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Abstract: - This paper describes the further development concerning an adaptive sliding-mode speed observer 
employed as the rotor speed and resistance estimators for a three-phase squirrel-cage induction motor (IM). The 
novel observer is improved from the previous work by a way of on-line calculating the errors of rotor flux 
estimations and then feeding them to the PI adaptive laws. For that reason, these errors vanish in steady state. 
Moreover, stability of the proposed observer is guaranteed and verified via the Lyapunov function and its 
derivative. Finally, the performance between the novel and the previous observers is compared fairly. 
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1 Introduction 
Apart from the strategies of field-oriented and direct 
torque controls (vector control and DTC) for an AC 
induction motor drive, a wide variety of speed-
sensorless controls has been devised in order to 
eliminate any mechanical speed sensor or rotary 
transducer out of feedback loop. Several benefits of 
the sensorless drive are better reliability, less 
maintenance requirements, stronger immunity 
against noise, the absence of a shaft extension for 
mounting a position or speed sensor (i.e. reduced 
size of the drive machine), fewer numbers of the 
signal cables as well as cheaper expenditure for only 
utilizing electric current and voltage sensors [1]. 

Nowadays the sensorless controls based on a 
state observer with certain self-adjustment 
mechanisms are more sophisticated [2]. Two or 
three independent estimators, whose output 
variables are compared with the same detectable 
ones, constitute the state observer. Their difference, 
analogous to the error in closed-loop control 
systems, is taken to manipulate state variables in the 
observer so that the error is minimized. 

Recently, the rotor speed observer containing 
adaptive sliding-mode technique and including core-
loss compensation was invented in order to on-line 
estimate the speed signal and reconstruct both stator 
currents and missing rotor fluxes as the state 
variables from merely terminal voltages and 
currents of machine [3]−[4]. The speed observer 
possessed logical statements as well as one or more 
PI adaptive laws which one estimates the rotor 

speed and others update some parameters of IM. 
Notwithstanding, its logical statements ensure only 
that the error of stator current estimation tends to 
become zero. Various adaptive sliding-mode 
observers excluding core-loss consideration were 
claimed that their error of rotor flux estimation tends 
to become zero after they have already entered 
sliding-mode situation [5]−[7]. An alternative 
algorithm based on the conventional model of an IM 
with an auxiliary variable was also established for 
estimating both the rotor flux and speed [8]−[9]. 
Without some clarification of stability, the simple 
equation was able to compute the rotor speed. 

There is a possibility of enhancing the former 
[3]−[4] such that both errors of stator current and 
rotor flux estimations converge to zero without flux 
measurement and regardless of whether its operation 
is in sliding-mode. Thus far, this paper will 
elaborate on the novel adaptive sliding-mode speed 
observer. Its material is organized into the following 
sections. At first, the brief review on dynamic model 
of an induction motor is outlined and then the 
innovative concept of the proposed scheme is 
explained delicately. Finally, the performance of 
both the novel observer and its counterpart is 
assessed and compared together through simulation 
results. 

 
 

2 Dynamic Model of an AC Induction 
Motor 

An induction motor adopted herein is the type of a  
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three-phase, y-connected, squirrel-cage motor which 
stator windings are identically distributed with 120° 
displacement. Under the α−β stator reference frame, 
when the electromagnetic model of the motor with 
linear magnetic circuits taking core-loss into 
account is written by splitting it into stator and rotor 
windings, this yields [10] 

 

( ) rsrss DvBAiAdtdi ψψ 111211           +++=  , (1) 
 

( ) rrsr DAiAdtd ψψψ 22221         ++=  , (2) 
 

where  vs  =  [ vsα   vsβ ]
T
  means a stator voltage 

vector or input vector (volts),  is  =  [ isα   isβ ]
T
  

represents a stator current vector or output vector 
(A),  ψr  =  [ ψrα   ψrβ ]

