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Abstract: - The Flexible Hypercubes are superior to hypercube in terms of embedding a mesh and torus under 

faults. Therefore, this paper presented techniques to enhance the novel algorithm for fault-tolerant meshes and 

tori embedded in Flexible Hypercubes with node failures. The paper demonstrates that O(n
2
-log2m  2

) faults 

can be tolerated and the algorithm is optimized mainly for balancing the processor and communication link 

loads. Also, the methodology is proven and an algorithm is presented to solve them. These existent parallel 

algorithms on mesh or torus architectures to be easily transformed to or implemented on the Flexible 

Hypercube architectures with load 1, congestion 1, dilation 3, and unbounded expansion. The useful properties 

revealed and the algorithm proposed in this paper can find their way when the system designers evaluate a 

candidate network’s competence and suitability, balancing regularity and other performance criteria, in 

choosing an interconnection network. Therefore, we can easily port the parallel or distributed algorithms 

developed for these structuring of mesh and torus to the Flexible Hypercube. 
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1 Introduction 
Parallel architectures and algorithms are essential in 

high-speed computing. As generally known massive 

parallelism can solve many related problems. To 

effectively resolve such problems, massively 

parallel computers require new architectures and 

algorithms to fully exploit this technology. For 

available algorithms on one architecture to be easily 

transformed in or implemented on another 

architecture, a new field deals with embedding 

among different networks. 

Among the various interconnection networks 

that have been studied and built[12, 13, 15, 18, 19, 

22, 26, 27], hypercube[3, 5, 10, 20, 28] networks 

have received much attention. Hypercube 

multiprocessors have recently offered a cost 

effective and feasible approach to supercomputing 

through parallelism at the processor level by directly 

connecting a large number of low-cost processors 

with local memories which communicate by 

message-passing instead of shared variables. This 

attention is mainly due to the hypercube advantages 

of rich interconnection, routing simplicity, and 

embedding capabilities. However, due to the 

power-of-2 size and logarithmic degree, hypercubes 

suffer two major disadvantages, namely, high cost 

extensibility and large internal fragmentation in 

partitioning. In order to conquer the difficulties 

associated with hypercubes and these 

generalizations of the hypercubes, the Flexible 

Hypercube[8] has been proposed during past years. 

The Flexible Hypercube unlike both the 

supercube[23, 24] and the hypercube, may be 

expanded (or designed) in a number of possible 

configurations while guaranteeing the same basic 

fault-tolerant properties and without a change in the 

communication. The existence of hypercube 

subgraphs in the Flexible Hypercube ensures that 

hypercube embedding algorithms developed for the 

hypercube may also be utilized in the Flexible 

Hypercube. The flexibility in node placement may 

possibly be utilized to aid in supporting a specific 

embedding. The Flexible Hypercube, while 

maintaining the fault-tolerance of the other 

topologies and the ease of communication, allows 

the placement of new nodes at any currently unused 

addresses in the system. An effective means of 

achieving faulty-tolerance in hypercubes is to 

introduce spare nodes or links[7]. In doing so, the 

hypercube structure can still be maintained when 

nodes fail. In addition to that this approach can be 

expensive, hardware modifications on machines 

already in the market place are extremely difficult. 
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Using the unused nodes as spares (instead of adding 

extra nodes or links to alter the structure of a 

hypercube) is another approach to exploit the 

inherent redundant nodes or links in a hypercube[9]. 

In this study, we consider this second type of 

fault-tolerance design only in a faulty Flexible 

Hypercube. 

In a multiprocessor system, two faulty models 

defined in [9] are adopted herein. The first model 

assumes that in a faulty node, the computational 

function of the node is lost while the communication 

function remains intact; this is the partial faulty 

model. The second model assumes that in a faulty 

node, the communication function is lost as well; 

this is the total faulty model. This study proposes 

the partial faulty model, in which the 

communication links are well when the computation 

nodes are faulty. In addition, only the faulty node is 

remapped. 

