
On Fault-Tolerant Embedding of Meshes and Tori in a Flexible

Hypercube with Unbounded Expansion

*JEN-CHIH LIN
1

1
Department of Digital Technology Design,

National Taipei University of Education,

No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106,

TAIWAN

E-mail:*yachih@tea.ntue.edu.tw http://tea.ntue.edu.tw/~yachih

Abstract: - The Flexible Hypercubes are superior to hypercube in terms of embedding a mesh and torus under

faults. Therefore, this paper presented techniques to enhance the novel algorithm for fault-tolerant meshes and

tori embedded in Flexible Hypercubes with node failures. The paper demonstrates that O(n
2
-log2m  2

) faults

can be tolerated and the algorithm is optimized mainly for balancing the processor and communication link

loads. Also, the methodology is proven and an algorithm is presented to solve them. These existent parallel

algorithms on mesh or torus architectures to be easily transformed to or implemented on the Flexible

Hypercube architectures with load 1, congestion 1, dilation 3, and unbounded expansion. The useful properties

revealed and the algorithm proposed in this paper can find their way when the system designers evaluate a

candidate network’s competence and suitability, balancing regularity and other performance criteria, in

choosing an interconnection network. Therefore, we can easily port the parallel or distributed algorithms

developed for these structuring of mesh and torus to the Flexible Hypercube.

Key-Words: - Flexible Hypercube, hypercube, mesh, torus, fault-tolerance, embedding

1 Introduction
Parallel architectures and algorithms are essential in

high-speed computing. As generally known massive

parallelism can solve many related problems. To

effectively resolve such problems, massively

parallel computers require new architectures and

algorithms to fully exploit this technology. For

available algorithms on one architecture to be easily

transformed in or implemented on another

architecture, a new field deals with embedding

among different networks.

Among the various interconnection networks

that have been studied and built[12, 13, 15, 18, 19,

22, 26, 27], hypercube[3, 5, 10, 20, 28] networks

have received much attention. Hypercube

multiprocessors have recently offered a cost

effective and feasible approach to supercomputing

through parallelism at the processor level by directly

connecting a large number of low-cost processors

with local memories which communicate by

message-passing instead of shared variables. This

attention is mainly due to the hypercube advantages

of rich interconnection, routing simplicity, and

embedding capabilities. However, due to the

power-of-2 size and logarithmic degree, hypercubes

suffer two major disadvantages, namely, high cost

extensibility and large internal fragmentation in

partitioning. In order to conquer the difficulties

associated with hypercubes and these

generalizations of the hypercubes, the Flexible

Hypercube[8] has been proposed during past years.

The Flexible Hypercube unlike both the

supercube[23, 24] and the hypercube, may be

expanded (or designed) in a number of possible

configurations while guaranteeing the same basic

fault-tolerant properties and without a change in the

communication. The existence of hypercube

subgraphs in the Flexible Hypercube ensures that

hypercube embedding algorithms developed for the

hypercube may also be utilized in the Flexible

Hypercube. The flexibility in node placement may

possibly be utilized to aid in supporting a specific

embedding. The Flexible Hypercube, while

maintaining the fault-tolerance of the other

topologies and the ease of communication, allows

the placement of new nodes at any currently unused

addresses in the system. An effective means of

achieving faulty-tolerance in hypercubes is to

introduce spare nodes or links[7]. In doing so, the

hypercube structure can still be maintained when

nodes fail. In addition to that this approach can be

expensive, hardware modifications on machines

already in the market place are extremely difficult.

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1143 Issue 12, Volume 9, December 2010

Using the unused nodes as spares (instead of adding

extra nodes or links to alter the structure of a

hypercube) is another approach to exploit the

inherent redundant nodes or links in a hypercube[9].

In this study, we consider this second type of

fault-tolerance design only in a faulty Flexible

Hypercube.

In a multiprocessor system, two faulty models

defined in [9] are adopted herein. The first model

assumes that in a faulty node, the computational

function of the node is lost while the communication

function remains intact; this is the partial faulty

model. The second model assumes that in a faulty

node, the communication function is lost as well;

this is the total faulty model. This study proposes

the partial faulty model, in which the

communication links are well when the computation

nodes are faulty. In addition, only the faulty node is

remapped.

The faulty model proposed herein is a partial

model. That is, the communication links are well

when the computation nodes are faulty,. Only the

faulty node is remapped. This study largely focuses

on a theoretical question associated with the

simulation of mesh or torus in a faulty Flexible

Hypercube.

