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Abstract: - Several empirical and analytical relations exist between different tunnel characteristics and surface 

and subsurface deformation, while numerical analyses (mainly using finite difference programs) have also been 

applied with satisfactory results. In the last years, the solution of some soil mechanics problems has been 

derived using the approach of the applied computational intelligence methods, especially the artificial neural 

networks (ANN). The objective of this paper is to describe an optimized artificial neural network (ANN) 

method in order to estimate the settlements of roof, face and walls during tunneling excavation. The ANN 

method uses as input variables the overload factor, the placement of the temporary lining ring behind the face, 

the thickness of the shotcrete, the modulus of elasticity for the surrounding rock-mass and the position where 

the measurement of the settlement takes place referring to the tunnel axis. The respective settlements are being 

calculated using different ANN’s. For each ANN an optimization process is conducted regarding the values of 

crucial parameters such as the number of neurons, the time parameter and the initial value of the learning rate, 

etc. using the respective values of a pre-chosen evaluation set. The success of each ANN in predicting the 

respective settlements is measured by the correlation index between the experimental and predicted values for 

the evaluation set. Finally, the ANN with the closest to 1 correlation index is specified. A sensitivity analysis 

for different parameters (the input variables, the population of input vectors, etc.) is also presented showing the 

reliability of the proposed method. 

 

Key-Words: - Artificial neural network, tunneling excavation, face settlement, roof settlement, walls settlement, 

parameters optimization, settlement prediction  

 

1   Introduction 
The computation of the settlements during the 

excavation of a tunnel is very important for the 

geotechnical tunneling design and has been 

extensively studied by a large number of researchers 

giving satisfactory solutions. The estimation of the 

ground and the underground deformation has been 

mainly approached by the following four ways [1]: 

� Stochastic and empirical methods: The 

mathematical model for predicting the settlements 

of a “stochastic medium” was suggested by 

Litwinisyn [2]. Later, the surface settlement was 

determined empirically using the Gaussian 

probability curve by Peck [3] and O’Reilly and 

New [4]. The design parameters to be used in the 

last curve were compiled from previous field 

measurements in tunnel conditions with different 

soil conditions [3-5]. The stochastic theory for 

predicting longitudinal surface settlements was 

formed simultaneously [6]. In the last decade 

typical convergence curves for tunnel walls were 

given with respect to the distance from the tunnel 

face [7-8]. 

� Analytical methods: Kirsch gave an analytical 

solution for un-shield circular tunnel in big depths 

with specific modulus of elasticity and Poisson 

ratio for the surrounding rock-mass [7, 9]. This 

method was adopted the elastoplastic behavior 

using the Mohr-Coulomb criterion, giving as a 

result the convergence-confinement curves [7, 9-

10]. Other researchers have developed methods 

based on closed form solutions, such as a two-

dimensional analysis of ground deformations in an 

initially isotropic, homogenous incompressible 

medium giving as a result the correspondent strain 

field [11]. The previous method was extended for 

different values of Poisson’s ratio [12-13], 

neglecting the distortion component [14] and 

studying surface troughs and lateral deformations 

[15]. 

� Numerical methods: The numerical methods 

have been increasingly applied to problems, 

involving the prediction of ground stresses and 

settlements during tunneling excavation. Many 2D 

and 3D finite elements analyses have been 

performed for soil and rock tunneling excavation 
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[16-19], providing the general form of the 

deformation field. But many “questions” have 

been appeared, such as the reliability of the 

method in conjunction with the accuracy of in-situ 

material properties. 

� Laboratory experiments: Results of model tunnel 

tests in cohesive and non-cohesive materials were 

the base for the study of the mechanism of ground 

settlements [20-23] and for the validation of the 

numerical solutions [23]. 

Except these classical approaches, computational 

intelligence has been applied during the last decade. 

Kim et al were pioneers in the application of ANN 

methods for predicting the ground surface 

settlements due to tunneling, implementing an 

extended research for the selection of the proper 

input parameters [24].  Suwansawat and Einstein 

have used artificial neural networks successfully for 

predicting the maximum surface settlement caused 

by earth pressure balance shield tunneling [1, 25]. 

Similar problems have also been solved using 

ANN’s, such as estimation of ground surface 

settlement induced by deep excavation [26], 

settlement prediction of shallow foundations [27], 

estimation of consolidation settlement caused by 

groundwater drawdown [28], determination of 

preconsolidation pressure [29], estimation of the 

uplift capacity of suction caissons [30], 

determination of soil profiles [31], of soil models 

[32] and of soil parameters [33]. 

In this paper a new method for the estimation of 

the settlements of roof, face and walls during 

tunneling excavation is presented using an artificial 

neural network (ANN) based on back-propagation 

training algorithm. Its basic advantages are: 

● the use of a small number of input variables, 

which are (a) the overload factor NS, (b) the 

placement of the temporary lining ring behind the 

face L, (c) the thickness of the shotcrete t, (d) the 

modulus of elasticity for the surrounding rock-mass 

Er and (e) the position x of the measurement point 

referring to the tunnel axis, 

● the automatic optimization process of the ANN’s 

parameters based on the performance of the R
2
 

index of the evaluation set, such as the number of 

neurons, the initial values and the time parameters 

of momentum term and training rate, the kind and 

the parameters of activation functions,  

● the sensitivity analysis for the population of the 

training set, for the set of the input variables, for the 

values set of each input variable etc. 

The proposed method is applied for estimating 

the settlements of roof, face and walls during 

tunneling excavation for several types of uniform, 

isotropic rock-mass and various depths of tunnels. 