T
   denotes a rotor flux 

linkage vector (Wb), and α , β  stand for the 
orthogonal components of a vector with respect to 
the fixed stator coordinates. Besides, 
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Rs is stator resistance (Ω), Rr means rotor resistance 

(Ω) that may vary with the motor temperature, Ls 

represents stator self-inductance (H), Lr denotes 

rotor self-inductance (H), M stands for mutual 
inductance (H), Rm is core-loss resistance (Ω), σ 
means total leakage factor, s represents the slip, ωs 

denotes stator angular velocity (rad/sec), fs stands 
for stator or supply frequency (Hz), ωsl is angular 

velocity of slip (rad/sec), ωr means electrical 
angular velocity of rotor or rotor speed (rad/sec), ωm 

represents mechanical angular velocity of rotor or 
shaft speed (rad/sec), p denotes the number of poles 
and kc stands for a constant value (rated Rm ÷ rated 

6.1
sω ). In addition, the electromagnetic torque on the 

rotor periphery is generated via interaction of 
currents and flux, i.e. 

 

( )( ) ( )βααβ ψψ rsrsre iiLMpT      43    −=  . (3) 
 

The effort of the above torque causes the motor 
shaft and its mechanical load to rotate dynamically. 
However, an amount of the electromagnetic torque 
is not involved in construction of the proposed 
observer because greater complexity and higher 
order are derived such that they prevent the 
progression to the desirable observer. 

 
 

3 Novel Adaptive Sliding-Mode Speed 
Observer 

In this section, the scheme of the previous observer 
is improved into part of the rotor winding. Prior to 
any modification, it is assumed that the shaft speed 
dynamic is much slower than the dynamic of the 
electromagnetic system, and the measurable 
quantities are only stator voltages and currents. 

Instead of the estimated stator current sî , one 
portion of the rotor winding is altered to become the 
monitored stator current is. So far, the main structure 
of the proposed observer is written as follows: 
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where ^ indicates the estimated values or vectors, 
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and Uo is the correction vector imposed to compel 
the estimation error towards zero. For the purpose of 
provision, it is feasible to write the mismatches 
between the estimated and the actual state-variables 
as well as between the estimated and the actual 
parameters in the following: 

WSEAS TRANSACTIONS on SYSTEMS Wirote Sangtungtong

ISSN: 1109-2777 582 Issue 6, Volume 9, June 2010



 













−

−
=








=

ββ

αα

β

α

ss

ss

i

i
i ii

ii

e

e
e ˆ  

ˆ  
         , (6) 

 










−

−
=








=

ββ

αα

ψβ

ψα
ψ ψψ

ψψ

rr

rr

e

e
e

ˆ  

ˆ  
         , (7) 

 

rrr RRR ˆ      −=∆  , (8) 
 

rrr ωωω ˆ      −=∆  . (9) 
 

When the proposed observer is compared with 
the induction motor as a plant, two error equations 
can be unfolded as 
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∆A22 + ∆D2  =  −ε ( ∆A12 + ∆D1 )  . 
Now the integral of the stator current error vector 

and its surface vector are defined in the following, 
respectively [11]: 
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positive definite. From Eq. (10), Eq. (12), and Eq. 
(13), the time derivative of the surface vector is 
written as 
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where  (A12 + D1)eψ  becomes an unknown term 

since ψrα , ψrβ  are inaccessible and ωr , s are not 
measured deliberately by physical transducers. This 
term is expressed as 
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Furthermore, the correction vector Uo is 

available from the combination of three terms as 
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and  Λ  =  [ Λα   Λβ ]
T
  are the correction gain 

matrices. At this stage, both the error equations are 
arranged into suitable forms as follows: 

 

( ) ( )
,                                            

ˆ     ˆ     

11

11211112

oii

rs

UeAe

DAiAeDA

+−=

∆+∆+∆++

ɺ

ψψ
 (17) 

 
( )
( ) .eADA

iAeDAe

ir

s

    ˆ               

ˆ         

21222

21222

∆+∆+∆+

∆++=

ψ
ψψɺ

 (18) 

 
Then, the relation between these two errors can 

be written into a single form as 
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Next, a few terms in the right side of the above 
equation are given with more detail below: 
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After the substitution from such clearer 
expression into Eq. (19), the error of rotor flux 
estimation can be on-line computed by 
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As a result, this equation is not only helpful and 

significant for the scheme but it also makes the 
proposed observer different from the previous one 
[3]−[4]. In order to determine the correction gains 
and create two parameter updating laws, the 
candidate Lyapunov function is selected as follows: 
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krp , kωp are the positive proportional gains, and kri , 
kωi are the positive integral gains. 