The problem of allocating the subprocessors,

structured by a mesh (or a torus)[6, 30], to

processors in a given interconnection network will

be reduced to the problem of embedding the torus

structure. In order to execute a parallel program,

tasks are to be mapped into processors of a parallel

machine. It is possible to model this kind of problem

in graph-theoretical terms of graph embedding. We

model both the parallel algorithms and the parallel

machines as graphs.

The power of a message-passing parallel

computer depends on the topology chosen for

underlying interconnection network, which can be

modeled as undirected graph[4]. Different parallel

architectures may require different algorithms to

solve the same problem efficiently. In order for

existent algorithms on one architecture to be easily

transformed to or implemented on another

architecture, a new field deals with embedding

among different networks. Different graphs have

been proposed as static interconnection topology for

multiprocessors. They include linear arrays, rings,

meshes, complete binary trees mesh of trees, de

Bruijn networks, and so on. Therefore, we model

both the parallel algorithm and the parallel machine

as graphs. Given two graphs, G(V,E) and G’(V’,

E’), embedding the guest graph G into the host

graph G’ maps each vertex in the set V into a vertex

(or a set of vertices) in the set V’ and each edge in

the set E into an edge (or a set of edges) in the set E’.

Let these nodes in a graph correspond to processors

and edges to communication links in an

interconnection network. Embedding one graph into

another is important because an algorithm may have

been designed for a specific interconnection

network, and it may be necessary to adapt it to

another network. Four costs associated with graph

embedding [1, 11, 14, 25, 29] are dilation,

expansion, load and congestion. The maximum

amount that we must stretch any edge to achieve an

embedding is called the dilation of the embedding.

By expansion, we mean the ratio of the number of

nodes in the host graph to the number of nodes in

the graph that is being embedded. The congestion of

an embedding is the maximum number of edges of

the guest graph that are embedded using any single

edge of the host graph. The load of an embedding is

the maximum number of nodes of the guest graph

that are embedded in any single node of the host

graph. An efficient simulation of one network on

another network requires that these four costs be as

small as possible. However, for most embedding

problems, it is impossible to obtain an embedding

that minimizes these costs simultaneously.

Therefore, some tradeoffs among these costs must

be made.

Among the static interconnection networks

used for SIMD[21] computers with an array of

processors[2], one of the oldest and very popular

architectures is a two-dimensional-mesh. Many

important algorithms for solving various problems,

e.g., matrix operations, simultaneous linear

equations, graph-theoretic and image processing

problems, etc., have been efficiently embedded in

this mesh architecture. Furthermore, we study

reconfiguration of task graphs that are embedded in

Flexible Hypercubes and study run-time

fault-tolerance. Upon failure, our goal is to maintain

the structure of a task graph via reconfiguration by

using unused nodes in the Flexible Hypercube. In

other words, we remap the faulty nodes' tasks to

some other fault-free nodes. In order to keep the

recovery time small, the reconfiguration must be

efficient; that is, we would like to keep data/task

movements between nodes that are close by.

The efficiency of a reconfiguration scheme is

strongly affected by how tasks are initially mapped

to a parallel computer. If a task graph (representing

the task) is embedded in a proper way, the

reconfiguration scheme can be simple and involve

only local movements. Such initial embeddings,

called fault-tolerant embedding, however, require

more nodes than embeddings with no fault tolerance.

Thus, the idea of fault-tolerant embedding is to

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1144 Issue 12, Volume 9, December 2010

leave some spare nodes intentionally in the initial

embedding such that, when faults occur, the faulty

nodes can be quickly replaced by nearby spare

nodes. The main design issue of fault-tolerant

embedding is how to distribute the spare nodes and

minimize their number such that more faults can be

tolerated. In this investigation, we discuss our

embedding function with unbounded expansion,

congestion 1, dilation 3, load 1.

Also, we developed the methods for finding

meshes or tori in a Flexible Hypercube. As the result,

we can transit the parallel algorithms developed

under the structure of meshes or tori to the Flexible

Hypercube. This embedding approach enables

extremely high-speed parallel computation in

Flexible Hypercubes. Although Flexible

Hypercubes are not absolutely asymmetric, it has

the same power as the hypercube in terms of meshes

and tori.

The embedding of one interconnection

network in another is a very important issue in the

design and analysis of parallel algorithms. The rest

of this paper is organized as follows. Section 2

introduces the necessary notations and definitions.

Section 3 presents how to map a mesh in a Flexible

Hypercube. Section 4 presents the embedding of a

mesh in a faulty Flexible Hypercube with

unbounded expansion. Conclusions are finally made

in section 5.

2 Preliminaries
We briefly describe these definitions of these

topologies of the hypercube, the mesh network, and

the flexible hypercube.