For the purposed of this study, the results of 

geotechnical finite difference analyses were used. 

These analyses were performed by Spyropoulos [34] 

via the usage of the finite difference program 

FLAC3D ver. 2.00. It is mentioned that a different, 

more complicated 3D model could be used, but the 

main intention of this paper is to analyze the 

optimized ANN method, to elaborate the respective 

problems of the optimization process and to mention 

the sensitivity of the methodology. 

In section 2 the ANN method is presented in 

detail. In section 3, the method is analytically 

applied for the estimation of the settlements of the 

face. A sensitivity analysis for the population of the 

training set is also carried out. In sections 4 and 5 

the settlements of the roof and of the walls are 

determined respectively. In section 6 a sensitivity 

analysis for the kind of the training process 

(stochastic or serial), for the random initialization of 

weights of ANN, for the set of the input variables 

and for the values of one characteristic input 

variable is carried out. Section 7 concludes the ANN 

performance, while in appendix the formation of the 

input data is described.  

  

 

2   Proposed ANN Method for the 

Estimation of the Settlements during 

Tunneling Excavation 
The estimation of the settlements during tunneling 

excavation is achieved by applying an ANN method 

through the optimization of the respective 

parameters of the back-propagation training 

algorithm. This method has the following flow 

chart, shown in Figure 1. The basic steps of the 

ANN optimization method are: 

● Data selection: The results of the application of 

the finite difference method, using the code 

FLAC3D ver. 2.00 [34], have been used as input 

data for the proposed ANN methods. The input 

variables are:  

(a) the overload factor NS,  

2
o

S

cm

p
N

σ
=                                (1) 

where po is the respective isotropic geostatic 

pressure in the tunnel’s layer before tunneling 

excavation takes place and 
cm

σ  is the uniaxial 

compressive strength of the surrounding rock-mass, 

(b) the placement of the temporary lining behind the 

face L, as it is presented in Fig. 2 (in m),   

(c) the thickness of the shotcrete lining ring t (in 

cm),  

(d) the modulus of elasticity for the surrounding 
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rock-mass Er (in MPa) and  

(e) the position x (in m) where the measurement of 

the settlement takes place referring to the tunnel 

axis.  

The output variables can be:  

(a) the settlement of the roof sz (in mm),  

(b) the settlement of the face sx (in mm) and  

(c) the settlement of the walls sy (in mm).  

It is mentioned that a different ANN will be 

formed for each one of the three aforementioned 

settlements, because different ANNs for each output 

have better performance than one global ANN with 

all outputs [35]. 

● Data preprocessing: Generally, data are examined 

for normality, in order to modify or delete the values 

that are obviously wrong (noise suppression). In 

order to avoid saturation problems [36], the input 

and the output values are normalized as shown by 

the following expression: 

( )min
max min

ˆ
b a

x a x x
x x

−
= + −

−
          (2) 

where x̂  is the normalized value for variable x , 

min
x  and 

max
x  are the lower and the upper values of 

variable x , a  and b  are the respective values of the 

normalized variable. 

 

Fig. 1  Flowchart of the ANN optimization method. 

  

Fig. 2   Presentation of the co-ordinates system of a tunnel during its excavation. 

Excavation 

t 

L 
x 

y z 

face 

A’ 

Trace AA’ 

D 

t 

walls 

roof 
sz 

sy 

A 

y 

z x 

z 

face 

sx 
Excavation 

t L 

A 

A’ 

rockmass 

rockmass 

Data selection 

Data preprocessing 

Selection of ANN 

parameters 

Training Process 

Evaluation Process 

End of optimization? 

No 

Yes 

Selection of the respective parameters 

with the best R
2
 for the Evaluation Set 

Estimation of settlement for the Test Set 

WSEAS TRANSACTIONS on SYSTEMS George J. Tsekouras, John Koukoulis, Nikos E. Mastorakis

ISSN: 1109-2777 1155 Issue 12, Volume 9, December 2010



 

● Selection of ANN parameters: The ANN 

parameters (like the number of neurons etc.) are not 

already known, but they can be specified 

empirically through trials. In this paper, the 

parameters are examined thoroughly. For example, 

all artificial neural networks with one hidden layer 

are formed with different number of neurons from 2 

to 15. The one with the best R
2
 index is selected. In 

this part of the study the number of neurons of the 

hidden layer, the initial values & the time 

parameters of the training rate and the momentum 

term and the activation functions with their 

parameters are defined. 

● Training Process: A multilayer feed-forward 

neural network is adopted using the stochastic back-

propagation algorithm with training rate and 

momentum term. The neurons in the network can be 

divided into three layers: input, hidden and output 

layer (see Fig. 3). According to Kolmogorov’s 

theorem [36], an ANN can solve a problem using 

one hidden layer, if the last one has the proper 

number of neurons. In this study one hidden layer is 

used, but the number of neurons needs to be 

properly selected. This has forced to the 

examination of the various combinations of the 

critical ANN parameters. It is clarified that the 

number of neurons at the output layer is equal to the 

number of output variables, while the input nodes 

correspond to the input variables. The basic 

structure of an ANN is presented in Fig. 3a, while 

the latter’s basic sub-steps are as follows: 

(a) Initialization: Connection weights are equal to 

small random values between [-0.1,0.1] according to 

uniform distribution.  

