=0, n1c=17, 

n1d=8 and n1e=10. Thus mathematising was 

represented as a fuzzy set in U in the form:  
 

A1 = {(a,0),(b,0),(c, 35
17 ),(d, (),

35
8 e,

35
10 )}. 

 

In the same way we represented solution and 

validation of the model as fuzzy sets in U by  
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A2 = {(a, 35
6 ),(b,

35
6 ),(c, 

35
16 ),(d, 

35
7 ),(e,0)} and 

 

A3 = {(a, 35
12 ),(b,

35
10 ),(c,

35
13 ),(d,0),(e,0)} respectively. 

 

Using the definition given in the previous section 

and relation (1), we calculated the membership 

degrees of the 5
3
 in total possible students’ profiles 

(see column of ms(1) in Table 1). For example, for 

s=(c, b, a) one finds that  
ms = m

1A
(c). m

2A
(b). m

3A
(a) = 

35
12

35
6

35
17  

= ≈
42875
1224 0,029. 

It turned out that (c, c, c) was the profile of maximal 

membership degree 0,082 and therefore the 

possibility of each s in U
3 

is given by rs= 082,0
sm (see 

relation (2)). For example, the possibility of (c, b, a) 

is ≈
082,0

029,0
0,353, while the possibility of (c, c, c) is of 

course 1. 
Calculating the possibilities of all profiles (see 

column of rs(1) in Table 1) one finds that the ordered 

possibility distribution for the student group is: 

r1=1, r2=0,927, r3=0,768, r4=0,512, r5=0,476, 

r6=0,415, r7=0,402, r8=0,378, r9=r10=0,341, 

r11=0,329, r12=0,317, r13=0,305, r14=0,293, 

r15=r16=0,256, r17=0,207, r18=0,195, r19=0,171, 

r20=r21=r22=0,159,r23=0,134, r24=r25=……..=r125=0. 
Therefore, by (3), (4) and (5) and using a calculator 

we found that the total possibilistic uncertainty of 

the group was T(r)≈0,565+2,405=2,97  
A few days later we performed the same experiment 

with a group of 30 students of the School of 

Management and Economics. The students of the 

above School study in detail the modelling process 

within the course of Operations’ Research, in 

contrast to students of  School of Technological 

Applications, who study mathematical modelling 

only through working examples within the 2 or 3 (it 

depends upon the corresponding department) 

mathematics courses that they attend. Working as 

before we found that 
 

A1={(a,0),(b, 30
6 ),(c,

30
15 ),(d,

30
9 ),(e,0)}, 

 

A2={(a, 30
6 ),(b, 

30
8 ),(c, 

30
16 ),(d, 0),(e,0)}   and 

 

A3={(a, 30
12 ),(b, 

30
9 ),(c, 

30
9 ),(d,0),(e,0)}. 

 

Then we calculated the membership degrees of all 

possible profiles of the student group (see column of 

ms (2) in Table 1). It turned out that (c, c, a) was the 

profile possessing the maximal membership degree 

0,107 and therefore the possibility of each s is given 

by   rs= 107,0
sm  (see column of rs(2) in Table 1). Finally 

we found that T(r) = 0,452+1,87 = 2,322. 
Thus, since 2,322<2, 97, the second group had in 

general a slightly better performance than the first 

one. This happened despite to the fact that profile  

(c, c, c) with maximal possibility of appearance for 

the first student group is more satisfactory than the 

corresponding profile (c, c, a) for the second group. 

The above result, combined to the fact that the 

students of School of Management and Economics 

attend only one course of general Mathematics (they 

attend also Mathematics of Finance and Statistics) is 

an indication that a detailed study of the modelling 

process possibly helps students to have a better 

performance in solving problems that involve 

mathematical modelling.  

 
Table 1: Student profiles with non zero pseudo-

frequencies 

 

 
 

(Note: The outcomes of Table 1 are with accuracy  

up to the third decimal point)   
 

Of course further research and experiments are 

needed to validate statistically this conjecture. 
Next, in order to study the combined results of 

behaviours of the two groups, we introduced the 

fuzzy variables Ai (t), i=1, 2, 3 and t=1, 2. Then the 

pseudo-frequency of each student profile s is given 

by f(s) = ms (1) + ms (2) (see corresponding column 

in Table 1). It turned out that (c, c, a) was the profile 

with highest pseudo-frequency 0,183 and therefore 

the possibility of each student’s profile is given by 

r(s) =
183,0

)(sf
 .The possibilities of all profiles having 

non-zero pseudo-frequencies are presented in the 

last column of Table 1.  
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4. Case-Based Reasoning 
Case-Based Reasoning (CBR) is a general paradigm 

for problem-solving and learning from expertise, 

which is not only a psychological theory of human 

cognition, but it also provides a foundation for a 

new technology of intelligent computer systems that 

can solve problems and adapt to new situations. 

