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Abstract: - Field Programmable Gate Arrays (FPGA) are increasingly becoming the mainstay of embedded 
systems due to their flexibility, speed, ease of use and reusability. At the same time, networking and data 
communications between the different parts of an embedded system and between different embedded systems, is 
becoming a necessity due to large complex projects. This paper presents the design, implementation, and 
testing results of a flexible and user reconfigurable Universal Synchronous Asynchronous Receive Transmit 
(USART) IP core suitable for use in embedded systems and Systems on Chip (SoC). The design scheme 
employed, allows the USART to be used in various modes of operation such as standalone and 9-bit 
addressable mode for multi-drop network of serial devices. It also supports high speed data rates of up to 3 
Mb/s. The design utilizes Hardware Description Language (HDL) to describe the operation, ease 
implementation and allow cross platform utilization. The paper shows through a comprehensive testing 
methodology that the proposed design functions properly while consuming minimum resources from the target 
FPGA. 
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1 Introduction 

Interest in embedded systems has grown 
drastically in recent years. The global market for 
embedded systems is expected to increase from 
$92.0 billion in 2008 to an estimated $112.5 billion 
by the end of 2013, a compound annual growth rate 
(CAGR) of 4.1%. Embedded hardware was worth 
$89.8 billion in 2008 and is expected to grow at a 
CAGR of 4.1% to reach $109.6 billion in 2013. 
Embedded software generated $2.2 billion in 2008. 
This should increase to $2.9 billion in 2013, for a 
CAGR of 5.6%. [1]. At the same time, embedded 
systems are increasing in complexity and more 
frequently they are also networked. As designs 
become more complex, embedded systems based on 
FPGA are required to interact with software running 
on stock commercial processors [2]. This interaction 
more often than not makes use of a serial 
communications transmission link. Design 
techniques based on hardware-software co-design 
are generally implemented on platforms that utilize 
FPGAs as accelerators together with embedded 
CPU cores for control and operational procedure 
definition [3]. Frequently these platforms also 

require high speed serial data communication 
blocks. 

USARTs have been around for years and they 
have become established for easy and simple serial 
transmission. However, most of these take the form 
of hardwired specialized ICs which make them 
unattractive and unsuitable for use in recent 
embedded systems; especially those utilizing FPGA 
technology, since they cannot be incorporated 
within the HDL design. Also, most are designed 
with limited features and capabilities; for example: 
limited speed and no capability for use in multi-drop 
networks. Attempts at the design of an HDL-based 
USART have been reported in the literature. Many 
are just HDL implementation of the well known 
industry standard 16550 UART without additional 
features [4-6]. 

This paper presents the design, implementation, 
testing and verification of a high speed user 
configurable USART suitable to be used efficiently 
on platforms that utilize FPGAs. The architectural 
design allows serial communications in multi-drop 
networks using 9-bit operational mode using master-
slave operation. It also features configurable high 
speed transmission rates and transmission error 
detection and recovery. User configuration is 
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accomplished through specialized internal registers. 
The design is suitable to be used for inter-chip, 
inter-processor, and inter-system communications 
among others. The design implements both modes 
of operation synchronous and asynchronous. 

The rest of the paper is organized as follows: 
Section 2 presents a general description of USART 
theory of operation and describes the modes of 
operation. Section 3 provides a detailed description 
of the specifications of the developed USART. 
Section 4 discusses the design methodology 
followed and provides a description and operational 
features of the various blocks used in the design. 
Section 5 is concerned with the testing and 
verification procedures followed. Section 6 is for 
discussions and conclusions. 
 
 
2 USART Theory of Operation 
USARTs operate as parallel to serial converters at 
the transmitter’s side where data is transmitted as 
individual bits in a sequential fashion whereas at the 
receiver’s side, USARTs assemble the bits into 
complete data and thus act as serial to parallel 
converters. 

USARTs mandate preliminary configuration of 
data format, transfer rates and other options specific 
to the design model. The user can send individual or 
a block of data, whose size is determined by the 
design model, to the transmitter section of the 
USART. Data is stored in the internal buffer and 
framed according to the transfer mode and user 
defined options. Finally, the frame is sent to its 
destination one bit at a time. On the receiver side, 
the data frame bits are received and sampled. The 
extracted data from the received frame resides in the 
internal receiver buffer waiting to be read by the 
user. The receiver monitors the reception for 
possible errors and informs the recipient of their 
existence should the proper control bit(s) be set. 
Most USARTs offer a status monitoring mechanism 
via a dedicated status register(s) through which 
some of the internal operation aspects can be 
viewed. 
 
 
2.1 Modes of Operation 
There are two major modes of operation in 
USARTs: synchronous and asynchronous modes. 
The latter prevails in most applications.  
 
2.1.1 Synchronous Mode  
In synchronous mode, both the transmitter and 
receiver are synchronized to the same clock signal 

which is usually generated by the transmitter and 
sent along with the data on a separate link to the 
receiver.  The receiver in turn utilizes the received 
clock to extract the timing sequence and to 
determine the beginning and end of the received bit 
interval. Therefore, the receiver knows when to read 
the bit’s value and when the next bit in the sequence 
begins. However, when the line is idle (i.e. no data 
is exchanged), the transmitter should send a fill 
character in order not to lose synchronization. 

A synchronous communication session begins by 
sending one or more synchronizing frames to 
indicate the beginning of transmission then the 
sequence of data frames follow (a parity bit is 
appended to the end of the data frame if single error 
detection is required), transmission is terminated by 
sending a stop frame after which the line returns to 
the idle state. 