(b) Training set’s presentation: During current 

epoch ep all patterns of the training set are presented 

randomly. For each vector (c) and (d) steps are 

realized. It is clarified that, in order to converge 

more rapidly than in the conventional method, both 

the training rate ( )epη  and the momentum term 

( )epa  are changing their values at the beginning of 

each epoch ep: 

( ) ( ) ( )1 exp 1/ep ep Tηη η= − ⋅ −               (3) 

( ) ( ) ( )1 exp 1/ aa ep a ep T= − ⋅ −               (4) 

where Tη , 0 (0)η η= , aT , 0 (0)a a=  are respectively 

the time parameters and the initial values of both the 

training rate and the momentum term. 

(c) Forward pass calculations: The n-th training 

pattern is defined as { ( ), ( )inx n t n
��

}, where ( )inx n
�

 is 

the input vector -consisted of the normalized values 

of the input variables- with dimension inq  and ( )t n
�

 

the respective desired normalized output vector with 

dimension outq . The activation signal of the k- 

neuron of the ℓ - layer is: 
1

( ) ( ) ( 1)

0

( ) ( ) ( )
p

vk kv
v

u n w n y n
−

−

=

=∑
ℓ

ℓ ℓ ℓ               (5) 

where ( ) ( )kvw nℓ  is the weight between the ℓ - layer’s 

k- neuron and the ( 1)−ℓ - layer’s v- neuron, 1p −ℓ  is 

the total number of neurons for the ( 1)−ℓ - layer 

and ( 1) ( )vy n−ℓ  is the output of the v-respective 

neuron (see Fig. 3b). For 0v = , the threshold value 

is defined as 0k kwθ = , while ( )1

0
1y

− = −ℓ . The 

activation function ( )f x  can be linear 1 2h x h⋅ + , 

hyperbolic tangent 1 2tanh( )h x h⋅ + , or hyperbolic 

sigmoid 1 2sinh( )h x h⋅ +  for each layer (the 

parameters h1 and h2 should be defined just like the 

other ANN parameters).  

The neuron’s output is: 
( ) ( )( ) ( ( ))k ky n f u n=ℓ ℓ                   (6) 

In the input layer one demands: 
(0) ( ) ( )v vy n x n= , v∀                   (7) 

where ( )vx n  is the v-th element of input vector 

( )inx n
�

.  

In the output layer L
/
 one determines: 

/( ) ( ) ( )L
k ky n o n= , k∀                   (8) 

where ( )ko n  is the k-th element of the output vector 

( )o n
�

, estimated by the ANN. The error of the 

output k-neuron is: 

( ) ( ) ( )k k ke n t n o n= −                   (9) 

where ( )kt n  is the k-th element of the desired 

normalized output vector ( )t n
�

.  

 (d) Reverse pass calculations: The weight is 

calculated by the delta-rule:  

( )
( )

( )

( ) ( ) ( 1)

( ) ( 1)

( )

( 1) ( ) ( )

[ ( ) ( 1)]

kv

vkv k

kv kv

w n

w n ep n y n

ep w n w n

η δ

α

−

−







+

+ = ⋅ ⋅ +

⋅ − −

ℓ

ℓ ℓ ℓ

ℓ ℓ

   (10) 

where ( ) ( )k nδ ℓ  is the local descent of the k-neuron 

determined for the output layer and for the hidden 

one respectively as: 

( )( ) ( ) ( )/( ) ( ) ( )L L L
k k kn e n f u nδ = ⋅             (11) 

( )( ) ( ) ( 1) ( 1)/( ) ( ) ( ) ( )ik k ik
i

n f u n n w nδ δ + += ⋅∑ℓ ℓ ℓ ℓ    (12) 

(e) Stopping criteria: The steps (b) to (d) are 

repeated continuously until the weights to be 

stabilized or the respective error function not to be 

improved or the maximum number of epochs to be 

exceeded.  
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Fig.  3 (a) Typical structure of an ANN (5-p1-1) 

where there are 5 neurons in input layer, p1 neurons 

in hidden layer and 1 neuron in output layer, (b) 

Enlargement of the ℓ - layer’s k- neuron during the 

presentation of the n-th training pattern. 

 

Analytically the weights criterion is defined with 

the following expression: 

( ) ( ) ( ) ( ) 11 , , ,kv kvw ep w ep imit k v− − < ∀ℓ ℓ
ℓ ℓ      (13) 

where 1imitℓ  has a proper value and ep is the 

current epoch of training algorithm. 

The error function is the root mean square error 

trRMSE  for the training set (where the respective 

population equals to m1) according to: 

1
2

1 11

1
( )

outm q

tr k
m kout

RMSE e m
m q = =

=
⋅ ∑∑           (14) 

and the respective criterion is: 

2( ) ( 1)tr trRMSE ep RMSE ep imit− − < ℓ     (15) 

where 2imitℓ  is the respective limitation value. 

Practically, it is an early stopping criterion. 

The maximum number of epochs’ criterion is: 

max_ep epochs≥                   (16) 

If one of the above criteria comes true, the main 

core of back propagation algorithm stops. Otherwise 

the number of epochs is increased by one, the whole 

process returns to step (b) and the training rate and 

the momentum term are re-calculated by eq. (3) and 

(4). The criterions’ purposes are: (i) to avoid the 

over-fitting problem and (ii) to enable the 

convergence of the algorithm.  

● Evaluation Process: After the convergence of the 

training algorithm, the R
2
 correlation index between 

the desired and the estimated values of the under 

study settlement s for the evaluation set is 

calculated. It is noted that: 

( ) ( )( )

( ) ( )

2

12 2
ˆ

22

1 1

ˆ

ˆ

n

i i estreal
i

s s n n

i i estreal
i i

s s s s

R r

s s s s

=
−

= =

 
 
 

− ⋅ −
= =

− ⋅ −

∑

∑ ∑
     (17) 

where is  is the desired value of the settlement, reals  

the mean desired value of the respective data set 

(training, evaluation or test), îs  the estimated value, 

ests  the mean estimated value of the data set, n the 

population of the respective data set. The mean 

absolute error MAE is also calculated: 

1

ˆ
n

i i
i

MAE s s n
=

= −∑                (18) 

It is mentioned that the desired settlements are 

the respective ones from the FLAC3D program. 