A hypercube Hn of order n, is defined to be a

symmetric graph G= (V, E) where V is the set of 2
n

vertices, each representing a distinct n-bit binary

number and E is the set of symmetric edges such

that two nodes are connected by an edge iff the

number of positions where the bits differ in the

binary labels of the two nodes is 1.

There are many topologies can be mapped in

hypercubes or hypercube-like computers. One of

these is mesh network. It is very popular network

interconnection. One of the most attractive

properties of the binary n-cube topology is that

meshes of arbitrary dimensions can be mapped in it.

This is one of the main reasons for the success of

hypercube architectures. Because of these, we

consider the mesh size in each direction is a power

of 2. The figure 1 and the figure 2 show us two

examples. First example, a 2×2

2-dimensional mesh

has 4 nodes which are bi-directional connection

between two nodes. Second example, A 2
2 × 2

1

2-dimensional mesh has 8 nodes which are

bi-directional connection between two nodes.

Fig. 1 A 2×2 2-dimensional mesh

Fig. 2 A 2

2×21 2-dimensional mesh

The Flexible Hypercube is constructed by any

number of nodes and based on a hypercube. A

Flexible Hypercube, denoted by FHN, is defined as

an undirected graph FHN=(V,E) ,where V is the set

of processors (called nodes) and E is the set of

bidirectional communication links between the

processors (called edges). In an n-dimensional

Flexible Hypercube with N nodes where 2
n
 ≤ N <

2
n+1

 (n is a positive integer), each node can be

expressed by an (n+1)-bit binary string in.....i0 where

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1145 Issue 12, Volume 9, December 2010

ip∈{0 ,1} and 0 ≤ p ≤ n

Definition 1[17] A (2
n+1

 -t)-node Flexible

Hypercube is a lack of t nodes, which are referred to

herein as virtual nodes. For any virtual node y,

denoted as I(x) where x is any node of Flexible

Hypercube, if the function I(x) exists, then

 n nx y= and xi=yi for 0 ≤ i ≤ n-1

Definition 2[16] The Hamming distance between

two nodes with labels x=xn-1xn-2...x0 and y=

yn-1yn-2...y0 is defined as

HD(x , y)=∑
−

=

1

0

),(
n

i

ii yxhd , where

hd(xi , yi)=




≠

=

.yxif 1,

,yxif 0,

ii

ii

Definition 3[17] Let x=xn-1…x0, y=yn-1…y0, then

Dim(x, y)={i in (0…n-1)Kxi ≠ yi}

Definition 4[17] For any two nodes x and y in a

Flexible Hypercube, let x=xn ... x0, y=yn ... y0, then

Dim(x ,y)={i in (0 ... n) | xi≠yi}.

Definition 5[8] Suppose FHN=(V, E) is an

n-dimensional Flexible Hypercube ,then the node

sets H1, H2, V1, V2, V3 are defined as follows

1. H1 ={x | x∈V and xn = 0},

2. H2 ={x | x∈V and (xn = 1 or I(x)∉ V)},

3. V1 =H1-H2

4. V2 =H1∩H2

5. V3 =H2 -H1

Definition 6[8] Suppose FHN=(V, E) is an n-

dimensional Flexible Hypercube ,then the edge set E

is the union of E1, E2, E3, and E4 ,where

1. E1 ={(x ,y) | x, y∈H1 and HD(x ,y) =1},

2. E2 ={(x ,y) | x, y∈V3 and HD(x ,y) =1},

3. E3 ={(x ,y) | x∈V3 , y∈V1 and HD(x ,y) =1},

4. E4 ={(x ,y) | x∈V3 , y∈V2 and HD(x ,y) =2}.

Addressing of nodes in a Flexible Hypercube is

constructed as follows. As discussed above,

addresses consist of binary strings of (n+1)-bits.

The first 2
n
-1 addresses correspond to nodes in H1

and must be the binary representations of 0 through

2
n
-1. Each of the remaining nodes (up to 2

n
-1 nodes)

in the set V3=H2 -H1 may be placed adjacent to any

node x in H1 and is given the addressing I(x). Any

node in H1 is a hamming distance of 1 from at most

one node in V3. This method of node addressing

effectively relaxes the constraint that all nodes in the

network must be numbered consecutively. This is

unique among the hypercube topologies mentions

above. Notably, hypercubes are special cases of a

Flexible Hypercube; it can also be expanded flexibly

with respect to the placement of new nodes in the

system while maintaining fault-tolerant. When a

new node is added to a Flexible Hypercube system,

(n+1) new connections should be added and at most

n existing edges must be removed.