A point in favor of synchronous communication 
is that it is data efficient especially for long 
messages since data bits are only sent thus 
preserving bandwidth in contrast to the 
asynchronous mode discussed shortly. Also, the 
required hardware is simpler. Nevertheless, despite 
the efficient data transmission rate, the overall 
bandwidth requirements are high due to the clock’s 
bandwidth demands. Moreover, synchronous 
transmission is more costly since it requires extra 
wiring, limiting its usage to short distances. 
Furthermore, synchronous communication is 
susceptible to clock skew which produces timing 
discrepancy and reduces the reliability of data 
transfer though such discrepancy can sometimes be 
accommodated [7]. 
 
2.1.2 Asynchronous Mode 
In asynchronous mode of communication, the 
transmitter and receiver are preconfigured to the 
required timing parameters in advance and special 
bits are appended to the data frame for 
synchronization purposes. Thus timing is embedded 
in the frame and the need to send a timing signal to 
the receiver is eliminated. 

In asynchronous mode, an idle line remains at a 
predetermined level. The frame consists of a start 
bit which differs in polarity to that of the line’s idle 
state, followed by the data bits and a parity bit - if 
single error detection is used - and ends with at least 
one stop bit which has the same polarity as that of 
an idle line. A stop bit might be followed by another 
frame – back to back transmission - or an idle state 
of transmission. Both the transmitter and receiver 
are preconfigured to run at the same fixed clock rate 
which is an exact multiple of the required baud rate. 
Once the receiver recognizes the transition from the 

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 816 Issue 8, Volume 9, August 2010



idle state polarity to the opposing polarity, it waits a 
half bit interval duration and verifies the presence of 
a start bit, if start bit arrival is confirmed, the 
receiver reads the values of the bits every full bit-
width interval until the reception of a stop bit is 
confirmed denoting the end of the frame. The 
receiver resynchronizes its clock repeatedly at the 
start of every frame thus tolerating any slight 
discrepancy in frequency between the transmitter 
and receiver.  

Asynchronous communication is advantageous 
when data is sent sporadically and when it is costly 
to spare a discrete link for timing purposes. On the 
other hand, asynchronous communication is 
bandwidth inefficient when it comes to sending 
large blocks of data. It is mostly used in medium 
and long distances [8]. 
 
 
2.2 Common Communication Errors 
Encountered in USARTs 
The most common types of error encountered in 
USARTs are parity, framing and overrun errors. A 
parity error indicates that noise affected the data 
during transmission; such errors occur frequently in 
hostile environments especially when cables are 
improperly shielded. A framing error indicates that 
the start and stop bits are not in their proper places 
which is mainly due to different baud rate 
configurations at the transmitter and receiver sides. 
Finally, the overrun error indicates that data have 
been lost in the receiver side because the internal 
reception buffer is full [9]. 
 
 
3 Specifications of Developed USART 
The specifications included in the design were 
chosen to meet modern serial communication 
demands of high performance and reliability, taking 
compatibility with legacy devices into 
consideration. 

Performance oriented features include an 
interrupt driven approach and universal eight bit 
addressability which make the USART ideal for 
industrial and control applications. Eight-level 
buffering allows for data block transfers that is 
beneficial considering the high speeds the USART 
can handle in data transfer which can reach 3 MHz. 

Reliability oriented specifications include the 
programmable odd/even parity bit with the ability to 
detect parity, framing and overrun errors.  

To adapt to modern practices, the USART offers 
eight bit mode synchronous or asynchronous 
communication, variable stop bit options and full 

duplex mode. However to retain compatibility, it 
also offers five to seven bit transfer and half duplex 
mode of communication. Table 1 lists the detailed 
specifications of the proposed USART. 
 
 
4  Design Methodology of the USART 
System 
The methodology adopted in carrying out the 
USART system design was based on systems and 
software engineering approaches. It used a variation 
of both the waterfall and incremental approaches 
suited to the design environment and constraints. 
The design steps that the system went through are 
[10]: 

1. System Requirements Definition. The 
requirements definition phase specified the 
functionality as well as the essential and desirable 
system properties. This involved the process of 
understanding and defining what services were 
required from the system and identifying the 
constraints on system operation and development.   

2. System/Subsystem Design. This phase was 
concerned with how the system functionality was to 
be provided by the components of the system and 
where the system specification was converted into 
an executable system specification.   

3. Subsystems Implementation and Module 
Testing. The subsystems identified during 
subsystem design were implemented and mapped 
into hardware code using the Verilog Hardware 
Descriptive Language HDL. In this critical stage, 
individual modules were extensively tested for 
correct functional operation. Each component, once 
implemented, was tested independently without the 
other system components and the assessment of the 
functional behavior was concluded from the 
simulation output.    

4. System Integration. During system integration, 
the independently developed subsystems were 
merged together to build the overall USART system 
in an incremental approach.  

5. System Testing. The overall integrated system 
was subjected to an extensive set of tests to assure 
correct functionality, reliability and performance. 
The tests were aimed to test the behavior of the 
system as a whole in addition to the interfacing 
between the subsystems.   

Verilog HDL language was used to develop and 
simulate the USART system and subsystems under 
Xilinx ISE 8.2i environment [11]. USART modules 
were designed and verified separately, and then they 
were integrated together. Fig. 1 shows the major 
parts of the USART system: 
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Table 1: Functional Specifications of the USART 

Specification Justification 

Support for the following transmission 
modes (Programmable): 
• Asynchronous (Full/Half duplex modes) 
• Synchronous (Full/Half duplex modes) 

Full duplex mode is employed in modern systems while half 
duplex mode is retained for compatibility with legacy systems. 

Supports a wide range of 
transmission/reception rates  (from 50 Hz to 
3MHz) 

High frequencies are essential for high speed communication. 
Lower speeds are needed to communicate with older USARTs. 
Moreover, lower speeds can be used to minimize cross talk if 
similar links are adjacent. 

Eight-level Transmitter/Receiver Buffer 

To account for the high speeds of communication that the 
USART can reach, blocks of data can be received and buffered 
until read by the user. Also, this allows the user to issue the 
transmission of a block of eight-frame size in a single 
operation. This will also reduce the load on the module that 
controls the USART operation in the system. 