● End of Optimization Loop: In this section the end 

of the optimization loop is checked. If all possible 

combinations of the under study ANN parameters 

are examined, then the next step will follow, 

otherwise a new selection of the ANN parameters 

will take place and the training process will be 

continued.  

● Selection of the ANN parameters with the best R
2
 

index for the Evaluation Set: From all examined 

combinations the one with the biggest R
2 

index for 

the evaluation set is chosen as the best one with the 

respective ANN parameters and the finally 

estimated weights.  

● Estimation of Settlement for the Test Set: The 

parameters and weights of the previous step consist 

the final proposed Artificial Neural Network, which 

can be used for the estimation of the settlement for 

the unknown test set. 
 

( 1)
1 ( )y n−ℓ

 

+ 

● 
● 
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-1 
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0 ( )kw n⋅ ℓ
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3 Application of the Proposed ANN 

Method for the Face’s Settlement 

during Tunnel Excavation 
Following, the proposed method presented in 

section 2 is applied for the estimation of the face 

settlement during the excavation of a tunnel. The 

input vector ( )inx n
�

 is formed with the normalized 

input variables of the overload factor ˆ
SN , the 

placement of the temporary lining ring behind the 

face L̂ , the thickness of the shotcrete t̂ , the 

modulus of elasticity for the surrounding rock-mass 

Ê  and the position x̂  where the measurement of the 

settlement takes place referring to the tunnel axis: 

ˆ ˆ ˆˆ ˆ
T

in Sx N L t E x 
 

=
�

               (19) 

The output vector ( )t n
�

 is formed by the 

normalized output variable ˆxs of the face settlement: 

ˆxt s  =
�

                              (20) 

The available vectors are 2475 (see appendix) 

and they are separated to two sets randomly: the 

training set with the percentage p% of the vectors 

population and the evaluation set with the rest ones. 

The test set is not defined, because there are not any 

experimental values.  

There are several crucial ANN parameters to be 

selected, such as:  

� the number of neurons of the hidden layer, which 

ranges from 2 to 15 with incremental step 1,  

� the initial value 0 (0)a a=  and the time parameter 

aT  of the momentum term, which get values from 

the sets {0.1,0.2,…,0.9} and {500, 1000,…,3000} 

respectively, 

� the initial value 0 (0)η η=  and the time parameter 

Tη  of the training rate, which get values from the 

sets {0.1, 0.2, …, 0.9} and {500, 1000, …, 3000} 

respectively, 

� the type and the parameters of the activation 

functions of the hidden and the output layers, 

where the type can be hyperbolic tangent, linear 

or hyperbolic sigmoid, while the h1 & h2 

parameters get values from the set {0.1,0.2,…, 

1.5}.  

The parameters of the stopping criteria are 

defined after a few trials as max_epochs=7000, 

1imitℓ =10
-4

, 2imitℓ =10
-4

.  

The application of the abovementioned method in 

Visual Fortran 6.0 gives the capability to realize all 

possible combinations of the values of the crucial 

parameters. In this study the respective 

combinations run into 88,668,600 for each case of 

training – evaluation sets, which practically can not 

be examined. This forced the authors to apply the 

proposed optimization process gradually through 

consecutive steps in order to determine the values of 

the ANN’s parameters.  

As a first step, the number of neurons varies from 

2 to 15, while the remaining parameters are assigned 

with fixed values ( 0 0.6a = , 1000aT = , 0 0.6η = , 

1000Tη = , activation functions in both layers: 

hyperbolic tangent, h1=0.7, h2=0.0). Simultaneously, 

the method is executed for different cases of 

training-evaluation sets, which means that different 

percentage p from the available vectors is used for 

the formation of the training set. The percentage p 

takes values from the set {10%, 20%, …, 90%} and 

nine scenarios are implemented for each set of 

neurons (2 to 15), where each scenario is a different 

case of the neurons’ optimization process for 

percentage p. The best results of the R
2
 index of the 

evaluation set are generally given for p=80%, as it is 

shown in Fig.4. The last percentage is used for the 

following steps as the best one. In Fig. 5 the R
2
 

index for the training and the evaluation set with 

p=80% are presented, where the R
2
 index of the 

evaluation set keeps step with the respective one of 

the training set. With the neurons numbered from 5 

to 8 and from 10 to 11 the R
2
 index for the 

evaluation set has big values (the biggest is for 11), 

while for bigger values it rapidly decreases.  

As a second step the initial value 0a  and the time 

parameter aT  of the momentum term change 

simultaneously in the respective regions, while the 

neurons are 11 and the other parameters are 

constant. In Fig. 6 it is clear that the results of the R
2
 

index for the evaluation set are satisfactory for 

0 0.6a ≥  and 1000aT ≥ . The respective 

improvement of the R
2
 index from the proper 

calibration of the parameters 0a , aT  is significant 

from 0.79 to 0.96. The best result is given for 

0 0.9a = , 3000aT = . It is mentioned that R
2
 

decreases dramatically for 0 0.5a ≤ . As a third step 

the initial value 0η  and the time parameter Tη  of the 

training rate change simultaneously in the respective 

regions, while the other parameters remain constant 

(neurons=11, 0 0.9a = , 3000aT = , activation 

functions in hidden & output layers: hyperbolic 

tangent, h1=0.7, h2=0.0). In Fig. 7 it is clear that the 

results of the R
2
 index for the evaluation set are 

satisfactory for 0 0.5η ≥  and  1000 2500Tη≤ ≤ . The 

best result is given for 0 0.5η = , 2500Tη = . It is 

mentioned that R
2
 decreases dramatically for 

0 0.3η ≤  and  1000Tη ≤ .   
 