The faulty model proposed herein is a partial 

model. That is, the communication links are well 

when the computation nodes are faulty,. Only the 

faulty node is remapped. This study largely focuses 

on a theoretical question associated with the 

simulation of mesh or torus in a faulty Flexible 

Hypercube. 

The problem of allocating the subprocessors, 

structured by a mesh (or a torus)[6, 30], to 

processors in a given interconnection network will 

be reduced to the problem of embedding the torus 

structure. In order to execute a parallel program, 

tasks are to be mapped into processors of a parallel 

machine. It is possible to model this kind of problem 

in graph-theoretical terms of graph embedding. We 

model both the parallel algorithms and the parallel 

machines as graphs. 

The power of a message-passing parallel 

computer depends on the topology chosen for 

underlying interconnection network, which can be 

modeled as undirected graph[4]. Different parallel 

architectures may require different algorithms to 

solve the same problem efficiently. In order for 

existent algorithms on one architecture to be easily 

transformed to or implemented on another 

architecture, a new field deals with embedding 

among different networks. Different graphs have 

been proposed as static interconnection topology for 

multiprocessors. They include linear arrays, rings, 

meshes, complete binary trees mesh of trees, de 

Bruijn networks, and so on. Therefore, we model 

both the parallel algorithm and the parallel machine 

as graphs. Given two graphs, G(V,E) and G’(V’,  

E’), embedding the guest graph G into the host 

graph G’ maps each vertex in the set V into a vertex 

(or a set of vertices) in the set V’ and each edge in 

the set E into an edge (or a set of edges) in the set E’. 

Let these nodes in a graph correspond to processors 

and edges to communication links in an 

interconnection network. Embedding one graph into 

another is important because an algorithm may have 

been designed for a specific interconnection 

network, and it may be necessary to adapt it to 

another network. Four costs associated with graph 

embedding [1, 11, 14, 25, 29] are dilation, 

expansion, load and congestion. The maximum 

amount that we must stretch any edge to achieve an 

embedding is called the dilation of the embedding. 

By expansion, we mean the ratio of the number of 

nodes in the host graph to the number of nodes in 

the graph that is being embedded. The congestion of 

an embedding is the maximum number of edges of 

the guest graph that are embedded using any single 

edge of the host graph. The load of an embedding is 

the maximum number of nodes of the guest graph 

that are embedded in any single node of the host 

graph. An efficient simulation of one network on 

another network requires that these four costs be as 

small as possible. However, for most embedding 

problems, it is impossible to obtain an embedding 

that minimizes these costs simultaneously. 

Therefore, some tradeoffs among these costs must 

be made. 

Among the static interconnection networks 

used for SIMD[21] computers with an array of 

processors[2], one of the oldest and very popular 

architectures is a two-dimensional-mesh. Many 

important algorithms for solving various problems, 

e.g., matrix operations, simultaneous linear 

equations, graph-theoretic and image processing 

problems, etc., have been efficiently embedded in 

this mesh architecture. Furthermore, we study 

reconfiguration of task graphs that are embedded in 

Flexible Hypercubes and study run-time 

fault-tolerance. Upon failure, our goal is to maintain 

the structure of a task graph via reconfiguration by 

using unused nodes in the Flexible Hypercube. In 

other words, we remap the faulty nodes' tasks to 

some other fault-free nodes. In order to keep the 

recovery time small, the reconfiguration must be 

efficient; that is, we would like to keep data/task 

movements between nodes that are close by.  

The efficiency of a reconfiguration scheme is 

strongly affected by how tasks are initially mapped 

to a parallel computer. If a task graph (representing 

the task) is embedded in a proper way, the 

reconfiguration scheme can be simple and involve 

only local movements. Such initial embeddings, 

called fault-tolerant embedding, however, require 

more nodes than embeddings with no fault tolerance. 

Thus, the idea of fault-tolerant embedding is to 
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leave some spare nodes intentionally in the initial 

embedding such that, when faults occur, the faulty 

nodes can be quickly replaced by nearby spare 

nodes. The main design issue of fault-tolerant 

embedding is how to distribute the spare nodes and 

minimize their number such that more faults can be 

tolerated. In this investigation, we discuss our 

embedding function with unbounded expansion, 

congestion 1, dilation 3, load 1. 