Parity Supported (Programmable –
Enable/Disable parity and Odd/Even parity). 

Single error detection techniques might prove beneficial in 
noisy operation environments. 

Variable data lengths supported 
(Programmable - five to eight bits) 

Byte communication is the modern norm. Five to seven bits 
data length is to retain compatibility with legacy systems. 

Variable stop bits supported (Asynchronous 
mode) (Programmable – One or two stop 
bits) 

This is to comply with the RS232 standard where two stop bits 
mode is used to accommodate slightly different clocks in the 
transmitter and receiver sides when USARTs from different 
vendors are connected together. 

Error Detection of the following errors: 
• Parity Error 
• Overrun Error 
• Framing Error (Asynchronous mode) 

Parity error detection provides a measure of the reliability of 
communication. Framing error detection indicates the necessity 
of reconfiguring the internal clocking sources at both ends 
correctly. Finally, overrun error informs that data has been lost 
and the need to frequently read the received data. 

Interrupt Support (Programmable – with 
ability of Global Masking) 

Most modern systems are interrupt-driven for the reason that 
interrupt techniques save processing clock cycles in comparison 
with polling techniques and are essential in real time 
applications. 

Supports Addressability (8-bit Universal – 
Addresses up to 256 devices) while sending 
9-bits. 

Widely used in industrial and control applications in multi-drop 
networks where a master USART can communicate with a 
certain other slave USART(s). 

 
Fig. 1: The USART module 

 
The input/output signals involved are: 
System clock: The oscillator clock 
Reset: Master reset of the system. 

 
Serial out: Transmitted data 
Serial in: Received data 
TXInt: Transmitter interrupt  
RXInt: Receiver Interrupt 
ErrInt: Error Interrupt 
 The following sections show the design details of 
the different subsystems used in the USART. 
 
4.1 Control and Status Registers 
 
Table 2 describes the functionality of all registers 
used in the design including the justification for 
their use. 
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Table 2: Control and Status Registers 

Reg. 
Name 

Reg. 
Address Type* Width 

(bits) Functionality Justification 

Control 
register 

1 
0 W 8 Used to select mode of 

operation, frame length, 
parity and stop bits options, 
interrupts enabling and 9th 
bit mode selection 

To Accommodate the multiple 
options and modes supported in 
the system  Control 

register 
2 

1 W 6 

LS 
Divisor 2 W 8 

Used to determine the 
clock needed for sampling 
and the clock needed for 
transmission (baud rate 
clock) 

Using 16-bit divisor gives wide 
range of baud rates to select 
among. This allows the system to 
be able to support wider range of 
requirements. MS 

Divisor 3 W 8 

TX 
Buffer 4 W 8 

Seven-location buffer used 
to store the frames wanted 
to be transmitted until the 
transmit shift register is 
empty (ready).  

To allow the user to send a block 
of seven frames each time the 
buffer is empty. 

RX 
Buffer 5 R 10 

Seven-location buffer used 
to store the received frames 
until the user reads them. 

Decreases frame losses, thus 
increases system reliability. 

Status 
register 6 R 7 

Describes the status of the 
entire system. It indicates 
the emptiness of the 
transmitting buffer, 
fullness of the receiving 
buffer, parity error 
existence, framing error 
existence and overrun error 
occurrence. 

In many cases, it is not possible 
for the interrupted system to 
respond directly for the interrupt 
signal. Thus, the status register is 
used such that it can be checked 
whenever it is possible. 

Address 
register 7 W 8 

Stores the address of the 
USART chip. This address 
is written by the user (not 
fixed for a certain chip). 

Used when 9th bit mode is 
selected. The TX must send the 
address of the destination before 
transmitting data. 

*W indicates writable while R indicates readable register 
 
4.2 Clock Generator 
 
 
The USART system contains a programmable clock 
generator. Inputs to this module are the system 
clock and the values of the two divisor registers. 
Fig. 2 shows a block diagram of the clock generator. 
 This module is designed to generate a square 
clock irrespective of the divisor value (odd or even 
divisor). In synchronous mode of communication, 
this clock is transmitted along with the data. Also, it 
is used to generate the baud-rate clock, through a 
division by 16. 

 
Fig. 2: The clock generator 

 
Divisor: 16-bit value initialized by the user. 
Clock_16: 16*baud-rate clock. 
 
The output frequency of the clock generator is 
determined by (1):
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Fig. 3: The transmitter module

 

X
foscClock ==  Rate BaudCalculated*1616_  (1) 

Where X is a 16-bit integer divisor loaded into the 
two divisor registers to obtain the desired baud rate. 
Setting the divisor registers to the value of (1)16 
yields the maximum clock frequency. Setting the 
divisor to zero yields the minimum clock frequency 
(divisor is 216 in this case). 
 
 
4.3 Transmitter Module 
Fig. 3 shows the functional block diagram of the 
transmitter module. 
It consists of the following sub modules: 

A- Transmitter buffer 
B- Parity Generation Logic 
C- Bypass logic 
D- Shift logic 
E- Transmit shift register (TSR) 
F- TSR empty detection logic 

 
A- The Transmitter Buffer 
The transmitting buffer is the memory where data to 
be sent are stored waiting for the transmit shift 
register (TSR) to be empty. It becomes an essential 
component when the inter arrival time of 
transmitted frames becomes very small. Moreover, 
when the system is accessed using a processor/DSP 
that operates at a higher frequency than the 
transmission baud clock, this buffer will reduce the 
number of times the processor is interrupted to 
request for new data. The signal TDR_empty is 
generated to indicate that the buffer has at least one 
empty slot. Fig. 4 shows the input/output signals 
associated with the transmitting buffer while Fig. 5 
shows its data flow diagram. 