WSEAS TRANSACTIONS on SYSTEMS George J. Tsekouras, John Koukoulis, Nikos E. Mastorakis

ISSN: 1109-2777 1158 Issue 12, Volume 9, December 2010



 

2

4

6

8

10

12

14

1
2

3
4

5
6

7
8

9

0

0.25

0.5

0.75

1
R2 index

Neurons

Scenario

1 2 3

4 5 6

7 8 9

Scenario 1: p =10%    Scenario 2: p =20%  Scenario 3: p =30%    Scenario 4: p =40%  

Scenario 5: p =50%    Scenario 6: p =60%  Scenario 7: p =70%    Scenario 8: p =80%  

Scenario 9: p =90%    where  p% is the percetange of the training set vectors on 

the total  population of the available vectors 
 

Fig. 4 R
2
 index for the evaluation set for different percentage p of training set (neurons: 2 to 15, 0 0.6a = , 

1000aT = , 0 0.6η = , 1000Tη = , activation functions in both layers: hyperbolic tangent, h1=0.7, h2=0.0). 
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Fig. 5  R

2
 index for the evaluation & the training set 

(p=80%), neurons:2-15, 0 0.6a = , 1000aT = , 

0 0.6η = , 1000Tη = , activation functions in both 

layers: hyperbolic tangent, h1=0.7, h2=0.0. 

 

Similarly it is found that the ANN gives better 

results using as an activation function hyperbolic 

tangent in both layers with parameters 1 0.6 0.8h = −  

and 2 0h = . 

The final calibration of the ANN model is 

realized for 10 to 11 neurons, 0 0.8 0.9a = − , 

1500 3000aT = − , 0 0.5 0.6η = − , 1000 2500Tη = − , 

activation functions in both layers: hyperbolic 

tangent with parameters h1=0.6-0.8, h2=0. In this 

way a local minima is avoided. The best result for 

the R
2
 index of the evaluation set is 98.57% and is 

given for an ANN with 11 neurons in the hidden 

layer, 0a = 0.9, aT = 3000, 0η =0.5, Tη = 2500, 

h1=0.7 and h2=0 using hyperbolic tangent as the 

activation function in both layers.  

In Fig. 8 the settlements of the face from the 

execution of the FLAC3D program and the 

respective estimated settlements for the training and 

evaluation sets are presented.   
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Fig. 6  R

2
 index for the evaluation set for 11 neurons, 0a = {0.1,0.2,…,0.9}, aT = {500, 1000,…,3000},  

0 0.6η = , 1000Tη = , activation functions in both layers: hyperbolic tangent, h1=0.7, h2=0.0. 

 

 
Fig. 7  R

2
 index for the evaluation set for 11 neurons, 0a = 0.9, aT = 3000, 0η = {0.1,0.2,…,0.9}, Tη = {500, 

1000,…,3000}, activation functions in both layers: hyperbolic tangent, h1=0.7, h2=0.0. 
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(a) Training set 
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(b) Evaluation set 

Fig. 8 The settlements of the face from FLAC3D 

program and the estimated settlements of the face 

during tunneling excavation for (a) the training and 

(b) the evaluation set.  

 

After the proposed optimization process, the 

basic results are the following: 

� the respective mean value of the absolute error 

MAE is 2.25 mm for the training set and 2.21 mm 

for the evaluation set, 

� the respective root mean square error RMSE is 

3.23 mm for the training set and 3.09 mm for the 

evaluation set, 

� the R
2
 correlation index between the estimated and 

the settlements from FLAC3D program is 98.79% 

for the training set and 98.57% for the evaluation 

set. 

It is observed that RMSE, MAE and R
2
 are 

slightly better for the evaluation set than ones for 

the training set. It is mentioned that this is not a 

paradox, because the training and evaluation sets 

have not any common members. So, if RMSE and 

MAE are slightly smaller for the evaluation set than 

ones for the training set, the respective R
2
 for the 

evaluation set will not be larger necessarily than the 

respective one for training set. 

 

 

4 Application of the Proposed ANN 

Method for the Roof’s Settlement 

during Tunnel Excavation 
The proposed method is applied for the estimation 

of the settlement of the roof during the excavation 

of a tunnel. The input vector ( )inx n
�

 is given by eq. 

(19), while the output vector ( )t n
�

 is formed by the 

normalized output variable ˆzs  of the settlement of 

the roof: 

ˆzt s  =
�

                              (21) 

The available vectors are 7650 (see appendix) 

and they are separated into two sets randomly: the 

training set with the p% of the vectors population 

and the evaluation set with the rest ones. The 

parameter p and the respective crucial ANN 

parameters range in the same regions, as it is 

presented in the case of the face’s settlement (see § 

3). After the gradual application of the proposed 

optimization process the best R
2
 index of the 

evaluation set is given by an ANN with 11 neurons 

in the hidden layer, 0a = 0.7, aT = 2000, 0η =0.7, 

Tη = 2500, 1h = 0.7 and 2 0h =  using hyperbolic 

tangent as the activation function in hidden and 

output layers. This ANN has been trained using 

20% of the available input vectors (p=20%). It is 

noted that the available vectors for the roof’s 

settlement is quite different from the one of the 

face’s settlement and the respective variation of R
2
 

index for the evaluation set for different percentage 

p is narrower than the respective one of Fig. 4.     