Also, we developed the methods for finding 

meshes or tori in a Flexible Hypercube. As the result, 

we can transit the parallel algorithms developed 

under the structure of meshes or tori to the Flexible 

Hypercube. This embedding approach enables 

extremely high-speed parallel computation in 

Flexible Hypercubes. Although Flexible 

Hypercubes are not absolutely asymmetric, it has 

the same power as the hypercube in terms of meshes 

and tori. 

The embedding of one interconnection 

network in another is a very important issue in the 

design and analysis of parallel algorithms. The rest 

of this paper is organized as follows. Section 2 

introduces the necessary notations and definitions. 

Section 3 presents how to map a mesh in a Flexible 

Hypercube. Section 4 presents the embedding of a 

mesh in a faulty Flexible Hypercube with 

unbounded expansion. Conclusions are finally made 

in section 5. 

2 Preliminaries 
We briefly describe these definitions of these 

topologies of the hypercube, the mesh network, and 

the flexible hypercube.   

A hypercube Hn of order n, is defined to be a 

symmetric graph G= (V, E) where V is the set of 2
n
 

vertices, each representing a distinct n-bit binary 

number and E is the set of symmetric edges such 

that two nodes are connected by an edge iff the 

number of positions where the bits differ in the 

binary labels of the two nodes is 1.  

There are many topologies can be mapped in 

hypercubes or hypercube-like computers. One of 

these is mesh network. It is very popular network 

interconnection. One of the most attractive 

properties of the binary n-cube topology is that 

meshes of arbitrary dimensions can be mapped in it. 

This is one of the main reasons for the success of 

hypercube architectures. Because of these, we 

consider the mesh size in each direction is a power 

of 2. The figure 1 and the figure 2 show us two 

examples. First example, a 2×2
 
2-dimensional mesh 

has 4 nodes which are bi-directional connection 

between two nodes. Second example, A 2
2 × 2

1 

2-dimensional mesh has 8 nodes which are 

bi-directional connection between two nodes.  

 

 
Fig. 1 A 2×2 2-dimensional mesh 

 

 
Fig. 2 A 2

2×21 2-dimensional mesh 

 

The Flexible Hypercube is constructed by any 

number of nodes and based on a hypercube. A 

Flexible Hypercube, denoted by FHN, is defined as 

an undirected graph FHN=(V,E) ,where V is the set 

of processors (called nodes) and E is the set of 

bidirectional communication links between the 

processors (called edges). In an n-dimensional 

Flexible Hypercube with N nodes where 2
n
 ≤ N < 

2
n+1

 (n is a positive integer), each node can be 

expressed by an (n+1)-bit binary string in.....i0 where 
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ip∈{0 ,1} and 0 ≤ p ≤ n 

Definition 1[17] A (2
n+1

 -t)-node Flexible 

Hypercube is a lack of t nodes, which are referred to 

herein as virtual nodes. For any virtual node y, 

denoted as I(x) where x is any node of Flexible 

Hypercube, if the function I(x) exists, then 

 n nx y=  and xi=yi for 0 ≤ i ≤ n-1  

Definition 2[16] The Hamming distance between 

two nodes with labels x=xn-1xn-2...x0 and y= 

yn-1yn-2...y0 is defined as  

HD(x , y)=∑
−

=

1

0

),(
n

i

ii yxhd , where  

hd(xi , yi)=




≠

=

.yxif 1,

,yxif 0,

ii

ii

 

Definition 3[17] Let x=xn-1…x0, y=yn-1…y0, then 

Dim(x, y)={i in (0…n-1)Kxi ≠ yi} 

Definition 4[17] For any two nodes x and y in a 

Flexible Hypercube, let x=xn ... x0, y=yn ... y0, then 

Dim(x ,y)={i in (0 ... n) | xi≠yi}. 