Beneath the assumption that Rr and ωr are almost 
constant in comparison with system dynamic of 
state variables, then the procedure due to 
differentiating the function V along time as well as 
substitution together with particular simplification 

results in the time derivative of Lyapunov function 
gradually below: 
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At once, it is necessary to impart the important 

equation from Eq. (11) and Eq. (14) into 
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Then, it is straightforward to rewrite the equation 

just mentioned as 
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The substitution from Eq. (26) into Eq. (23) 
achieves the time derivative of Lyapunov function 
as 
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Then, it is preferable to rewrite the time 

derivative of Lyapunov function as 
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where  
m

r

R

R
s −>     . As long as an induction motor 

attached to its load with alignment is normally 
running forwards at a speed or during acceleration, 
the slip value s remains positive. Nevertheless, 
whenever the motor shaft is rotating more and much 
more slowly during regenerative braking, the slip s 
becomes negative value. Usually, such a braking 
method takes place within only a short period of 
time. Thus, the slip value s is nearly always positive. 
Via the Lyapunov’s stability theorem, the conditions 
on  V  ≥  0  and  Vɺ   ≤  0 must be obeyed to 
guarantee the stability of the proposed speed 
observer [12]. When the Vɺ  is constrained to be 

strictly semi-negative, the sufficient conditions for 
fulfilling the inequality (28) are 

 
| φ1α || siα eiα | − ( ar11 + k1 ) siα eiα  ≥  0 , 
| φ1β || siβ eiβ | − ( ar11 + k2 ) siβ eiβ  ≥  0 , 
k1| φ2α || siα ziα |  ≥  0 , 
k2| φ2β || siβ ziβ |  ≥  0 , (29) 

| Λα || siα | −  f1 siα  ≥  0 , 
| Λβ || siβ | −  f2 siβ  ≥  0 . 

 
Really, these conditions can be found from an 
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−φ2β k2 siβ ziβ  ≤  0 , (30) 

( f1 − Λα ) siα  ≤  0 , 
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In order to assure the convergence of Si towards 

zero, the expansion of the inequality (30) deals with 
the following logical statements: 

 
if    siα eiα  >  0 then   φ1α  >  | ar11 + k1 | , 
if    siα eiα  <  0 then   φ1α  <  −| ar11 + k1 | , 
if    siβ eiβ  >  0 then   φ1β  >  | ar11 + k2 | , 
if    siβ eiβ  <  0 then   φ1β  <  −| ar11 + k2 | , 
if    siα ziα  >  0 then   φ2α  >  0 , 
if    siα ziα  <  0 then   φ2α  <  0 , 
if    siβ ziβ  >  0 then   φ2β  >  0 , (31) 

if    siβ ziβ  <  0 then   φ2β  <  0 , 
if    siα  >  0 then   Λα  >  |  f1 | , 
if    siα  <  0 then   Λα  <  −|  f1 | , 
if    siβ  >  0 then   Λβ  >  |  f2 | , 
if    siβ  <  0 then   Λβ  <  −|  f2 | . 