An inevitable consequence of the flexible of

construction and the fault-tolerant of a Flexible

Hypercube is an uneven distribution of the utilized

communication ports over system nodes. Although

the Flexible Hypercube loses its property of

regularity, more links help obtain the replacement

nodes of the faulty nodes of the Flexible Hypercube.

The Flexible Hypercube with 12-node is shown in

the figure 3. In the figure 3, H1 = {0000, 0001,

00010, 0011, 0100, 0101, 0110, 0111}, H2 = {0000,

0001, 0011, 0110, 1010, 1100, 1101, 1111}, V1 =

{0010, 0100, 0101, 0111}, V2 = {0000, 0001, 0011,

0110}, and V3 = {1010, 1100, 1101, 1111}

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1146 Issue 12, Volume 9, December 2010

Fig. 3 The Flexible Hypercube contains 12 nodes

Definition 7[1] If G is a graph, the vertex set of G is

denoted by V and the edge set of G is denoted by E.

A graph G’ is said to be a subgraph of G if V’⊆V

and E’⊆E.

Definition 8[17] Any 21 mm × mesh or torus,

denoted by
1 2m mM × , is a 2-dimensional mesh or

torus, where
sr mm 2,2 21 == . 

Definition 9[17] Any dmmm ××× ⋯21 mesh or

torus, denoted by
1 2 dm m mM × × ×⋯ , in the

d-dimensional space Rd, where mi =
ip

2 . 
Definition 10[11] The Binary-Reflected Gray Code

(BRGC) is defined recursively as follows.

Cn+1={0Cn, 1(Cn)
R
}, where C1={0 , 1}

and C2={0C1 , 1(C1)
R
}

For example, a 2-bit Gray Code can be

constructed by the sequence, defined in definition

10, and insert a cipher in front of each codeword in

C1, then insert an one in front of each codeword in

(C1)
R
 . We get the code C2={00, 01, 11, 10}. Now,

we can then repeat the procedure to built a 3-bit

Gray Code, and also get the code

C3=0C2∪1(C2)
R
={000, 001, 011, 010, 110, 111, 101,

100}.

3 Mesh and Torus Embedding
The section describes the representation used to

solve that embeds a mesh and torus in a FHN.

Lemma 1 Any 21 mm × mesh or torus, denoted by

1 2m mM × , is a 2-dimensional mesh or torus, where

sr mm 2,2 21 == can be embedded in an

n-dimensional hypercube where n = r+ s.

Proof: A binary number M of any node of the

n-dimensional hypercube can be regarded as

consisting of two parts: its first r bits and its last s

bits, which we write in the form M =

sr βββααα 2121 , where iα and iβ are bits 0

or 1. It is clear from the definition of n-dimensional

hypercube that when the last s bits are fixed, then

the resulting 12 p
 nodes form a p1-dimensional

hypercube (with p1 = r). Whenever we fix the first

r bits we obtain a p2-dimensional hypercube (with

p2 = s). The embedding then becomes clear.

Choosing a r-bit BRGC for the x direction and s-bit

BRGC for the y direction, the point (ii yx ,) of the

mesh is assigned to the node sr βββααα 2121

where rααα ...21 is the r-bit BRGC for dimension

of p1 while sβββ ...21 is the s-bit BRGC for

dimension of p2. Therefore, any 21 mm × mesh or

torus can be embedded in an n-dimensional

hypercube where n = r+ s.

Lemma 2 Any dmmm ××× ⋯21 mesh or torus,

denoted by
1 2 dm m mM × × ×⋯ , in the d-dimensional

space Rd, where mi =
ip

2 can be embedded in an

n-dimensional hypercube where n = p1 + p2+…+ pd.

The numbering of the mesh or torus nodes is any

numbering such that its restriction to each ith

variable is a Gray code which is described in

definition 6. Note that the assumption that all mi’s

be power of 2.

Proof: It is clear from the definition of

n-dimensional hypercube. A binary number M of

any node of the n-dimensional hypercube can be

regarded as consisting of d parts: its first part is

log2m1 bits, its second part is log2m2 bits and so on.

The numbering of the mesh or torus nodes is any

numbering such that its restriction to each ith

variable is a Gray code which is described in

definition 6. Note that the assumption that all mi’s

be power of 2. Therefore, generalizations to higher

dimensions are straightforward and one can state the

above lemma 1. Any dmmm ××× ⋯21 mesh or

torus (with mi =
ip

2) can be embedded in an

n-dimensional hypercube where n = p1 + p2+…+ pd.

Our proposition is best illustrated by an example.