Definition 5[8] Suppose FHN=(V, E) is an 

n-dimensional Flexible Hypercube ,then the node 

sets H1, H2, V1, V2, V3 are defined as follows 

1. H1 ={x | x∈V and xn = 0}, 

2. H2 ={x | x∈V and ( xn = 1 or I(x)∉ V)}, 

3. V1 =H1-H2 

4. V2 =H1∩H2 

5. V3 =H2 -H1 

Definition 6[8] Suppose FHN=(V, E) is an n- 

dimensional Flexible Hypercube ,then the edge set E 

is the union of E1, E2, E3, and E4 ,where 

1. E1 ={(x ,y) | x, y∈H1 and HD(x ,y) =1}, 

2. E2 ={(x ,y) | x, y∈V3 and HD(x ,y) =1}, 

3. E3 ={(x ,y) | x∈V3 , y∈V1 and HD(x ,y) =1}, 

4. E4 ={(x ,y) | x∈V3 , y∈V2 and HD(x ,y) =2}. 

Addressing of nodes in a Flexible Hypercube is 

constructed as follows. As discussed above, 

addresses consist of binary strings of (n+1)-bits. 

The first 2
n
-1 addresses correspond to nodes in H1 

and must be the binary representations of 0 through 

2
n
-1. Each of the remaining nodes (up to 2

n
-1 nodes) 

in the set V3=H2 -H1 may be placed adjacent to any 

node x in H1 and is given the addressing I(x). Any 

node in H1 is a hamming distance of 1 from at most 

one node in V3. This method of node addressing 

effectively relaxes the constraint that all nodes in the 

network must be numbered consecutively. This is 

unique among the hypercube topologies mentions 

above. Notably, hypercubes are special cases of a 

Flexible Hypercube; it can also be expanded flexibly 

with respect to the placement of new nodes in the 

system while maintaining fault-tolerant. When a 

new node is added to a Flexible Hypercube system, 

(n+1) new connections should be added and at most 

n existing edges must be removed. 

An inevitable consequence of the flexible of 

construction and the fault-tolerant of a Flexible 

Hypercube is an uneven distribution of the utilized 

communication ports over system nodes. Although 

the Flexible Hypercube loses its property of 

regularity, more links help obtain the replacement 

nodes of the faulty nodes of the Flexible Hypercube. 

The Flexible Hypercube with 12-node is shown in 

the figure 3. In the figure 3, H1 = {0000, 0001, 

00010, 0011, 0100, 0101, 0110, 0111}, H2 = {0000, 

0001, 0011, 0110, 1010, 1100, 1101, 1111}, V1 = 

{0010, 0100, 0101, 0111}, V2 = {0000, 0001, 0011, 

0110}, and V3 = {1010, 1100, 1101, 1111}
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Fig. 3 The Flexible Hypercube contains 12 nodes 

Definition 7[1] If G is a graph, the vertex set of G is 

denoted by V and the edge set of G is denoted by E. 

A graph G’ is said to be a subgraph of G if V’⊆V 

and E’⊆E.  

Definition 8[17] Any 21 mm ×  mesh or torus, 

denoted by 
1 2m mM × , is a 2-dimensional mesh or 

torus, where 
sr mm 2,2 21 == .  

Definition 9[17] Any dmmm ××× ⋯21  mesh or 

torus, denoted by 
1 2 dm m mM × × ×⋯ , in the 

d-dimensional space Rd, where mi = 
ip

2 .  
Definition 10[11] The Binary-Reflected Gray Code 

(BRGC) is defined recursively as follows. 

Cn+1={0Cn, 1(Cn)
R
}, where C1={0 , 1} 

and C2={0C1 , 1(C1)
R
} 

For example, a 2-bit Gray Code can be 

constructed by the sequence, defined in definition 

10, and insert a cipher in front of each codeword in 

C1, then insert an one in front of each codeword in 

(C1)
R
 . We get the code C2={00, 01, 11, 10}. Now, 

we can then repeat the procedure to built a 3-bit 

Gray Code, and also get the code 

C3=0C2∪1(C2)
R
={000, 001, 011, 010, 110, 111, 101, 

100}. 