 
Practically, all correction gains are chosen via 

trials and errors until siα , siβ , ziα , ziβ , eiα , and eiβ 
diminish towards zero within finite time. 
Afterwards, the inequality (28) still requires the 
other conditions satisfying it. These conditions are 

0        =Θ+Θ+
∆

RR
ri
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ri
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R
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 . Thereby, they lead to 

two adaptive laws in a typical proportional-integral 
(PI) manner below: 

 

( )∫Θ+Θ+=
t

RriRrprr dkkRR
0

0      ˆ    ˆ ττ  , (32) 
 

( )∫Θ−Θ−=
t

iprr dkk
0

  0      ˆ    ˆ ττωω ωωωω  , (33) 

 

where  0  ≈rωɺ ,  0  ≈rRɺ ,  0rR̂  and 0ˆ rω  are the initial 

estimates of the corresponding rR̂  and rω̂ . Hence, 
the last equation handles the on-line estimation of 
rotor speed. It is noticeable that such two PI 
adaptive laws obtain the error of rotor flux 
estimation as one element of them. Therefore, the 
speed estimation also partially depends on this 
element. According to the conditions on  V  ≥  0  
and  Vɺ   ≤  0, V is a decreasing function of t (i.e. V(t) 
≤ V(0)). When time elapses adequately long (t → 
∞), Si → 0 , ei → 0 , eψ → 0 , ΘR → 0 , and Θω → 0  
as well as ∆Rr and ∆ωr converge to their 
corresponding steady-state values [12]. Meanwhile, 
the operation of the observer reaches the sliding 
surface and then goes into the so-called sliding-
mode. Thus, the proposed speed observer is stable in 
general. The block diagram of the overall scheme is 
shown in Fig. 1. 

 
 

4 Simulation Results and Discussions 
Simulation task is a potential way in testing the 
capability of the proposed scheme. Numerical 
solutions are acquired to confirm the effectiveness 
that is anticipated. It is interesting to find out 
performances of the novel and previous observers 
[3]−[4]. Owing to not equal numbers of the adaptive 
laws in each observer, the rotor speed is only on-line 
estimated whereas the other parameters are not 
varied from their actual values. Thereby, it allows a 
distinct comparison between these two schemes. 
Another ability of the proposed observer is to render 
simultaneous estimations of speed and rotor 
resistance. Throughout all simulations the key 
nominal parameters per phase of the 3 kW squirrel-
cage motor are:  Rs = 2.15 Ω,  Rr = 2.33 Ω,  Ls = Lr = 

0.21 H,  M = 0.2025 H,  Rm = 4.48 Ω,  p = 4,  Jm = 

0.008 kg⋅m
2
,  rated

sf  = 50 Hz, and  rated
mω  = 1420 

rpm where Jm is the motor moment of inertia. The 

motor coupled to a load with inertia  JL = 0.084 

kg⋅m
2
 becomes the motor-load system whose the 

viscous friction coefficient is Bt = 0.0697 N⋅m⋅s/rad. 
A load torque against rotation is supposed to be 
constant at 5 N⋅m. According to direct-on-line 
starting, at the initial instant of time (t = 0) the 
motor earlier de-energized at standstill is joined 
directly to a 220 V, 50 Hz three-phase ac supply. All 
initial conditions of state variables of both the 
motor-load system and either the novel observer or 
the previous one are put to zero. The initial value of 
rotor speed estimation is also set to zero, i.e. 

0  ˆ 0 =rω . The surface gains k1, k2 for both the 
observers are chosen to be 5. The possible 
correction gains for them are: | φ1α | = | φ1β | = 290, 
| φ2α | = | φ2β | = 1, and | Λα | = | Λβ | = 10 while the PI 
gains in the adaptive law of them are adjusted to kωp 
= 10 and kω i = 6000. 