In Fig. 9 the settlements of the roof from the 

execution of the FLAC3D program and the 

respective estimated settlements for the evaluation 

set are presented.   

The basic results are the following, which are 

quite satisfactory:  

� the respective mean value of the absolute error 

MAE is 4.52 mm for the training set and 4.73 mm 

for the evaluation set, 

� the respective root mean square error RMSE is 

6.41 mm for the training set and 6.74 mm for the 

evaluation set, 

� the R
2
 correlation index between the estimated and 

the settlements from FLAC3D program is 96.62% 

for the training set and 96.08% for the evaluation 

set. 
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Fig. 9 The settlements from FLAC3D program and 

the estimated settlements of the roof during 

tunneling excavation for the evaluation set.  

 

The results are slightly worse than the respective 

ones from face settlement, which indicates a less 

accurate ANN. There is probably a physical 

mechanism that is not accounted for by the input 

variables (i.e. the occurrence of plasticity close to 

the roof and walls). 

 

 

5 Application of the Proposed ANN 

Method for the Side Walls’ Settlement 

during Tunnel Excavation 
The proposed method is applied for the estimation 

of the settlement of the side walls during the 

excavation of a tunnel. The input vector ( )inx n
�

 is 

given by eq. (19), while the output vector ( )t n
�

 is 

formed by the normalized output variable ˆys  of the 

settlement of the walls: 

ˆyt s  =
�

                              (21) 

The available vectors are 7650 (see appendix) 

and they are separated into the training set and the 

evaluation set randomly, while the parameter p and 

the respective crucial ANN parameters range in the 

same regions, as it is presented in § 3, 4. After the 

gradual application of the proposed optimization 

process the best R
2
 index of the evaluation set is 

given by an ANN with 11 neurons in the hidden 

layer, 0a = 0.5, aT = 2500, 0η =0.6, Tη = 1500, 

1h = 0.7 and 2 0h =  using hyperbolic tangent as the 

activation function in hidden and output layers. This 

ANN has been trained using 80% of the available 

input vectors (p=80%). 
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Fig. 10  The settlements from FLAC3D program 

and the estimated settlements of the walls during 

tunneling excavation for the evaluation set.  

 

In Fig. 10 the settlements of the side walls from 

the execution of the FLAC3D program and the 

respective estimated settlements for the evaluation 

set are presented.  

The basic results are the following, which are 

quite satisfactory:  

� the respective mean value of the absolute error 

MAE is 5.83 mm for the training set and 5.98 mm 

for the evaluation set, 

� the respective root mean square error RMSE is  

8.67 mm for the training set and 8.98 mm for the 

evaluation set, 

� the R
2
 correlation index between the estimated and 

the settlements from FLAC3D program is 93.49% 

for the training set and 93.12% for the evaluation 

set. 

The results are slightly worse than the respective 

ones from the previous two cases. The reason 

should probably be a physical mechanism that is not 

accounted for by the input variables. 

 

 

6 Sensitivity Analysis for the Proposed 

ANN Method 
In this section a sensitivity analysis is carried out. 

The main cases, which are examined in this 

sensitivity analysis, concern the following:    

� the random selection of the input vectors per 

epoch and the random initialization of the 

weights, 

� the difference between the random selection of the 

input vectors per epoch (stochastic training) and 

the serial presentation of the input vectors per 

epoch (serial training),  
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� the removal of vectors with specific values of one 

input variable from the training set, which is 

synopsized as the range of the values set of the 

input variables,  

� the omission of one variable from the set of the 

input variables.  
 

 

6.1   Random Selection of the Input Vectors 

per Epoch & Random Initialization of the 

Weights 
During the optimization process the weights were 

initialized randomly, but for every different case of 

parameters the initial weights were the same. Here, 

the proposed ANN method is applied 10 times 

consecutively for the estimation of the side wall’s 

settlement using the parameters of the best 

combination (see § 5) with different initialization of 

weights. During the training process the input 

vectors are selected randomly, as it was already 

happened. The respective results for R
2
 indexes for 

the two sets are presented in Table 1. It is noticed 

that the values of the R
2
 indexes have small 

variations showing that the behavior of the proposed 

ANN method is stable. 

 
TABLE 1 

10 EXECUTIONS OF THE PROPOSED ANN FOR THE 

SIDE WALL’S SETTLEMENT 

Trial Number of 

epochs 

R
2
 for 

training set 

R
2
 for 

evaluation set 

1 5285 92.50% 92.20% 

2 5486 93.50% 92.80% 

3 5273 94.80% 94.30% 

4 5408 93.90% 93.60% 

5 5505 93.30% 92.80% 

6 5153 93.70% 93.40% 

7 5398 93.30% 93.00% 

8 5447 92.80% 92.60% 

9 5458 93.50% 93.30% 

10 5291 92.60% 92.40% 
 

 

6.2   Difference between Stochastic and 

Serial Training 
According to the proposed ANN method the vectors 

of the training set are selected randomly (stochastic 

training). In this section, the ANN is modified, so 

that the presentation order of the vectors is the same 

per epoch (serial training), which is easier to be 

programmed than the stochastic training. In Fig. 11 

the mean absolute error MAE of the side wall’s 

settlement using ANN with the parameters of the 

best combination (see § 5) is presented for the serial 

training and for the stochastic one (1
st
 and 3

rd
 trial of 

Table 1). The convergence of the MAE for the serial 

training is smoother and slower than the respective 

one of the stochastic training. The results of ANN 

with serial training are the following:  

� the respective mean value of the absolute error 

MAE is 6.96 mm for the training set and 7.25 mm 

for the evaluation set, 

� the respective root mean square error RMSE is  

9.99 mm for the training set and 10.35 mm for the 

evaluation set, 

� the R
2
 correlation index between the estimated and 

the settlements from FLAC3D program is 81.6% 

for the training set and 82.1% for the evaluation 

set. 