Consider a 2-dimensional 4×4 mesh i.e., d = 2, p1 =

2, p2 = 2, n = p1 + p2 = 4. A binary number M of any

node of the 4-dimensional hypercube can be

regarded as consisting of two parts: its first 2 bits

and its last 2 bits, which we write in the form

M = 2121 ββαα , where iα and iβ are bits 0

or 1. It is clear from the definition of n-dimensional

hypercube that when the last 2 bits are fixed, then

the resulting 12 p
 nodes form a p1-dimensional

hypercube (with p1 = 2). Whenever we fix the first

2 bits we obtain a p2-dimensional hypercube. The

embedding then becomes clear. Choosing a 2-bit

BRGC for the x direction and 2-bit BRGC for the y

direction, the point (ii yx ,) of the mesh is assigned

to the node 2121 ββαα where 21αα is the 2-bit

BRGC for dimension of p1 while 1 2β β is the 2-bit

BRGC for dimension of p2.

The binary node number of any mesh node is

obtained by concatenation its binary x coordinate

and its binary y coordinate. Therefore, if we call the

Gray code any subcode of a BRGC, we observe that

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1147 Issue 12, Volume 9, December 2010

any column of mesh nodes forms a Gray code and

any row of mesh nodes forms a Gray code. Thus, we

will refer to the codes defined above as 2-D Gray

codes. Generalizations to higher dimensions are

straightforward and one can state the above lemma

2.

Lemma 3 For any given N, a Hypercube Hn must be

a subgraph of a Flexible Hypercube FHN, where
12 2n nN +≤ < .

Proof: A FHN must contain a hypercube Hn. That is

trivially by the generation schema of a FHN graph. It

must contain the maximum hypercube Hn.

The embedding approach that a
1 2 dm m mM × × ×⋯

mesh or torus can be embedded in a FHN is as

follows.

Embedding approach

1 2 dm m mM × × ×⋯ (mi =
ip

2),

FHN (
12 2n nN +≤ <),

1,,,

,,

21

21

≥

≤=+++∀

d

d

ppp

nwwppp

…

…
),(N EVGFH =

1 2

' '(,)
dm m mM G V E× × × =

⋯
,

Vν ∈ ' 'Vν ∈ (Denoted by unique binary string)

0121 XXXXXv wwn …… −−=

0121' XXXXv ww …−−=

'Vν ′∈ can be embedded in V denote as

012100 XXXXv ww …… −−= 

Theorem 1 Any
2 2r sM
×

2-dimensional mesh or

torus can be embedded in a FHN where

2logr s N+ =    with load 1, dilation 1,

congestion 1, and expansion 2.

Proof: By lemma 3, a Hypercube Hn must be a

subgraph of a Flexible Hypercube FHN . A FHN

must contain a maximum hypercube Hn, where

n=log2N. By lemma 1, any 21 mm × mesh or torus

can be embedded in an n-dimensional hypercube

where n = r+ s.

Therefore, any
2 2r sM
×

2-dimensional mesh or torus

can be embedded in a FHN where 2logr s N+ =   
with load 1, dilation 1, congestion 1, and expansion

2 by the above embedding approach.

Theorem 2 Any
1 2 dm m mM × × ×⋯ d-dimensional mesh or

torus, where mi =
ip

2 can be embedded in a FHN,

where  Nppp d 221 log=+++ … with load 1,

dilation 1, congestion 1 and expansion 2.

Proof: By lemma 3, a Hypercube Hn must be a

subgraph of a Flexible Hypercube FHN . A FHN

must contain a maximum hypercube Hn, where

n=log2N. By lemma 2, any dmmm ××× ⋯21

mesh or torus can be embedded in an n-dimensional

hypercube where n = p1 + p2+…+ pd. Therefore,

any
1 2 dm m mM × × ×⋯ d-dimensional mesh or torus, where

mi =
ip

2 can be embedded in a FHN, where

 Nppp d 221 log=+++ … with load 1, dilation

1, congestion 1 and expansion 2 by the above

embedding approach.

This is the best illustrated by an example in

figure 4. That is a 2
1×2

1
 mesh (with 4 nodes) can be

embedded in a FH12.

Fig. 4 2

1
×2

1
 mesh can be embedded in FH12

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1148 Issue 12, Volume 9, December 2010

4 Fault-Tolerant Embedding with

Unbounded Expansion
In the previous section, we have constructed a

mesh and a torus in a FHN graph. In the section, we

consider a faulty FHN with unbounded expansion

embedding.

Theorem 3 Any mesh or tori can be embedded in a

FHN graph with unbounded expansion.