In transient period, there are some errors of rotor 
speed estimations when the shaft of the motor-load 
system starts rotating by a rise in the actual speed 
and the two observers begin computing their state 
variables as shown in Fig. 2 and Fig. 3. These errors 
rather resemble each other but the error due to the 
estimation in the proposed scheme seems smaller. 
Such both estimations can track and then meet the 
actual speed within the transient state before the 
trend of the actual one is towards a constant. 
However, the previous scheme gives less error in 
rotor flux estimations during the same time as 
shown in Fig. 4 and Fig. 5. In steady state, the novel 
observer provides quite slighter errors in both rotor 
speed and flux estimations than those that the 
previous one does as shown from Fig. 6 to Fig. 11. 
In other words, the Lyapunov function and its 
derivative through the Eq. (21) make the rotor flux 
estimation become more accurate. Although the 
trajectories being related to the stator current errors 
and their integrals have abruptly left the origin at the 
commencement of computation as shown in Fig. 12 
and Fig. 13, they move around inside some local 
regions and then are confined into a vicinity of a 
straight line with its slope of (1/k1) = (1/k2) = 0.2 in 
steady state as shown in Fig. 14 and Fig. 15. The 
straight line is known as an ideal sliding line or a 
sliding surface. Yet, the trajectories fluctuate within 
the tiny neighborhood of the ideal line because the 
fixed-stepsize used under numerical integration of 
simulation is 0.0001 sec. Caused by siα → 0 and siβ 

→ 0, they even move up along this straight line with 
narrower oscillation, then they approach and come 
onto the origin. Eventually, they stay at this point  
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Fig. 1 the configuration of the proposed adaptive sliding-mode speed observer 
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Fig. 2 comparisons between the actual speed (ωr ) 
and the estimated ones ( rω̂ ) obtained from 
the proposed observer and the previous one 
[3]−[4] 

 

 
 

Fig. 3 comparison between the rotor speed 
estimation errors ( ∆ωr ) derived from the 
proposed observer and the previous one 

 

 
 

Fig. 4 comparison between the rotor flux 
estimation errors ( eψα ) achieved from the 
proposed observer and the previous one 

 

 
 

Fig. 5 comparison between the rotor flux 
estimation errors ( eψβ ) obtained from the 
proposed observer and the previous one 

 

 
 

Fig. 6 the rotor speed estimation error ( ∆ωr ) 
derived from the proposed observer in 
steady state 

 

 
 

Fig. 7 the rotor speed estimation error ( ∆ωr ) 
achieved from the previous observer in 
steady state 
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Fig. 8 the rotor flux estimation error ( eψα ) 
obtained from the proposed speed observer 
in steady state 

 

 
 

Fig. 9 the rotor flux estimation error ( eψα ) derived 
from the previous speed observer in steady 
state 

 

 
 

Fig. 10 the rotor flux estimation error ( eψβ ) 
achieved from the proposed speed observer 
in steady state 

 

 
 

Fig. 11 the rotor flux estimation error ( eψβ ) 
obtained from the previous speed observer 
in steady state 

 

 
 

Fig. 12 plotting the stator current estimation error 
( eiα ) against its integral ( ziα ) derived from 
the proposed observer 

 

 
 

Fig. 13 plotting the stator current estimation error 
( eiβ ) against its integral ( ziβ ) achieved 
from the proposed observer 
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Fig. 14 plotting the stator current estimation error 
( eiα ) against its integral ( ziα ) obtained 
from the proposed observer in steady state 

 

 
 

Fig. 15 plotting the stator current estimation error 
( eiβ ) against its integral ( ziβ ) derived from 
the proposed observer in steady state 

 
and are no longer away until the operation of the 
observer changes. Such an origin is called the 
equilibrium point. The trajectories of the proposed 
scheme are only plotted because these and the others 
of the previous one are alike. 

When the novel observer treats concurrently the 
on-line estimations of rotor resistance and speed 
with two adaptive laws via the Eq. (32) and Eq. 
(33), the rotor speed and flux estimations are more 
reasonably erroneous than the corresponding ones 
from the preceding test in transient period as shown 
from Fig. 16 to Fig. 18. The initial value of rotor 
resistance estimation is set to half the nominal rotor 

resistance, i.e. 0rR̂  = 1.165 Ω while the another PI 
gains in one of the two adaptive laws are tuned to krp 
= 0.06 and kri = 1.24. At the instant of initiation the 
estimated rotor resistance jumps up suddenly to a 
value relatively larger than its initial one as shown 
in Fig. 19. This value is updated consecutively 
further until it is increased to its proper value with 