The comparison between the two methods of the 

training shows the superiority of the stochastic 

training with which the danger of the over-fitting is 

suppressed [35]. 
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Fig. 11  MAE of the side wall’s settlement using 

ANN with the parameters of the best combination 

for the serial training and for the stochastic training 

(1
st
 and 3

rd
 trial of Table 1). 

 

 

6.3   Range of Values’ set of Input Variables 
The values set of each input variable of the training 

set should cover the whole range of values of the 

respective input variable of the evaluation and test 

sets. Otherwise, instability phenomena and poor 

convergence will appear.  

In this study, the proposed ANN method is 

applied for the estimation of the face’s settlement 

examining the following four different scenarios for 
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the input variable of the overload factor NS: (a) 

Scenario 1: NS≠5, (b) Scenario 2: NS>4, (c) Scenario 

3: NS<7, (d) Scenario 4: NS takes all available values 

of the region [3.5, 7.0]. The training set is formed 

using 80% of the available input vectors, while the 

rest ones forms the evaluation set (p=80%). In Table 

2 the population of the members (input vectors) of 

the training set and of the evaluation set is 

presented. It is noted that there are 495 members for 

each value of NS, so for the first scenario one value 

of NS has been omitted and the rest members (2475-

495=1980) are divided according to the percentage 

80% (1584 for the training set and 396 for the 

evaluation set). The 495 omitted members are added 

in the evaluation set.  

For all scenarios the number of neurons varies 

from 2 to 15, while the remaining parameters are 

assigned with fixed values ( 0 0.6a = , 1000aT = , 

0 0.6η = , 1000Tη = , activation functions in both 

layers: hyperbolic tangent, h1=0.7, h2=0.0). The 

respective results for the R
2
 indexes of the two sets 

are presented in Table 2. From these results, it can 

be seen that the systematic omission of specific 

values of one important input variable gives poor 

results. The results of scenario 1 are worse than 

those of scenario 3, even though the population of 

the training set is the same (scenario 1: NS≠5, 

scenario 3: NS≠7). The reason is that the 

meaningfulness of the value “5” for NS is larger than 

the respective one of the second case. The results of 

scenario 2 are the worst because of the absence of 

the low part of the values set. The respective range 

is limited between 5 and 7. The population of the 

training set is not the most crucial parameter, as it 

has been proved by the comparison of scenarios 1 

and 3.   The respective optimized population of the 

hidden layer’s neurons can also be changed 

significantly (see scenario 1 & 3 in Table 2), 

because the ANN is supplied with a different 

training set and the respective optimization process 

forms a different structure of ANN. 

 
TABLE 2 

DIFFERENT SCENARIOS FOR THE VALUES SET OF THE OVERLOAD FACTOR NS FOR THE TRAINING SET USING THE 

PROPOSED ANN METHOD FOR THE FACE’S SETTLEMENT WITH THE OPTIMIZED NUMBER OF NEURONS 

Scenario Neurons 
Number of members 

of training set 

Number of members 

of evaluation set 

R
2
 for 

training set 

R
2
 for 

evaluation set 

1 14 1584 495+396=891 62.0% 63.9% 

2 11 1188 2*495+297=1287 41.1% 47.3% 

3 15 1584 495+396=891 70.1% 66.2% 

4 11 1980 495 90.4% 79.9% 

 

6.4   Omission of One Input Variable 
The omission of one crucial input variable can give 

poor convergence. For the purpose of this study, the 

proposed ANN method is applied for the estimation 

of the face’s settlement omitting the modulus of 

elasticity for the surrounding rock-mass Er. The 

parameter Er is preferred than the overload factor 

NS, because it is already known the significance of 

the last one from § 6.3.  

For this application the training set is formed 

using 80% of the available input vectors (p=80%). 

The number of neurons varies from 2 to 15, while 

the remaining parameters are assigned with the 

fixed values at § 6.3. The optimized population of 

the hidden layer’s neurons is 13 against 11 of the 

basic scenario. The respective results of this 

application of the ANN method are the following:  

� the mean value of the absolute error MAE is 9.0 

mm for the training set and 9.3 mm for the 

evaluation set instead of 8.8 mm and 9.1 mm 

respectively from  the basic scenario, 

� the R
2
 correlation index between the estimated and 

the settlements from FLAC3D program is 68.3% 

for the training set and 72.2% for the evaluation 

set instead of 90.4% and 79.9% respectively from 

the basic scenario. 

It is observed that the results are slightly better 

for the evaluation set than ones for the training set, 

because of the no common members between the 

training and evaluation sets. 

If the same process repeats for any other input 

variable, the omission gives poorer results than the 

respective one with the omission of the modulus of 

elasticity for the surrounding rock-mass Er (the R
2
 

indexes are lower than 40% for all cases for both 

sets). The latter proves the necessary use of all input 

variables. 

 

 

7 Conclusions 
This paper describes an optimized artificial neural 

network method in order to estimate the settlements 

of roof, face and walls during tunneling excavation. 
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The ANN method uses as input variables the 

overload factor, the placement of the temporary 

lining ring behind the face, the thickness of the 

shotcrete, the modulus of elasticity for the 

surrounding rock-mass and the position of the 

measurement point referring to the tunnel axis.  