 
Fig. 4: The I/O signals of the TX buffer 

 
B- The Parity Generation Circuit 
Parity generation logic circuit reads the frame to be 
sent and produces the appropriate parity bit 
according to the predetermined word length and 
parity type in the second control register. The 
maximum frame length possible is 12 bits (1 start 
bit + 8 data bits + parity bit + 2 stop bits). Fig. 6 
shows the I/O signals associated with the parity 
generator while Fig. 7 shows its data flow diagram. 

 
Fig. 6: I/O signals for the parity generator 

 
C- The Bypass Logic Circuit 
The bypass logic circuit is used to insert the most 
significant 6 bits of the data frame in the transmit 
shift register depending on the control options 
selected by the user in the appropriate control 
registers (word length, parity enabled/disabled and 
number of stop bits). 
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Fig. 5: Transmitting buffer dataflow diagram

 
 If 9th bit mode is used, address/data bit is inserted 
into the frame instead of the parity bit irrespective 
of whether parity is enabled or disabled. The least 
significant 5 bits of the frame in addition to the start 
bit in asynchronous communication mode are 
passed directly from the transmitting buffer to the 
TSR register. Fig. 8 shows the dataflow diagram 
associated with the bypass logic circuit and Fig. 9 
the I/O signals for the same circuit. 

 
Fig. 7: The parity generation flow diagram 

 
 

 
Fig. 8: Dataflow for the bypass circuit 

 
Fig. 9: I/O Signals of the bypass Circuit 
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D- The Shift logic circuit 
The Shift Logic Module is inherently a control 
module which produces the main control signal of 
the transmitter module: TSR_Enable. This signal is 
used to indicate that both the TSR is empty and that 
data exists in the buffer for transmission. This signal 
is vital for the proper operation of the transmitter. It 
is used to accomplish the following:  
 1. Indicate when to load the Transmit Shift 

Register with data.  
 2. Advance the read pointer of the transmitter 

buffer to point to the next data to be 
transmitted.  

 3. Reload the ‘detect empty TSR logic’ internal 
counter to indicate the next frame size.  

 This sequence of operation allows the 
transmission of back-to-back frames. Also, it is 
further used to derive the baud rate from the 
clock_16 clock produced by the Clock Generator 
module by dividing it by 16. Fig. 10 shows the 
dataflow diagram associated with the Shift circuit 
and Fig. 11 shows its I/O signals. 

 
Fig. 10: Dataflow diagram of the shift circuit 

 

 
Fig. 11: The I/O signals for the Shift Circuit 

 
E- Transmit shift register (TSR) 
The Transmit Shift Register or TSR is the parallel to 
serial converter which is responsible for sending the 
data in a serial fashion. It is the core of the 
transmitter communication circuit. Upon 
initialization, the TSR is loaded with ones. 
Therefore, the communication line is in the mark 
state and the TSR is declared empty. Furthermore, 
the TSR is clocked at the desired baud rate; this 
means that sixteen cycles of the clock_16 are 
required for each bit shifted out the serial output. 

The baud rate is generated by the shift logic module. 
The frame contains the data bits and parity (if 
enabled) in synchronous mode. A Start bit and one 
or two Stop bits are appended in their appropriate 
positions into the frame in asynchronous mode. The 
frame can take a maximum value of 12 bits (1 start 
bit, 8 data bits, 1 parity bit and 2 stop bits in 
asynchronous mode) and a minimum of five (Only 
five data bits in synchronous mode). When the 
frame size is less than twelve, a string of one’s fills 
the empty positions in the TSR to allow the line to 
go to the mark state if only one frame is sent. Fig. 
12 shows the dataflow diagram associated with the 
TSR, while Fig. 13 shows the I/O signals. 

 
Fig. 12 The dataflow diagram for the TSR 

 

 
Fig. 13: The I/O signals associated with the TSR 

 
F- TSR empty detection logic 
This module is responsible for indicating when the 
TSR is empty (upon initialization or after frame 
transmission). The TSR state is passed to the Shift 
Logic module to enable loading the TSR if data 
exists in the buffer. The TSR Empty Detect Logic 
utilizes an internal 32* 4-bit ROM (look-up table) 
which holds all the possible frame sizes for all 
modes of operation. The ROM is accessed by a 5-bit 
address composed of the combination of the 
following control bits in sequence: Synchronous 
mode, word length, parity enable and number of 
stop bits. If addressability mode is selected, the 
above control bits sequence will be reduced to: 
Synchronous mode, number of stop bits. This is due 
to the design choice that addressability is applicable 
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only in 8-bit word length mode and to the notion 
that the parity bit is replaced by the ADD-Data bit. 
The frame size is retrieved in a look-up table 
manner. Fig. 14 shows the dataflow diagram 
associated with the TSR empty circuit, while Fig. 15 
shows the I/O signals. 

 
Fig. 14: The TSR empty dataflow diagram 

 

 
Fig. 15: The I/O signals of TSR empty circuit 

 
 
4.4 Receiver Module 
The receiver subsystem operates much in the same 
way for both the synchronous and asynchronous 
modes of communication except for the start and 
end of the reception detection mechanism.  
 In the asynchronous mode, the receiver waits for 
a transition from a mark to space (Logic “1” to 
Logic “0”) after an idle line state or an expected 
stop bit to initiate the data reception logic provided 
that the transition is not caused by a noise notch. 
This is ensured by sampling each of the received 
bits at three different times and then using a 
majority detection circuit. The end of asynchronous 
reception is detected at the frame level by waiting 
for a stop bit at the end of the frame. 
 However, in the synchronous mode, instead of 
waiting for logic transition, the receiver waits for a 
synchronizing character which if received after an 
idle state line, a start of reception is detected. In the 