Proof: By theorem 1 and theorem 2, any mesh or tori

can be embedded in a FHN graph with unbounded

expansion.

Algorithm Mesh_Embedding(x)

Input: x /*the faulty node*/,

1 2 dm m mM × × ×⋯ (mi = ip
2), Gn(N)

(
12 2n nN +≤ <),

1,,,

,,

21

21

≥

≤=+++∀

d

d

ppp

nwwppp

…

…

),(EVGFH N = ,

1 2

' '(,)
dm m mM G V E× × × =

⋯
,

Output: y /*the replaceable node*/

1. i=0; j=0; k=0

2. Create a Queue Q; Q=Φ
3. if a node x is faulty

4. then

5. {

6. while i < (n+1-log2m ) do
7. {

8. search the node y

/* HD(x, y)=1, Dim(x, y)= log2m  +i*/

9. if y is not a virtual node and it is free

10. then

11. return(y) /*replace x with y*/

12. remove all nodes in Q

13. exit()

14. else

15. enqueue(y, log2m  +i)

16. i=i+1

17. }

18. }

19. while Q is not empty do

20. {

21. dequeue(a,b)

22. while j < b do

23. {

24. search the node z

 /* HD(a, z)=1, Dim(a, z)=j*/

25. if z is not a virtual node and it is free

26. then

27. return(z)

/*replace x with y*/

28. remove all nodes in Q

29. exit()

30. j=j+1

31. }

32. }

33. return(“Failure”)

34. end

Finding the replaceable node as follows:

node 0 = 0Xn-1Xn-2…Xlog2m …X1X0

node 1 = 0Xn-1Xn-2…X’log2m …X1X0

node 2= 0Xn-1Xn-2…X’log2m+1 Xlog2m …X1X0

 ⋮

node (n-log2m) = 0X’n-1Xn-2…Xlog2m …X1 X0

node (n-log2m +1) = 1Xn-1Xn-2…Xlog2m …X1 X0

node (n-log2m +2) = 0Xn-1Xn-2…X’log2m …X1X’0

node (n-log2m +3) = 0Xn-1Xn-2…X’log2m …X’1X0

 ⋮

node (n-log2m +1+log2m) = 0Xn-1Xn-2…X’log2m

X’log2m -1…X1X0

node (n-log2m +1+log2m+1) =

0Xn-1Xn-2…X’log2m +1…X1X’0

node (n-log2m +1+log2m+2) =

0Xn-1Xn-2…X’log2m +1…X’1X0

 ⋮

node (n-log2m +1+2*log2m) =

0Xn-1Xn-2…X’log2m+1 Xlog2mX’log2m-1…X1X0

node(n-log2m+1+2*log2m+1)=0Xn-1Xn-2…X’log

2m+1 X’log2mXlog2m-1…X1X0

 ⋮

node

((n-log2m+1)*(log2m+1))+(1+2+…+n-log2m

) = 1X’n-1Xn-2…Xlog2m-1…X1X0

 We give a simple example in this section to

explain the operations of the Mesh_Embedding

algorithm when the faulty nodes exist. For the FH12

as Figure 5, where the 22M × has been embedded

in it.

1. If the node 0 is faulty, it visits or signals the

node 4, to check whether it is free or not. If it is,

it terminates.

2. If not, insert the node 4 to the queue, and search

the node 8, to check whether it is free or not. If

it is, it terminates.

3. If not, insert the node 8 to the queue, and delete

the node 4 from the queue, search the node 5, to

check whether it is free or not. If it is, it

terminates.

4. If not, search the node 6, to check whether it is

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1149 Issue 12, Volume 9, December 2010

free or not. If it is, it terminates.

5. If not, delete the node 4 from the queue, search

the node 9, to check whether it is free or not. If

it is, it terminates.

6. If not, search the node 10, to check whether it is

free or not. If it is, it terminates.

7. If not, search the node 14, to check whether it is

free or not. If it is, it terminates.

8. If not, return(“Failure”).

Therefore, the whole searching path is listed as

{4(0100), 8(1000), 5(0101), 6(0110), 9(1001),

10(1010), 12(1100)}.

We illustrate the searching path of finding a

replaceable node in a FH12 as shown figure 6.

Fig.5 Embedding of a 22M × mesh and torus in a FH12

Fig.6 The searching path of finding a replaceable node in a faulty FH12

Theorem 4 Any mesh or torus
1 2 dm m mM × × ×⋯ can be

embedded in a faulty FHN with dilation 3,

congestion 1, load 1, and unbounded expansion.

Proof: Every searching path is only one path

according to the algorithm Mesh_Embedding,

allowing us to obtain congestion 1 and load 1.