 

 

3 Mesh and Torus Embedding 
The section describes the representation used to 

solve that embeds a mesh and torus in a FHN. 

Lemma 1 Any 21 mm ×  mesh or torus, denoted by 

1 2m mM × , is a 2-dimensional mesh or torus, where 

sr mm 2,2 21 ==  can be embedded in an 

n-dimensional hypercube where n = r+ s.  

Proof: A binary number M of any node of the 

n-dimensional hypercube can be regarded as 

consisting of two parts: its first r bits and its last s 

bits, which we write in the form M = 

sr βββααα ...... 2121 , where iα  and iβ  are bits 0 

or 1. It is clear from the definition of n-dimensional 

hypercube that when the last s bits are fixed, then 

the resulting 12 p
 nodes form a p1-dimensional 

hypercube ( with p1 = r ). Whenever we fix the first 

r bits we obtain a p2-dimensional hypercube ( with 

p2 = s ). The embedding then becomes clear. 

Choosing a r-bit BRGC for the x direction and s-bit 

BRGC for the y direction, the point ( ii yx , ) of the 

mesh is assigned to the node sr βββααα ...... 2121  

where rααα ...21  is the r-bit BRGC for dimension 

of p1 while sβββ ...21  is the s-bit BRGC for 

dimension of p2. Therefore, any 21 mm ×  mesh or 

torus can be embedded in an n-dimensional 

hypercube where n = r+ s. 

Lemma 2 Any dmmm ××× ⋯21  mesh or torus, 

denoted by 
1 2 dm m mM × × ×⋯ , in the d-dimensional 

space Rd, where mi = 
ip

2 can be embedded in an 

n-dimensional hypercube where n = p1 + p2+…+ pd. 

The numbering of the mesh or torus nodes is any 

numbering such that its restriction to each ith 

variable is a Gray code which is described in 

definition 6. Note that the assumption that all mi’s 

be power of 2.  

Proof: It is clear from the definition of 

n-dimensional hypercube. A binary number M of 

any node of the n-dimensional hypercube can be 

regarded as consisting of d parts: its first part is 

log2m1 bits, its second part is log2m2 bits and so on. 

The numbering of the mesh or torus nodes is any 

numbering such that its restriction to each ith 

variable is a Gray code which is described in 

definition 6. Note that the assumption that all mi’s 

be power of 2. Therefore, generalizations to higher 

dimensions are straightforward and one can state the 

above lemma 1. Any dmmm ××× ⋯21  mesh or 

torus ( with mi = 
ip

2 ) can be embedded in an 

n-dimensional hypercube where n = p1 + p2+…+ pd.  

Our proposition is best illustrated by an example. 

Consider a 2-dimensional 4×4 mesh i.e., d = 2, p1 = 

2, p2 = 2, n = p1 + p2 = 4. A binary number M of any 

node of the 4-dimensional hypercube can be 

regarded as consisting of two parts: its first 2 bits 

and its last 2 bits, which we write in the form 

M = 2121 ββαα , where iα  and iβ  are bits 0 

or 1. It is clear from the definition of n-dimensional 

hypercube that when the last 2 bits are fixed, then 

the resulting 12 p
 nodes form a p1-dimensional 

hypercube ( with p1 = 2 ). Whenever we fix the first 

2 bits we obtain a p2-dimensional hypercube. The 

embedding then becomes clear. Choosing a 2-bit 

BRGC for the x direction and 2-bit BRGC for the y 

direction, the point ( ii yx , ) of the mesh is assigned 

to the node 2121 ββαα  where 21αα  is the 2-bit 

BRGC for dimension of p1 while 1 2β β  is the 2-bit 

BRGC for dimension of p2. 