Broadly construed CBR is the process of solving 

new problems based on the solutions of similar past 

problems.  Its coupling to learning occurs as a 

natural by-product of problem solving. When a 

problem is successfully solved, the experience is 

retained in order to solve similar problems in future. 

When an attempt to solve a problem fails, the reason 

for the failure is identified and remembered in order 

to avoid the same mistake in future. Thus CBR is a 

cyclic and integrated process of solving a problem, 

learning from this experience, solving a new 

problem, etc. It must be noticed that the term 

problem-solving is used here in a wide sense, which 

means that it is not necessarily the finding of a 

concrete solution to an application problem, it may 

be any problem put forth by the user. For example, 

to justify or criticize a proposed solution, to interpret 

a problem situation, to generate a set of possible 

solutions, or generate explanations in observable 

data, are also problem solving situations.  

A  lawyer, who advocates a particular outcome in a 

trial based on legal precedents, or an auto mechanic, 

who fixes an engine by recalling another car that 

exhibited similar symptoms, are using CBR; in other 

words CBR is a prominent kind of analogy making. 

All inductive reasoning, where data is too scarce for 

statistical relevance, is inherently based on anecdotal 

evidence. Critics of CBR argue that it is an approach 

that accepts anecdotal evidence as its main operating 

principle, but without statistically relevant data for 

backing an implicit generalization, there is no 

guarantee that the generalization is correct. This 

criticism has only a theoretical base, because in 

practice CBR methods give satisfactory results in 

most cases.  

CBR traces its roots in Artificial Intelligence to the 

work of Roger Schank and his students at Yale 

University, U.S.A. in early 1980’s. Scfhank’s model 

of dynamic memory [22] was the basis of the 

earliest (in 1983) computer intelligent systems that 

can be viewed as prototypes for CBR systems, the 

Kolodner’s CYRUS [13] and Lebowitz’s IPP [14]. 

An alternative approach is the category and 

exemplar model applied first to the PROTOS system 

of Porter and Bareiss [20], while some other types of 

memory models, developed later on.   
The CBR systems expertise is embodied in general 

in a collection (library) of past cases rather, than 

being encoded in classical rules. Each case typically 

contains a description of the problem plus a solution 

and/or the outcomes. The knowledge and reasoning 

process used by an expert to solve the problem is not 

recorded, but is implicit in the solution. 
As an intelligent-systems method CBR has got a lot 

of attention over the last few years, because it 

enables the information managers to increase 

efficiency and reduce cost by substantially 

automating processes. CBR first appeared in 

commercial systems in the early 1990’s and since 

then has been sued to create numerous applications 

in a wide range of domains  including diagnosis, 

help-desk, assessment, decision support, design, etc.  

Organizations as diverse as IBM, VISA 

International, Volkswagen, British Airways and 

NASA have already made use of CBR in 

applications such as customer support, quality 

assurance, aircraft maintenance, process planning 

and many more applications that are easily 

imaginable.  
As a general problem-solving methodology intended 

to cover a wide range of real-world applications, 

CBR must face the challenge to deal with uncertain, 

incomplete and vague information. In fact, 

uncertainty is already inherent in the basic CBR 

hypothesis demanding that similar problems have 

similar solutions. Correspondingly recent years have 

witnessed an increased interest in formalizing parts 

of the CBR methodology within different 

frameworks of reasoning under uncertainty, and in 

building hybrid approaches by combining CBR with 

methods of uncertain and approximate reasoning. 

Fuzzy sets theory can be mentioned as a particularly 

interesting example. In fact, even though both CBR 

and fuzzy systems are intended as cognitively more 

plausible approaches to reasoning and problem-

solving, the two corresponding fields have 

emphasized different aspects that complement each 

other in a reasonable way. Thus fuzzy set-based 

concepts and methods can support various aspects of 

CBR including: Case and knowledge representation, 

acquisition and modeling, maintenance and 

management of CBR systems, case indexing and 

retrieval, similarity assessment and adaptation, 

instance-based and case-based learning, solution 

explanation and confidence, and representation of 

context. On the other way round ideas and 

techniques for CBR can contribute to fuzzy set-

based approximate reasoning.  
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CBR has been formalized for purposes of computer 

and human reasoning as a four steps process. These 

steps involve: 
R1:  Retrieve the most similar to the new problem 

past case. 
R2:  Reuse the information and knowledge of the 

retrieved case for the solution of the new problem. 
R3: Revise the proposed solution. 
R4:  Retain the part of this experience likely to be 

useful for future problem-solving. 
More specifically, the retrieve task starts with the 

description of the new problem, and ends when a 

best matching previous case has been found.  The 

subtasks of the retrieving procedure involve: 

Identifying a set of relevant problem descriptors, 

matching the case and returning a set of sufficiently 

similar cases given a similarity threshold of some 

kind, and selecting the best case from the set of 

cases returned. Some systems retrieve cases based 

largely on superficial syntactic similarities among 

problem descriptors, while advanced systems use 

semantic similarities. 