very little overshoot. In steady state the estimation 
of rotor resistance becomes consistent because it has 

a certain value, i.e. ( )∞rR̂  ≈ 2.33 Ω as shown in 
Fig. 20 while the errors of the rotor flux and speed 
estimations are similar to them which are attained 
from the preceding test as shown from Fig. 21 to 
Fig. 23. Under the simulation with the smaller fixed-
stepsize of 0.00001 sec., the rotor speed estimation 
has a certain and minute steady-state error while the 
rotor flux estimation gives the slighter steady-state 
error. The trajectories of ( zi , ei ) in transient period 
are bounded within some areas where the 
equilibrium point is near as shown in Fig. 24 and 
Fig. 25. In steady state they are attracted to the 
sliding line and then get closer and much closer to 
the origin along this ideal line as shown in Fig. 26 
and Fig. 27. Lastly, they arrive at the origin and the 
movements of them rest. Due to the smaller fixed-
stepsize the movements of the trajectories on the 
sliding line are somewhat smoother. 

 

 
 

Fig. 16 comparison between the actual speed (ωr ) 

and the estimated one ( rω̂ ) achieved from 
the proposed observer 

 

 
 

Fig. 17 the rotor speed estimation error ( ∆ωr ) 
obtained from the proposed observer 
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Fig. 18 the rotor flux estimation errors ( eψα , eψβ ) 
derived from the proposed speed observer 

 

 
 

Fig. 19 the estimated rotor resistance ( rR̂ ) 
achieved from the proposed speed observer 

 

 
 

Fig. 20 the estimated rotor resistance ( rR̂ ) 
obtained from the proposed speed observer 
in steady state 

 

 
 

Fig. 21 the rotor speed estimation error ( ∆ωr ) 
derived from the proposed observer in 
steady state 

 

 
 

Fig. 22 the rotor flux estimation error ( eψα ) 
achieved from the proposed speed observer 
in steady state 

 

 
 

Fig. 23 the rotor flux estimation error ( eψβ ) 
obtained from the proposed speed observer 
in steady state 
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Fig. 24 plotting the stator current estimation error 
( eiα ) against its integral ( ziα ) derived from 
the proposed observer 

 

 
 

Fig. 25 plotting the stator current estimation error 
( eiβ ) against its integral ( ziβ ) achieved 
from the proposed observer 

 

 
 

Fig. 26 plotting the stator current estimation error 
( eiα ) against its integral ( ziα ) obtained 
from the proposed observer in steady state 

 

 
 

Fig. 27 plotting the stator current estimation error 
( eiβ ) against its integral ( ziβ ) derived from 
the proposed observer in steady state 

 
 

5 Conclusion 
In this article, one part of the novel adaptive sliding-
mode observer, which on-line estimates both the 
rotor resistance and speed of an induction motor, is 
formulated from the error equations of state-variable 
computations. This arrangement permits the errors 
of the rotor flux estimations to be also on-line 
calculated. When such errors become an element of 
the PI adaptive laws, they affect the estimated rotor 
resistance and speed so that the operation of the 
novel observer is stable. The positive Lyapunov 
function and its time derivative that is strictly semi-
negative firmly guarantee the stability of the 
proposed observer and also the convergence of the 
rotor-flux estimation errors towards zero. Without 
the rotor resistance estimation, the novel observer 
offers much less steady-state errors in the rotor flux 
and speed estimations than those that the previous 
one does. Thus, the proposed scheme accomplishes 
superior performance in steady state. Moreover, the 
novel observer could estimate exactly the rotor 
resistance if the PI gains of its adaptive law in the 
Eq. (32) are tuned finely. In steady state the 
proposed scheme is subject to sliding-mode along 
the prescribed sliding-line until its operation reaches 
the equilibrium point. Therefore, anyone would 
expect a plan for a sensorless closed-loop speed-
control system using the proposed observer. 
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