same way, an end of reception is signaled if a 
certain stop character is received.  
 When data reception is detected at the serial_in 
input, the internal receiver logic is enabled and the 
received data bits are serially shifted into the 
Receiver Shift Register (RSR). Meanwhile, the 
parity is calculated per each received bit for the 
received word and finally compared to the received 
parity value. Parity and framing errors are evaluated 
and stored along with the data in the receiver buffer. 
The buffer can hold up to seven received words, if 
data are received while the buffer is full, the data is 
dropped and an overrun error is indicated. 
 If 9-bit address detection mode is enabled, the 
previous scenarios for synchronous and 
asynchronous transmission modes still hold but with 
slight modifications; one of which is that 
transmission is fixed at eight bits and that the ADD-
Data bit is substituted for parity. The address of the 
receiving node must be received with ADD-Data bit 
is set to “1” in order for the frame to be considered 
an address frame. The address frame is handled as 
any other frame sent using asynchronous mode in 
terms of having a start and stop bits. 
 In the synchronous addressable mode of 
operation, a synchronizing character with ADD-
Data bit value set to zero must be initially received, 
followed by a frame containing the address of the 
receiving node but with ADD-Data bit value set to 
one, followed by the data frames with ADD-Data bit 
reset again. Fig. 16 shows the functional block 
diagram of the receiver module, which consists of 
the following sub-modules: 

 
Fig. 16: Receiver module 

 
A- Sampling and Majority Detection Logic 
B- Detect Start Bit Logic 
C- Receiver Shift Register Enable Logic 
D- Receiver Shift Register (RSR) 
E- Receiver Shift Register Full Detection 

Logic 
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F- Parity Error Detection Logic 
G- Framing Error and Stop Bit Detection Logic 
H- Receiver Buffer Write with Synchronous 

and Stop Character Detect Logic 
I- Receiver Buffer with Overrun Detection 

Logic 
A - Sampling and Majority Detection Logic 
This sub-module detects the beginning of a possible 
new data reception indicated by a transition from a 
Mark (idle) state to a Space. Once genuine start of 
reception is detected, each received bit is sampled 
three times before its value is determined. This 
ensures correct decoding of data and minimizes 
noise effects. This sampling process is illustrated in 
Fig. 17. 

 
Fig. 17: Sampling operation. 

 
 This sub-module extracts the baud rate clock 
used in the receiver section of the USART, either 
from the locally generated system clock in 
asynchronous mode or from the received clock input 
in synchronous mode. Fig. 18 shows the transmit 
shift register data flow diagram. 
 
B - Detect Start Bit Logic 
This sub-module signals the detection of the first 0 
bit on an idle line. This indicates either the start bit 
in asynchronous mode, or the start of a possible 
synchronizing character in synchronous mode. Fig. 
19 shows the Detect Start Bit Logic data flow 
diagram.  
 
C - Receiver Shift Register Enable Logic 
This sub-module enables the Receiver Shift Register 
(RSR) to accept received data bits. This occurs 
when a start bit is detected in asynchronous 
transmission mode. In synchronous mode, the RSR 
is always enabled, but received bits are ignored until 
a valid sync character is received. Fig. 20 shows 
RSR Enable Logic data flow diagram 

 
Fig. 18: Sampling and majority detection dataflow 

diagram. 
 

 
Fig. 19: Detect start bit dataflow diagram. 
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Fig. 20: RSR enable data flow diagram. 

 
D - Receiver Shift Register (RSR) 
The Receiver Shift Register (RSR) is the serial-to-
parallel converter which is responsible for receiving 
serially transmitted data. It is the core of the receiver 
communication circuit. RSR is a Serial In – Parallel 
Out 8-bit shift register which is clocked at the baud 
rate generated by the Sampling and Majority 
Detection Logic. Fig. 21 shows the RSR data flow 
diagram. 

 
Fig. 21: RSR dataflow diagram 

 
E - Receiver Shift Register Full Detection Logic 
This sub-module indicates the reception of a 
complete frame by the RSR. It is a countdown 
counter operating at the baud rate and initialized to 
the predetermined frame size. Fig. 22 shows the 
RSR full detection logic data flow diagram. 

 
Fig. 22: RSR full detection dataflow diagram 

 
F - Parity Error Detection Logic 
This sub-module checks for single-bit errors that 
occur during transmission. It calculates the expected 
parity bit for each received frame and compares it 
with the actual parity bit received. If the extracted 
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and received parity values do not match, the module 
flags a parity error to indicate this incidence. This 
sub-module calculates parity commutatively instead 
of waiting for receiving the whole frame. This way 
parity error can be detected as soon as the parity bit 
arrives. Fig. 23 shows the data flow diagram for this 
sub-module. 
 

 
Fig. 23: Parity error detection dataflow diagram 

 
G - Framing Error and Stop Bit Detection Logic 
This sub-module is responsible for detecting the end 
of a received frame (the stop bit) as well as 
signaling framing errors in asynchronous mode of 
communication. Fig. 24 shows the data flow 
diagram for this sub-module. 
 
 H - Receiver Buffer Write with Synchronous and 
Stop Character Detect Logic 
This sub-module is responsible for generating an 
internal signal to write the received frames in RSR, 
together with their corresponding parity and framing 
information, into RDR buffer only if certain 
conditions are met. In synchronous mode of 
operation, this involves checking for the reception 
of valid sync and stop characters that delimit a block 
of consecutive frames. If 9th bit mode is used, all 
received frames are dropped if the USART is not 
the targeted node, which is indicated by receiving a 
valid address frame prior to receiving data. Fig. 25 
shows the data flow diagram for this sub-module. 

 
Fig. 24: Framing error and stop bit detection 

dataflow diagram 
 

 
Fig. 25: Receiver buffer write dataflow diagram 
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Fig. 26: RDR dataflow diagram 

 

I - Receiver Buffer with Overrun Detection Logic 
The receiver’s buffer is composed of an array of 
eight registers which is controlled in a circular 
fashion. The number of levels is chosen to account 
for the high speeds the USART can reach in 
operation and the need to buffer the data at high 
speeds of operation. For each level, the parity and 
framing error status is saved and the whole 
buffering system is monitored for overrun errors. 
Fig. 26 shows the data flow diagram for this sub-
module. 
 