The reuse of the solution of the retrieved case in the 

context of the new problem focuses on two aspects: 

The differences between the past and the current 

case, and what part of the retrieved case can be 

transferred to the new case. Usually in non trivial 

situations part of the solution of the retrieved case 

cannot be directly transferred to the new case, but 

requires an adaptation process that takes into 

account the above differences.  
Through the revision the solution generated by reuse 

is tested for success – e.g. by being applied to the 

real world environment, or to a simulation of it, or 

evaluated by a specialist – and repaired, if failed. 

When a failure is encountered, the system can then 

get a reminding of a previous similar failure and use 

the failure case in order to improve its understanding 

of the present failure, and correct it. The revised task 

can then be retained directly (if the revision process 

assures its correctness), or it can be evaluated and 

repaired again.  
The final step R4 involves selecting which 

information from the new case to retain, in what 

form to retain it, how to index the case for better 

retrieval in future for similar problems, and how to 

integrate the new case in the memory 

structure.Notice that Slade ([24]; Figure 1), Lei et al 

([15]; Figure 1), Aamodt and Plaza ([1]; Figures 1 

and 2) and others have presented detailed flowcharts 

illustrating the basic steps of the CBR process. In an 

earlier paper [36] we have also presented a detailed 

analysis of the CBR methodology.   
The general knowledge usually plays a part in the 

CBR cycle by supporting the CBR process. This 

support however may range from very weak (or 

none) to very strong, depending on the type of the 

CBR method. By general knowledge we here mean 

general, domain-dependent knowledge, as opposed 

to specific knowledge embodied by cases. For 

example, in the case of a lawyer, mentioned in our 

introduction, who advocates a particular outcome in 

a trial based on legal precedents, the general 

knowledge is expressed through the knowledge of 

the existing relevant laws and the correlations 

among them and the case of the trial. A set of rules 

may have the same role in other CBR cases. 
 

5. A fuzzy pepresentation of a CBR 

system 
 Let us consider a CBR system whose library 

contains n past cases, n≥2. We denote by Ri , 

i=1,2,3 , the steps of retrieval, reuse  and revision 

respectively, and by a, b, c, d, and e the linguistic 

labels of negligible, low, intermediate, high and 

complete degree of success respectively for each of 

the Ri’s. Set U={a,d,c,d,e}; then we are going to 

represent the Ri’s  as fuzzy sets in U. For this, if nia, 

nib, nic, nid and nie denote the number of cases where 

it has been achieved negligible, low, intermediate, 

high and complete degree of success for the state Ri 

respectively, i=1,2,3, we define the membership 

function mRi as follows:                               

                                     1,    if  
5

4n
< nix≤n   

                                 0,75,   if  
5

3n
<nix≤

5

4n
                        

=→)(xm
iR

            0,5 ,    if  
5

2n
< nix≤

5

3n
 ,  

                                0,25 ,  if  
5

n
< nix≤

5

2n
 

                                  0 ,     if    0 ≤nix≤
5

n
 

 

Therefore, we can write Ri as a fuzzy set in U in the  

 

form :  Ri = {(x, mAi(x)) :  x∈U}, i=1,2,3.                

 

Notice that there is no need to include step R4 of 

CBR process in our fuzzy representation, because all 

the past cases, either successful, or not, are retained 

in the system’s library and therefore there is no 

fuzziness in this case. In other words, keeping the 

same notation, we have that n4a=n4b=n4c=n4d=0 and 

n4e=1. 
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In order to represent all possible profiles of a case 

during the CBR process, we consider a fuzzy 

relation, say R, in U
3
 of the form 

 

R= {(s, mR(s)): s=(x, y ,z) ∈U
3
}. 

and we work in the same way as we have done in 

section 2 for the modelling process to calculate the  

membership degrees and the possibilities rs of all 

profiles s and the total possibilistic uncertainty T(r) 

of the ordered possibility distribution r. The lower is 

the value of T(r), the higher is the effectiveness of 

the corresponding CBR system in solving new 

related problems. 