The binary node number of any mesh node is 

obtained by concatenation its binary x coordinate 

and its binary y coordinate. Therefore, if we call the 

Gray code any subcode of a BRGC, we observe that 
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any column of mesh nodes forms a Gray code and 

any row of mesh nodes forms a Gray code. Thus, we 

will refer to the codes defined above as 2-D Gray 

codes. Generalizations to higher dimensions are 

straightforward and one can state the above lemma 

2. 

Lemma 3 For any given N, a Hypercube Hn must be 

a subgraph of a Flexible Hypercube FHN, where 
12 2n nN +≤ < .  

Proof: A FHN must contain a hypercube Hn. That is 

trivially by the generation schema of a FHN graph. It 

must contain the maximum hypercube Hn. 

The embedding approach that a 
1 2 dm m mM × × ×⋯  

mesh or torus can be embedded in a FHN is as 

follows.  

Embedding approach 

1 2 dm m mM × × ×⋯ ( mi = 
ip

2 ),  

FHN (
12 2n nN +≤ < ),  

1,,,

,,

21

21

≥

≤=+++∀

d

d

ppp

nwwppp

…

…
),(N EVGFH =  

1 2

' '( , )
dm m mM G V E× × × =

⋯
,  

Vν ∈  ' 'Vν ∈ (Denoted by unique binary string) 

0121 XXXXXv wwn …… −−=  

0121' XXXXv ww …−−=   

'Vν ′∈  can be embedded in V  denote as 

012100 XXXXv ww …… −−=  

Theorem 1 Any 
2 2r sM
×

2-dimensional mesh or 

torus can be embedded in a FHN where 

2logr s N+ =     with load 1, dilation 1, 

congestion 1, and expansion 2. 

Proof: By lemma 3, a Hypercube Hn must be a 

subgraph of a Flexible Hypercube FHN . A FHN 

must contain a maximum hypercube Hn, where 

n=log2N. By lemma 1, any 21 mm ×  mesh or torus 

can be embedded in an n-dimensional hypercube 

where n = r+ s.  

Therefore, any 
2 2r sM
×

2-dimensional mesh or torus 

can be embedded in a FHN where 2logr s N+ =     
with load 1, dilation 1, congestion 1, and expansion 

2 by the above embedding approach. 

Theorem 2 Any
1 2 dm m mM × × ×⋯ d-dimensional mesh or 

torus, where mi = 
ip

2  can be embedded in a FHN, 

where  Nppp d 221 log=+++ …  with load 1, 

dilation 1, congestion 1 and expansion 2. 

Proof: By lemma 3, a Hypercube Hn must be a 

subgraph of a Flexible Hypercube FHN . A FHN 

must contain a maximum hypercube Hn, where 

n=log2N. By lemma 2, any dmmm ××× ⋯21  

mesh or torus can be embedded in an n-dimensional 

hypercube where n = p1 + p2+…+ pd. Therefore, 

any
1 2 dm m mM × × ×⋯ d-dimensional mesh or torus, where 

mi = 
ip

2  can be embedded in a FHN, where 

 Nppp d 221 log=+++ …  with load 1, dilation 

1, congestion 1 and expansion 2 by the above 

embedding approach. 

This is the best illustrated by an example in 

figure 4. That is a 2
1×2

1
 mesh (with 4 nodes) can be 

embedded in a FH12. 

 

 
Fig. 4 2

1
×2

1
 mesh can be embedded in FH12 
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4 Fault-Tolerant Embedding with 

Unbounded Expansion 
In the previous section, we have constructed a 

mesh and a torus in a FHN graph. In the section, we 

consider a faulty FHN with unbounded expansion 

embedding. 

Theorem 3 Any mesh or tori can be embedded in a 

FHN graph with unbounded expansion. 

Proof: By theorem 1 and theorem 2, any mesh or tori 

can be embedded in a FHN graph with unbounded 

expansion. 