 
4.5 Interrupt Logic 
Interrupts are particularly useful when interfacing 
I/O devices that provide or require data at relatively 
low data transfer rates. Unlike polling techniques, 
interrupt processing allows the system to execute 
other operations while the USART device is in the 

process of sending or receiving data thus sparing 
processor cycles. 
 Interrupt signals are generated when one of the 
following actions happens: 

1. Transmitter buffer becomes empty after being 
completely full (one empty slot can declare the 
buffer as empty). 

2. New data frame is received and written on the 
receiving buffer. This means that if the buffer is 
full, overrun error will be declared and the 
received frame will get lost. 

3. When one or more of the parity, framing or 
overrun errors occur(s). 

 All interrupts can be enabled or disabled 
individually or collectively by masking their 
corresponding bits in control register 1.  
 To deliver these interrupt signals to the external 
system, three different pins are used instead of one 
pin for all interrupts. This is especially useful when 
full duplex mode is used since it can be used to 
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determine the interrupt source by knowing the pin 
which generates the signal instead of polling the 
status register. 
 
 
5. Testing and Verification Procedures 
 
5.1. Introduction 
Most systems undergo testing throughout their 
development and before they are delivered to the 
customer. In general, the system testing process has 
two distinct goals: 
1. To demonstrate to the developer and the customer 
that the system meets its requirements.  
2. To discover faults or defects in the system where 
the behavior of the system is incorrect, undesirable 
or does not conform to its specification [10].  
 The first goal leads to validation testing, where 
the system is expected to perform correctly using a 
given set of test cases that reflect the system's 
expected use. The second goal leads to defect 
testing, where the test cases are designed to expose 
defects. The test cases can be deliberately obscure 
and need not reflect how the system is normally 
used. For validation testing, a successful test is one 
where the system performs correctly. For defect 
testing, a successful test is one that exposes a defect 
that causes the system to perform incorrectly. 
 Tests fall into two general types – black box and 
white box tests. Black box tests are those that are 
performed without any internal knowledge of the 
system. In a black box test, the testing is typically 
conducted by changing the inputs and observing the 
system outputs. White box tests are conducted with 
knowledge of the internal working of the system. 
Therefore, knowledge of internal operation may 
influence how the test is constructed [12].  
 Yunshan and Marshall [13] formalize design 
verification as a model checking problem, where an 
implementation is modeled as a finite state machine 
with a set of properties. Each property typically 
consists of an assumption and a guarantee, and the 
verification task is to prove that the guarantee holds 
for the model under the corresponding assumption. 
For a design under test, there are two common 
sources of guarantee properties: assertion, where the 
design is tested as a white box, and reference model, 
where the design is tested as a black box. However, 
in cases where it is impractical to build an abstract 
reference model that represents all possible 
implementations, a gray box approach is adopted 
where most of the reference model is derived from 
the specification while certain signals from the 
design under test are treated as witnesses. 

 Yunshan and Marshall apply this verification 
technique on a generic UART design using a 
compositional methodology. The UART is broken 
into a number of blocks, and each of these blocks is 
verified on its own before their integration to prove 
that its guarantee properties hold upon their 
predefined assumptions. However, unlike 
verification techniques such as directed simulations 
where block test-benches are often wasted after 
block verification, the results obtained during this 
stage are subsequently utilized in interface 
verification, where it is proven that the environment 
satisfies these predefined assumptions, and 
integration verification, where the verified blocks 
are abstracted and replaced with simpler models that 
are in turn tested as a single unit. 
 Wohlin and Regnell [14] suggest a modeling 
approach suitable for reliability certification of 
modular systems. Modularization is pin-pointed as 
being suitable for reuse, but modules are often not 
reused if their reliability cannot be guaranteed. 
Therefore, it is essential to realize that reliability 
certification is a must when discussing reuse. The 
reliability must reflect the intended usage of the 
module, as a module may be viewed as being 
reliable for one purpose and unreliable for another 
depending on the intended usage of the module. 
Therefore, the ability to certify software during 
testing is based on a user-oriented approach. This 
requires a model of the anticipated usage of the 
software and quantification of the expected usage as 
the software is released. Wohlin and Regnell 
propose a classification of components to simplify 
the derivation of such usage profiles, and identify 
several approaches to determine system reliability 
based on knowledge about the components. 
 Yeandel, Thulborn, and Jones [15] implement an 
on-line testable UART using IFIS (If it Fails It 
Stops) approach. This approach has several 
advantages such as eliminating the need to generate 
and apply test vectors to propagate failures to an 
observable primary output since any internal fault is 
automatically propagated to a primary system 
output. Moreover, since there is only one 
manifestation of failure using this approach, that is a 
circuit node does not change its value when 
expected, fault identification is made easier through 
having to observe whether a node changes its 
values, rather than continuously compare actual and 
expected values. Finally, since the effect of a failure 
is propagated through all circuit elements causing 
them all to halt, failure detection can be achieved by 
merely observing any primary output. However, 
these benefits are not obtained cost free. Overheads 
are incurred in terms of both circuit complexity and 
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slower operation which may be inappropriate for 
applications where the highest operational speed is 
required or where device complexity is important. 
Since this is exactly the case for the system in hand, 
where both high speed and minimal size were taken 
into consideration, this approach could not be 
adopted.  
 The development of the described USART 
system was based on an incremental approach. The 
system specification, design and implementation 
were broken into a series of increments that were 
each developed in turn. In this incremental 
development process, the services to be provided by 
the system were first identified. A number of 
delivery increments were then defined, with each 
increment providing a subset of the system 
functionality. Once the system increments had been 
identified, the requirements for the services to be 
delivered by each increment were defined in detail, 
and those increments were developed.  
 This incremental approach to development 
allowed each increment to be tested as it was 
developed, with these tests based on the 
requirements for that increment. This represented a 
preliminary stage in the testing process; unit testing. 
As new increments were developed, they were 
integrated with existing increments so that the 
system functionality improved with each increment. 
At this stage, testing was concerned with finding 
errors that result from unanticipated interactions 
between components and component interface 
problems. During these two stages of the testing 
process, unit testing and integration testing, some of 
the concepts and methods presented by Yunshan 
and Marshall mentioned above were utilized. For 
instance, each component in the system was tested 
individually, where some were tested as a black box 
while others were tested as a white box. The verified 
components were then combined and treated as a 
single unit in the subsequent tests. 
 Once the system was completely integrated, it 
was tested for fulfillment of its requirement 
specifications. This stage of the testing process; 
acceptance testing, continued until it was verified 
that the final system represented an acceptable 
implementation of its requirements. Finally, as 
suggested by Wohlin and Regnell above, the 
reliability of the system was investigated. Not only 
was the system subjected to a set of tests that 
reflected the expected mix of services that it should 
handle, but also tests were designed to expose it to 
its operating limits to check its behavior and 
response. 
 The proposed USART design was implemented 
and tested using firmware from Xilinx Corporation. 