It is also possible to study the combined results of 

the behaviour of k different CBR systems k≥2, 

designed for the solution of the same type of 

problems. For this,  we must introduce the fuzzy 

variables Ri(t), with i=1,2,3 and t=1,2,…,k, and 

determine the possibilities of the profiles s(t) 

through the  pseudofrequences, as we have done in 

sections 2 and 3 for the modelling process. These 

possibilities measure the degree of evidence of the 

combined results of the k CBR systems. 

As an example let us consider a CBR system with an 

existing library of 105 past cases, where in no case 

there was a failure at the step of retrieval of a past 

case for the solution of the corresponding problem. 

In fact, let us assume that in 51 cases we had an 

intermediate success in retrieving a suitable past 

case, in 24 cases high, and in 30 cases we had a 

complete success respectively. Thus the state of 

retrieval is represented as a fuzzy set in U as  

 

R1={(a,0),(b,0),(c, 0,5),(d, 0,25),(e, 0,25)}.  

 

In the same way we assume that we found  

 

R2={(a,0),(b,0),(c,0,5),(d,0,25),(e,0)}and 

 

R3={(a,0,25),(b,0,25),(c, 0,25),(d,0),(e,0)}.  

 

Then we calculate the membership degrees of the 5
3
 

in total possible profiles (see column of ms in Table 

2). For example, for s=(c, c, a) one finds that ms = 

m
1A
(c). m

2A
(c). m

3A
(a=0,5.0,5.0,25=0,06225. It 

turns out that (c, c, a) is one of the profiles of 

maximal membership degree and therefore the 

possibility of each s in U
3 

is given by rs=
06225,0

sm . 

Calculating the possibilities of all profiles (see 

column of rs in Table 2) one finds that the ordered 

possibility distribution is: 

r1=r2=1,r3=r4=r5=r6=r7=r8=0,5,r9=r10=r11=r12=r13=r14=

0,258, r15=r16=……..=r125=0.  Thus using calculator 

we find that ST(r)= ∑
∑=

=

+−
14

2

1

1 ]log)([
2log

1

i
i

j

j

ii

r

i
rr ≈  

301,0

1
]

548,6

14
log258,0

5

8
log242,0

2

2
log ++ ≈  

 

3,32(0,242.0,204+0,258.0,33) ≈0,445 and  

 

Ν(r)= ∑
=

+−
n

i

ii irr
2

1 log)([
2log

1
]= 

2log

1
[0,5 ]14log258,08log242,02log ++ ≈  

 

0,5+3.0,242+0,857.1,146≈2,2. Therefore we finally 

find that T(r)≈2,653.  

 

Table 2: Profiles with non zero possibilities 

 

R1    R2    R3           ms              r 

c       c       c         0,062            1 

c      c        a         0,062            1 

d      d        a        0,016         0,258 

d      d        b        0,016         0,258 

d      d        c        0,016         0,258 

d      c        a        0,031           0,5 

d      c        b        0,031           0,5 

d      c        c         0,031           0,5 

e      c        a         0,031           0,5 

e      c        b         0,031           0,5 

e      c        c         0,031           0,5 

e      d        a         0,016         0,258 

e      d        b         0,016        0,258 

e      d        c         0,016         0,258 

 

(Note: The outcomes of Table 2 are 

with accuracy up to the third 

decimal point) 

 

6. Discussion and Conclusions  
The application research currently taking place in 

the field of fuzzy sets covers almost all sectors of 

human activities, such as natural, life and social 

sciences, engineering, medicine, management and 

decision making, operational research, computer 

science and systems' analysis, education, etc; e.g. 

see [9] ([11]; Chapter 6), [3], [8], [18], [21],etc.  

Our fuzzy models provide useful quantitative 

information for the process of mathematical 

modelling in classroom and for a CBR system: 
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possibilities, value of T(r) etc. They also provide  a 

qualitative view of behaviours’ of student groups 

and CBR systems: profiles that they give, in terms 

of the linguistic labels, a comprehensive idea about 

the degree of students’ success at the successive 

stages of the modelling process and of the 

effectiveness of a CBR system in solving new 

related problems.  

All these enable the instructor to get a concentrating 

view of his (her) students’ cognitive status, that 

helps him (her) to adapt properly teaching methods, 

plans and targets according to each particular class. 

They also help the manager of a CBR system to 

make the proper modifications in order to increase 

its efficiency.  

There is a lot of work in the area of student 

modelling in general and student diagnosis in 

particular and our fuzzy models for the processes of 

mathematical modelling and CBR, combined with 

an analogous model presented in earlier papers for 

the process of learning a subject matter ([32], [37]) 

give a new approach for a deeper study of this area. 