For each kind of settlement (roof, face or walls) a 

different ANN is formed using an optimization 

process regarding the values of crucial parameters, 

such as the number of the hidden layer’s neurons, 

the time parameter and the initial value of the 

learning rate and of the momentum term, the kind 

and the parameters of the activation functions. The 

implementation of the optimization process is 

realized gradually based on the correlation index R
2
 

between the experimental and estimated values for 

the evaluation set. Finally the ANN with the closest 

to 1 correlation index is selected.  

After the proposed optimization process, the basic 

results are the following with respect to the face, 

roof and walls settlements: 

� the mean value of the absolute error MAE is 2.3 

mm, 4.7 mm and 6.0 mm respectively, 

� the root mean square error RMSE is 3.2 mm,  6.7 

mm and 9.0 mm respectively, 

� the R
2
 correlation index between the estimated and 

the settlements from FLAC3D program is 98.6%, 

96.1% and 93.1% for the evaluation set 

respectively. 

Finally, a sensitivity analysis for the proposed 

ANN method is carried out. Specifically the 

following cases have been examined:  

� The differences between the stochastic training 

and serial one have been studied showing the 

superiority of the random presentation of the input 

vectors per epoch (stochastic training). 

� The random selection of the input vectors per 

epoch and the random initialization of the weights 

have also been examined showing the stability of 

the proposed ANN method. 

� The effects of the omission of specific values of 

the input variables have been studied, from which 

the necessity of the values’ set of each input 

variable of the training set to overlap the values’ 

set of the respective input variable of the 

evaluation set has been proved.  

� The omission of one input variable from the input 

vectors have been examined, from which the 

necessity of all input variables has been evident.  

It is mentioned that the ANN could use different 

parameters than the five pre-chosen variables or in 

situ material properties as input variables. After the 

optimized training process the ANN’s structure 

might be different than the proposed one, but the 

ANN could estimate the respective settlement. In 

any case the proposed optimized ANN can be self-

adjusted, if it is supplied with different input 

variables, and the most suitable structure will be 

formed according to the best R
2
 correlation index of 

the evaluation set. The reliability of the ANN 

depends from the kind of the final chosen input 

variables and from the accuracy of the respective 

measurements.   
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Appendix 
For the purposes of this study, the results of 

geotechnical finite difference analyses were used. 

These analyses were performed by Spyropoulos [34] 

via the usage of the finite difference program 

FLAC3D ver. 2.00. 

The input data has been estimated using Hoek-

Brown criterion with equivalent Mohr-Coulomb 

parameters for different isotropic uniform rock-mass 

qualities. The basic assumptions are:  

� the cross-section diameter of tunnel D is 11.00 m, 

� the special weight of rock-mass γ  is 24 kN/m
3
,  

� the overhead thickness of rock-mass H is between 

40 m and 1800 m, 

� the excavation is performed with conventional 

methods,  

� the Geological Strength Index GSI is between 10 

and 60, 

� the factor of the rock quality mi is 10,  

� the uniaxial compressive strength of the rock-

mass cmσ  ranges in the region [0.6,40] (in MPa), 

� the Poisson’s ratio of rock-mass vr is 0.333, 

� the horizontal pressure factor K0 is  0.50, 

� the modulus of elasticity for the surrounding rock-

mass Er ranges in the region [500,9000]  (in 

MPa), 

� the overload factor NS has values from the set 

{3.5,4.0,5.0,6.0,7.0} , 

� the equivalent cohesion c ranges in the region  

[200,2000] (in kPa), 

� the equivalent friction angle φ  ranges in the 

region [18
o
, 32

o
], 

� the equivalent diastolic angle ψ  is / 5φ , 

� the temporary support system is closed shotcrete 
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rings, 

� the Poisson’s ratio of shotcrete vs is 0.25, 

� the modulus of elasticity for the shotcrete Es is 10 

GPa, 

� the thickness of the shotcrete t has values from the 

set {10,20,30}  (in cm), 

� the placement of the temporary lining ring behind 

the face L has values from the set {1.0,3.0,5.0}  

(in m), 

� the position x of the measurement point referring 

to the tunnel axis ranges in region  [ 23,33]−  (in 

m). Practically the negative values of x correspond 

behind the face of the tunnel, while the positive 

values correspond in front of the face, where the 

excavation has not taken place. Virtually, the 

position x of the measurement point, referring to 

the tunnel axis, is extended two diameters behind 

the tunnel face and three diameters in front of the 

face.  

In ANN the following 34 discrete values of the 

position x has been used: {-23.000, -22.000,-21.000, 

-20.000, -19.000, -18.000, -17.000, -16.000,-15.000, 

-14.000, -13.000, -12.000, -11.000, -10.000, -9.000,  

-8.000, -7.000, -6.000, -5.000, -4.000, -3.000,-2.000, 

-1.000, 0.000, 0.992, 2.223, 3.784, 5.722, 8.145, 

11.173, 14.959, 19.691, 25.606, 33.000} (in m). For 

the estimation of the face settlement only the eleven 

positive values has been used. For the estimation of 

the side walls and roof settlements the total group of 

the values has been used. In [34] 225 scenarios has 

been developed, so 225*11= 2475 input vectors 

have been formed for the settlement of the face, 

while 225*34= 7650 input vectors have been 

formed for the settlements of the wall and of the 

roof.  

It is noted that the analytical datasets can be 

found in [34], while the software ANN code of this 

method has been registered in [37]. 
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