For software, the free ISE Webpack version 8.2i 
was used [16]. As for hardware, different 
development kits were used throughout the stages of 
the project. These include: Digilab 2 XL (D2XL) 
Development Board [17], Digilent Spartan-3 System 
Board [18], and Spartan-3E Starter Kit Board [19]. 
However, since the design was entirely 
implemented using a universal hardware description 
language, Verilog HDL, it is expected to be directly 
interoperable with any environment provided by 
other vendors. 
 
 
5.2 Testing Process 
In general, the project went through several phases 
during the testing process as illustrated in Fig. 27: 
 

 
Fig. 27: Phases of the testing process 

 
5.2.1 Unit Testing 
A unit test is a test of the functionality of a system 
module in isolation, and the unit test should be 
traceable to the detailed design. A unit test consists 
of a set of test cases used to establish that a 
subsystem performs a single unit of functionality to 
some specification. Test cases should be written 
with the express intent of uncovering undiscovered 
defects [12].  
 
5.2.1.1 Baud Rate Generator 
Actual snapshots were taken for clock16 and baud-
clock signals using Agilent DSO5014A 
oscilloscope. One of these is shown in Fig. 28. 

 
Fig. 28: Clock16 signal for divisor = 00A3H 

 
5.2.1.2 Buffers 
Seven-level buffers are used in the transmitter and 
receiver module to hold data words that are to be 
sent or that has already been received. Since both 
buffers fundamentally have the same architecture, 
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then the test results obtained from one would be 
equally applicable to its counterpart. Fig. 29 
illustrates the operation of the buffer. 

 
Fig. 29: Simulation of the buffer 

 
 At the beginning of the simulation, buf_empty 
output was high indicating that the buffer was 
empty. As soon as the first word was written into 
the buffer at the positive edge of the write signal, 
buf_empty went low. When another six words were 
written into the buffer, buf_full signal became high. 
The next word attempted to be written into the 
buffer caused overrun signal to go high indicating 
an overrun condition that caused that word to be 
lost. Next, seven read pulses were applied to the 
buffer to investigate its contents. The words 
previously written into the buffer sequentially 
appeared on the data bus at the positive edge of each 
read pulse. The buffer was disconnected from the 
data bus when the read signal became inactive.  
 When all the contents of the buffer were read, the 
overrun signal went low while buf_empty signal 
went high. The last word written into the buffer 
before the overrun condition appeared on the data 
bus again upon the application of an eighth read 
pulse. This indicates the eighth word applied at the 
input of the buffer was not written into it since 
writes are disallowed if the buffer is full.  
 After confirming from the simulations that the 
buffer operated as it is supposed to do, the buffer 
was implemented on the development board, and the 
test results conformed to the previous simulations 
for a wide range of frequencies. 
 
5.2.2 Integration Testing 
 After the units of a system have been constructed 
and tested, they must then be integrated into larger 
subcomponents leading eventually to the 
construction of the entire system. The intermediate 
subsystems must be tested to make sure that 
components operate correctly together. The purpose 
of integration testing is to identify errors in the 
interactions of subsystems [12]. 
 
5.2.2.1 Transmitter Module 
 After testing the remaining components that 
comprise the transmitter section of the USART each 

on its own in a similar manner to the baud rate 
generator and buffer, these sub-modules were 
integrated together to test the transmitter module as 
one unit. 
 The operation of the transmitter module was 
simulated for the different modes of operation and 
options for the word length, parity bit and stop 
bit(s). One example is shown in Fig. 30 which 
illustrates the asynchronous mode of operation with 
word length of five bits, odd parity, one stop bit, and 
with the addressability feature disabled. 

 
Fig. 30: Asynch. simulation of transmitter module 

 
 The simulation illustrates two frames transmitted 
one after the other. As it is clear from the serial 
output signal (SOUT), the transmission began with 
the start bit of the first frame followed by the five 
data bits that comprise the first word (10) starting 
with the least significant bit. A parity bit was then 
transmitted before the stop bit marked the end of the 
first frame. After that, the second frame was 
transmitted in a similar manner. 
 Fig. 31 illustrates the synchronous mode of 
operation, with word length of eight bits and the 
addressability feature enabled. 