Analogous efforts to use fuzzy logic in education 

have been attempted by other researchers as well; 

e.g. [2], [6], [16], [19], [25], [26] etc.  

We must finally underline the importance of use of 

stochastic methods (Markov chain models) as an 

alternative approach for the same purposes; e.g. 

[27]-[31], [33], [35], [38] etc. Nevertheless Markov 

models, although easier sometimes to be applied in 

practice by a non expert (e.g. the teacher), they are 

self-restricted to provide quantitative information 

only for the situations that they represent, e.g. 

measures for the problem-solving, or model-

building abilities of student groups, short and long-

run forecasts (probabilities) for the evolution of 

various phenomena, etc.  Therefore, one could claim 

that a fuzzy model, like those presented in this 

paper, is more useful for a deeper study of the 

corresponding real situation, because, apart from the 

quantitative information, it gives also the possibility 

of a qualitative analysis of the problems involved. In 

particular our fuzzy model for the modelling process 

has also the extra advantage of giving the 

opportunity for a combined study of the modelling 

performance of several student groups, or of the 

same group during the modelling process of 

different real problems.  The same could happen 

also for a combined study of different CBR systems 

designed for the solution of the same type of 

problems   
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Appendix  
List of the problems given for solution to students in 

our classroom experiment 

Problem 1:  We want to construct a channel to run 

water by folding the two edges of an orthogonal 

metallic leaf having sides of length 20cm and 32 cm, 

in such a way that they will be perpendicular to the 

other parts of the leaf. Assuming that the flow of the 

water is constant, how we can run the maximum 

possible quantity of the water? 

(Remark: The correct solution is obtained by folding 

the edges of the longer side of the leaf)  

Problem 2:  A car dealer has a mean annual demand 

of 250 cars, while he receives 30 new cars per 

month. The annual cost of storing a car is 100 euros 

and each time he makes a new order he pays an 

extra amount of 2200 euros for general expenses 

(transportation, insurance etc). The first cars of a 

new order arrive at the time when the last car of the 

previous order has been sold. How many cars must 

he order in order to achieve the minimum total cost? 

Problem 3: An importation company codes the 

messages for the arrivals of its orders in terms of 

characters consisting of a combination of the binary 

elements 0 and 1. If it is known that the arrival of a 

certain order will take place from 1st until the 16
th
 of 

March, find the minimal number of the binary 

elements of each character required for coding this 

message. 

Problem 4: Let us correspond to each letter the 

number showing its order into the alphabet (A=1, 

B=2, C=3 etc). Let us correspond also to each word 

consisting of 4 letters a 2X2 matrix in the obvious 

way; e.g. the matrix  








513

1519
 corresponds to the 

word SOME. Using the matrix E= 








711

58
 as an 

encoding matrix how you could send the message 

LATE in the form of a camouflaged matrix to a 

receiver knowing the above process and how he 

(she) could decode your message? 

Problem 5: The demand function P(Qd)=25-Qd
2 

represents the different prices that consumers 

willing to pay for different quantities Qd of a good. 

On the other hand the supply function  P(Qs)=2Qs+1 

represents the prices at which different quantities Qs 

of the same good will be supplied. If the market’s 

equilibrium occurs at (Q0, P0)  producers who would 

supply at lower price than P0 benefit. Find the total 

gain to producers’. 

Problem 6: A ballot box contains 8 balls numbered 

from 1 to 8. One makes 3 successive drawings of a 

lottery, putting back the corresponding ball to the 

box before the next lottery. Find the probability of 

getting all the balls that he draws out of the box 

different. 

Problem 7:  A box contains 3 white, 4 blue and 6 

black balls. If we put out 2 balls, what is the 

probability of choosing 2 balls of the same colour? 

Problem 8: The population of a country is increased 

proportionally. If the population is doubled in 50 

years, in how many years it will be tripled?  

Problem 9: A wine producer has a stock of wine 

greater than 500 and less than 750 kilos. He has 

calculated that, if he had the double quantity of wine 

and transferred it to bottles of 12, 25, or 40 kilos, it 

would be left over 6 kilos each time. Find the 

quantity of stock. 

Problem 10: Among all cylindrical towers 

having a total surface of 180π m
2
, which one 

has the maximal volume? 

(Remark: Some students didn’t include to the 

total surface the one base (ground-floor) and 

they found another solution, while some others 

didn’t include both bases (roof and ground-

floor) and they found no solution, since we 

cannot construct cylinder with maximal volume 

from its surrounding surface.) 
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