Herein, we allow unbounded expansion to obtain the

replaceable node of the faulty node. When a node is

faulty, it is a worse case in which the

dilation=1+2=3 at most by algorithm

Mesh_Embedding. Because these nodes and links of

searching paths are not replicated from algorithm

Mesh_Embedding, These costs associated with

graph embedding are dilation 3, congestion 1, load 1,

and unbounded expansion.

Theorem 5 A searching path of algorithm

Mesh_Embedding is including 1/2*n
2

+ 3/2*n-1/2*

log2m) – 1/2*log2m 2+1 nodes.

Proof: We can embed
1 2 dm m mM × × ×⋯ in a FHN by

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1150 Issue 12, Volume 9, December 2010

theorem 4. If a node is faulty, we can change a bit in

the binary string sequence from bit log2m to bit n
and insert its corresponding node in the queue. In

the worst case, we can get (n-log2m+1) different

nodes. Then we delete the node from the queue.

From the first node we can change a bit in the

sequence from bit 0 to bit (log2m-1), and we can

get log2m different nodes. We can also change a

bit in the sequence from bit 0 to bit log2m from

the second node of the queue, and we can also get

(log2m+1) different nodes. Until the queue is

empty, the sum of all searched nodes is

(n-log2m+1)*(log2m+1))+(1+2+…+n-log2m
). The search path includes

(n-log2m+1)*(log2m+1))+(1+2+…+n-log2m)
nodes. That is, the whole searching path includes

(n-log2m+1)*(log2m+1))+(1+2+…+n-log2m
)= 1/2*n

2
+ 3/2*n -1/2* log2m) – 1/2*log2m

2
+1 nodes.

Theorem 6 There are O(n
2
-log2m  2

) faults, which

can be tolerated.

Proof: By theorem 5, the whole searching path

includes 1/2*n
2

+ 3/2*n -1/2* log2m) –

1/2*log2m 2
+1 nodes. That is, O(n

2
-log2m  2

)

faults can be tolerated.

5 Conclusion
 Hypercubes, meshes, and tori are well known

interconnection networks for parallel computing. In

this paper, we try to find the replaceable node of the

faulty node. This paper proposes novel algorithms

of fault-tolerant meshes and tori embedded in the

Flexible Hypercube with node failures. The main

results obtained (1) these existent parallel

algorithms in mesh architectures can be easily

transformed to or implemented in FHN architectures

with load 1, congestion 1, dilation 3, and unbounded

expansion. (2) A searching path of a Flexible

Hypercube is including approximate to (1/2*n
2

+

3/2*n -1/2* log2m) – 1/2*log2m 2
+1) nodes.

Therefore, there are O(n
2
-log2m  2

) faults, which

can be tolerated. (3) The result implies that

simulation of mesh and torus in a faulty Flexible

Hypercube for balancing the processor and

communication link loads at present. According to

the result, we can easily port the parallel or

distributed algorithms developed for these structures

to the Flexible Hypercube. Therefore, these methods

of reconfiguring enable extremely high-speed

parallel computation.

References:

[1] S. B. Akers, and B. Krishnamurthy, A

Group-Theoretic Model for Symmetric

Interconnection Networks, IEEE Trans. on

Computers, Vol. 38, 1989, pp. 555-565.

[2] J. R. Armstromg and F. G. Gray, Fault-

diagnosis in n-Cube array of microprocessor,

IEEE Trans. on Computers, Vol. C-30, No. 4,

1992, pp. 587-590.

[3] L. Bhuyan and D.P. Agrawal, Generalized

Hypercubes and Hyperbus structure for a

computer network, IEEE Trans. on Computers,

Vol. 33, 1984, pp. 323-333.

[4] C. Chartand and O. R. Oellermann, Applied

and Algorithmic Graph Theory,

McGRAW-HILL Inc., 1993.

[5] K. Day and A. E. Al-Ayyoub, Fault Diameter

of k-ary n-cube Networks, IEEE Trans. on

parallel and distributed systems, Vol. 8, No. 9,

1997, pp. 903-907.

[6] Q. Dong, X. Yang, J. Zhao, and Y. Y. Tang,

Embedding a family of disjoint 3D meshes

into a crossed cube, Information Sciences, Vol.

178, No. 11, 2008, pp. 2396-2405.

[7] S. Dutt and J. P. Hayes, An automorphic

approach to the design of fault-tolerance

Multiprocessor, Proc. 19th Inter. Symp. on

Fault-Tolerant Computing, 1989.