Algorithm Mesh_Embedding(x) 

Input:  x  /*the faulty node*/,  

1 2 dm m mM × × ×⋯ ( mi = ip
2 ), Gn(N) 

(
12 2n nN +≤ < ),  

1,,,

,,

21

21

≥

≤=+++∀

d

d

ppp

nwwppp

…

…
 

),( EVGFH N = , 

1 2

' '( , )
dm m mM G V E× × × =

⋯
,  

Output: y /*the replaceable node*/ 

1.  i=0; j=0; k=0 

2.  Create a Queue Q; Q=Φ 
3.  if a node x is faulty 

4.  then 

5.   { 

6.  while i < (n+1-log2m  ) do  
7.   { 

8.   search the node y  

/* HD(x, y )=1, Dim(x, y)= log2m  +i*/ 

9.   if y is not a virtual node and it is free 

10.  then 

11.  return(y) /*replace x with y*/ 

12.  remove all nodes in Q  

13.  exit() 

14.  else 

15.  enqueue(y, log2m  +i) 

16.  i=i+1 

17.    } 

18.   } 

19.  while Q is not empty do  

20.  { 

21.   dequeue(a,b) 

22.   while j < b do  

23.   { 

24.   search the node z 

 /* HD(a, z )=1, Dim(a, z)=j*/ 

25.   if z is not a virtual node and it is free 

26.   then 

27.   return(z)  

/*replace x with y*/ 

28.   remove all nodes in Q  

29.   exit() 

30.   j=j+1 

31.   } 

32.  } 

33.  return(“Failure”) 

34.  end 

Finding the replaceable node as follows: 

node 0 = 0Xn-1Xn-2…Xlog2m …X1X0 

node 1 = 0Xn-1Xn-2…X’log2m …X1X0 

node 2= 0Xn-1Xn-2…X’log2m+1 Xlog2m …X1X0 

  ⋮  

node (n-log2m ) = 0X’n-1Xn-2…Xlog2m …X1 X0  

node (n-log2m +1) = 1Xn-1Xn-2…Xlog2m …X1 X0

  

node (n-log2m +2) = 0Xn-1Xn-2…X’log2m …X1X’0 

node (n-log2m +3) = 0Xn-1Xn-2…X’log2m …X’1X0  

  ⋮  

node (n-log2m +1+log2m) = 0Xn-1Xn-2…X’log2m 

X’log2m -1…X1X0 

node (n-log2m +1+log2m+1) = 

0Xn-1Xn-2…X’log2m +1…X1X’0 

node (n-log2m +1+log2m+2) = 

0Xn-1Xn-2…X’log2m +1…X’1X0 

  ⋮  

node (n-log2m +1+2*log2m) = 

0Xn-1Xn-2…X’log2m+1 Xlog2mX’log2m-1…X1X0 

node(n-log2m+1+2*log2m+1)=0Xn-1Xn-2…X’log

2m+1 X’log2mXlog2m-1…X1X0 

     ⋮  

node 

((n-log2m+1)*(log2m+1))+(1+2+…+n-log2m

) = 1X’n-1Xn-2…Xlog2m-1…X1X0 

 We give a simple example in this section to 

explain the operations of the Mesh_Embedding 

algorithm when the faulty nodes exist. For the FH12 

as Figure 5, where the 22M ×  has been embedded 

in it. 

1. If the node 0 is faulty, it visits or signals the 

node 4, to check whether it is free or not. If it is, 

it terminates.  

2. If not, insert the node 4 to the queue, and search 

the node 8, to check whether it is free or not. If 

it is, it terminates. 

3. If not, insert the node 8 to the queue, and delete 

the node 4 from the queue, search the node 5, to 

check whether it is free or not. If it is, it 

terminates. 

4. If not, search the node 6, to check whether it is 

WSEAS TRANSACTIONS on SYSTEMS Jen-Chih Lin

ISSN: 1109-2777 1149 Issue 12, Volume 9, December 2010



free or not. If it is, it terminates. 

5. If not, delete the node 4 from the queue, search 

the node 9, to check whether it is free or not. If 

it is, it terminates. 

6. If not, search the node 10, to check whether it is 

free or not. If it is, it terminates. 

7. If not, search the node 14, to check whether it is 

free or not. If it is, it terminates. 