[8] T. Hameenanttila, X.-L. Guan, J. D. Carothers,

and J.-X. Chen, The Flexible Hypercube: A

New Fault-Tolerant Architecture for Parallel

Computing, Journal of Parallel and

Distributed Computing, Vol. 37, 1996, pp.

213-220.

[9] J. Hastad, T. Leighton, and M. Newman,

Reconfiguring a Hypercube in the Presence of

Faults, ACM Theory of Computing, 1987, pp.

274-284.

[10] J. P. Hayes, and T.N. Mudge, Hypercube

supercomputing, Proc. IEEE, Vol. 77, 1989,

pp. 1829-1842.

[11] S. L. Johnson, and C.-T. Ho, “On the

conversion between binary code and

binary-reflected gray code on binary cubes,”

IEEE Trans. on Computers, Vol. 44, 1995, pp.

47-53.

[12] H. P. Katseff, “Incomplete Hypercubes,” IEEE

Trans. on Computers, Vol. 37, 1988, pp.

604-608.

[13] J. Kuskin, et al., The Stanford FLASH

Multiprocessor, Proceedings of the 21
st
 Annual

International Symposium on Computer

Architecture, 1994, pp. 302-313.

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1151 Issue 12, Volume 9, December 2010

[14] F. T. Leighton, Introduction to parallel

algorithms and architectures: Arrays, Trees,

Hypercubes, MORGAN KAUFMANN

PUBLISHERS, Inc., 1992.

[15] D. Lenoski, et al., The StanfordDASH

Multiprocessor, Computer, Vol. 224, 1971, pp.

63-79.

[16] J.-C. Lin, T.-H. Chi, H.-C. Keh and A.-H. A.

Liou, Embedding of Complete Binary Tree

with 2-expansion in a Faulty Flexible

Hypercube,” Journal of Systems Architecture,

Vol. 47, No. 6, 2001, pp. 543-548.

[17] J.-C. Lin, Faulty-Avoiding Methods for

Mapping Meshes in an IEH, WSEAS

Transactions on Computers, Vol. 6, No. 6,

2007, pp. 888-893.

[18] C.D. Park, and K.-Y. Chwa, Hamiltonian

properties on the class of hypercube-like

networks, Information Processing Letters, Vol.

91, 2004, pp. 11-17.

[19] F. P. Preparata, and J. Vuillemin, “The

cube-connected cycles: A versatile network for

parallel computation,” Commun. ACM, Vol. 24,

1981, pp. 300-309.

[20] Y. Saad, and M. Schultz, Topological

properties of Hypercube, IEEE Trans. on

Computers, Vol. 37, 1988, pp. 867-871.

[21] J. L. C. Sanz, The SIMD Model of Parallel

Computation, Springer-Verlag New-York, Inc.,

1994.

[22] C. Seitz, The Cosmic Cube, Commun. ACM,

Vol. 28, 1985, pp. 22-33.

[23] A. Sen, Supercube: An Optimally Fault

Tolerant Network Architecture, Acta

Informatica, Vol. 26, 1989, pp. 741-748.

[24] A. Sen, A. Sengupta and S. Bandyopadhyay,

Generalized Supercube: An incrementally

expandable interconnection network,

Proceedings of the Third Symposium on

Frontiers of Massively Parallel

Computation-Frontiers'90, 1990, pp. 384-387.

[25] H. Sullivan, T. Bashkow, A large scale,

homogeneous, fully distributed parallel

machine, I, Proc. 4th Symp. Computer

Architecture, ACM, 1977, pp. 105-177.

[26] S. Sur and P. K. Srimani, Incrementally

Extensible Hypercube Networks and Their

Fault Tolerance, Mathematical and Computer

Modelling, Vol 23, 1996, pp. 1-15.

[27] S. Sur, and P. K. Srimani, IEH graphs: A novel

generalization of hypercube graphs, Acta

Informatica, Volume 32, 1995, pp 597-609.

[28] S.-H. Wang, Y.-R. Leu, and S.-Y. Kuo,

Distributed Fault-Tolerant Embedding of

Several Topologies in Hypercubes, Journal of

Information Science and Engineering, Vol. 20,

No. 4, 2004, pp. 707-732.

[29] C. Xu and F. C. M. Lau, Load Balancing in

Parallel Computers-Theory and Practice,

Kluwer Academic Publishers, Inc., 1997.

[30] P.-J. Yang, S.-B. Tien, and C.S. Raghavendra,

Embedding of Rings and Meshes onto Faulty

Hypercube Using Free Dimensions, IEEE

Trans. on Computers, Vol. 43, No. 5, 1994, pp.

608-618.

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1152 Issue 12, Volume 9, December 2010