8. If not, return(“Failure”).  

Therefore, the whole searching path is listed as 

{4(0100), 8(1000), 5(0101), 6(0110), 9(1001), 

10(1010), 12(1100)}. 

We illustrate the searching path of finding a 

replaceable node in a FH12 as shown figure 6.  

 

 
Fig.5 Embedding of a 22M ×  mesh and torus in a FH12 

 

 
Fig.6 The searching path of finding a replaceable node in a faulty FH12 

 

Theorem 4 Any mesh or torus 
1 2 dm m mM × × ×⋯  can be 

embedded in a faulty FHN with dilation 3, 

congestion 1, load 1, and unbounded expansion. 

Proof: Every searching path is only one path 

according to the algorithm Mesh_Embedding, 

allowing us to obtain congestion 1 and load 1. 

Herein, we allow unbounded expansion to obtain the 

replaceable node of the faulty node. When a node is 

faulty, it is a worse case in which the 

dilation=1+2=3 at most by algorithm 

Mesh_Embedding. Because these nodes and links of 

searching paths are not replicated from algorithm 

Mesh_Embedding, These costs associated with 

graph embedding are dilation 3, congestion 1, load 1, 

and unbounded expansion. 

Theorem 5 A searching path of algorithm 

Mesh_Embedding is including 1/2*n
2 

+ 3/2*n-1/2* 

log2m ) – 1/2*log2m 2+1   nodes. 

Proof: We can embed 
1 2 dm m mM × × ×⋯  in a FHN by 
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theorem 4. If a node is faulty, we can change a bit in 

the binary string sequence from bit log2m to bit n 
and insert its corresponding node in the queue. In 

the worst case, we can get (n-log2m+1) different 

nodes. Then we delete the node from the queue. 

From the first node we can change a bit in the 

sequence from bit 0 to bit (log2m-1), and we can 

get log2m different nodes. We can also change a 

bit in the sequence from bit 0 to bit log2m from 

the second node of the queue, and we can also get 

(log2m+1) different nodes. Until the queue is 

empty, the sum of all searched nodes is 

(n-log2m+1)*(log2m+1))+(1+2+…+n-log2m
). The search path includes 

(n-log2m+1)*(log2m+1))+(1+2+…+n-log2m) 
nodes. That is, the whole searching path includes 

(n-log2m+1)*(log2m+1))+(1+2+…+n-log2m
)= 1/2*n

2 
+ 3/2*n -1/2* log2m ) – 1/2*log2m 

2
+1 nodes. 

Theorem 6 There are O(n
2
-log2m  2

) faults, which 

can be tolerated. 

Proof: By theorem 5, the whole searching path 

includes 1/2*n
2 

+ 3/2*n -1/2* log2m ) – 

1/2*log2m 2
+1 nodes. That is, O(n

2
-log2m  2

) 

faults can be tolerated. 

 

 

5 Conclusion 
 Hypercubes, meshes, and tori are well known 

interconnection networks for parallel computing. In 

this paper, we try to find the replaceable node of the 

faulty node. This paper proposes novel algorithms 

of fault-tolerant meshes and tori embedded in the 

Flexible Hypercube with node failures. The main 

results obtained (1) these existent parallel 

algorithms in mesh architectures can be easily 

transformed to or implemented in FHN architectures 

with load 1, congestion 1, dilation 3, and unbounded 

expansion. (2) A searching path of a Flexible 

Hypercube is including approximate to (1/2*n
2 

+ 

3/2*n -1/2* log2m ) – 1/2*log2m 2
+1) nodes. 

Therefore, there are O(n
2
-log2m  2

) faults, which 

can be tolerated. (3) The result implies that 

simulation of mesh and torus in a faulty Flexible 

Hypercube for balancing the processor and 

communication link loads at present. According to 

the result, we can easily port the parallel or 

distributed algorithms developed for these structures 

to the Flexible Hypercube. Therefore, these methods 

of reconfiguring enable extremely high-speed 

parallel computation. 
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