 
Fig. 31: Synch. simulation of transmitter module 

 
 Before transmitting the actual data words, a sync 
character (254d = FEh) was transmitted to indicate 
the beginning of a block of data for all possible 
receivers. To capture the attention of the receiver of 
interest, its address (11d in the figure) was then 
transmitted. After that, three data frames were 
transmitted. Each of them consisted of eight data 
bits followed by an address/data bit. The clock 
signal transmitted from the sender to the receiver in 
the synchronous mode of operation is not shown in 
the figure for clarity purposes. 
 Actual snapshots were taken for the serial output 
of the transmitter module in the different modes of 
operation and at various baud rates using a digital 
storage oscilloscope. Fig. 32 illustrates the serial 
output of the transmitter at a data rate of 1200 bps in 
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asynchronous mode of operation, with 6 data bits, 
even parity, one stop bit, and with the addressability 
feature disabled. 

 
Fig. 32: Tx module in normal asynch. mode 

 
 Fig. 33 illustrates the serial output at a data rate 
of 110 bps in asynchronous mode of operation, with 
word length of eight bits and the addressability 
feature enabled. 

 
Fig. 33: Asynch. Tx module output with 9-bit 

addressability feature enabled 
 
The previous results show that the transmitter 
module operates as expected in the two modes of 
operation of the USART at various baud rates. 
Moreover, all word lengths and options for parity 
and stop bits specified in the requirements of the 
system are supported. 
 
5.2.3 Acceptance Testing 
The primary goal of an acceptance test is to verify 
that a system meets its requirement specification. To 
demonstrate that the system meets its requirements, 
it must be shown that it delivers the specified 
functionality, performance and dependability, and 
that it does not fail during normal use. Ideally, the 
acceptance test plan is developed with the 
engineering requirements and is traceable to them. 
Acceptance testing is usually a black-box testing 
process where the tests are derived from the system 
specification. The system is treated as a black box 
whose behavior can only be determined by studying 
its inputs and the related outputs. Another name for 
this is functional testing because the tester is only 

concerned with the functionality and not the 
implementation of the system [10]. 
 After testing the transmitter module, the next 
logical step in the testing process would be testing 
the receiver module. However, since the receiver 
module is inextricably linked to a corresponding 
transmitter which must supply the serial data, testing 
the receiver module was utilized as a test to the 
whole system at the same time. 
 
5.2.3.1 Testing the USART with the Transmitter 
Connected to the Receiver 
 
Before connecting the USART to an external 
system, it was tested at first by connecting the serial 
output of its transmitter section to the serial input of 
its receiver section to locate any potential errors 
within the system itself. Similarly, the clock output 
of the transmitter section was connected to the clock 
input of the receiver section in the synchronous 
mode. 
 A collection of simulations that covers various 
features of the system were run using the Xilinx ISE 
Simulator. Fig. 34 illustrates a simulation of the 
USART operation in asynchronous mode with eight 
data bits, no parity, two stop bits, and with the 
addressability feature disabled. 

 
Fig. 34: Asynch. TX & RX Simulation of the 

USART in normal mode 
 
 The data received at the serial input of the 
USART (SIN) was shifted in one bit at a time 
starting with the least significant bit. After receiving 
the whole first frame, the status register (address 6) 
was read and indicated that a new word was 
received. This new word (240) appeared on the data 
bus from the receiver buffer (address 5) while the 
read input was active. After reading this received 
word, the status register indicated that the receiver 
buffer became empty again. Meanwhile, another 
frame was being received. The received word 
appeared on the data bus while the read input was 
active and the status register again indicated the 
status of the receiver buffer. 
 Another simulation of the USART operation in 
the synchronous mode with seven data bits, odd 
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parity and the addressability feature disabled is 
shown in Fig. 35. Since it is synchronous mode, a 
sync character was transmitted at first to indicate the 
beginning of a data block. This sync character 
would not be written into the receiver buffer. 
 

 
Fig. 35: Tx & Rx synch. simulation of USART 

 
5.2.3.2 Serial Communication between Two 
directly connected USARTs 
Next, the entire system was implemented on two 
Xilinx development boards. Both were programmed 
with the same USART design. However, one was 
used to transmit data, while the other was used to 
receive the sent data. Special temporary 
modifications to the internal design were 
implemented to allow certain internal signals to be 
observed with the digital storage scope. The PC was 
used to configure the USARTs with the different 
communication options by sending the appropriate 
control words to the respective registers and also to 
supply the data and to be transmitted serially. 
 Half-duplex and full-duplex communication 
sessions were then established between them, with 
the PC used to supply each system with the data to 
be transmitted serially and to read the received data. 
From this test, more indications were obtained that 
the system complies with its requirements 
specification. Error conditions reflected the true 
state of the received data when the two USARTs 
were deliberately configured with conflicting 
communications options. Moreover, the USARTs 
functioned as expected in the 9-bit mode of 
operation. 
 Figs. 36-38 illustrate some snapshots of the 
communication sessions that were established 
between the two USARTs. Each snapshot indicates 
the mode of communication options that were used 
in the session.  
 
5.2.4 Performance Testing 
The complex relationships between the components 
in a system mean that the system is more than 
simply the sum of its parts. It has properties that are 
properties of the system as a whole. These emergent 
properties cannot be attributed to any specific part 

of the system. Rather, they emerge only once the 
system components have been integrated. Such 
properties include reliability, reparability, and 
usability of the system [10]. 
 

 
Fig. 36: Asynchronous 9-bit address transmission 

and detection between two USARTs 
 

 
Fig. 37: Asynchronous 9-bit data transmission and 

reception between two USARTs 
 

 
Fig. 38: Asynch. 8-bit normal mode data 

transmission between two USARTs at 3 MHz 
 

 Therefore, once a system has been completely 
integrated, it is possible to test the system for 
emergent properties. Performance tests have to be 
designed to ensure that the system can process its 
intended load. This usually involves planning a 
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series of tests where the load is steadily increased 
until the system performance becomes unacceptable. 
In performance testing, an effective way to discover 
defects is to design tests around the limits of the 
system; that is, stressing the system (hence the name 
stress testing) by making demands that are outside 
the design limits of the system until the system fails. 
 During the test cases described previously, the 
USART design was subjected to some extreme 
conditions to explore various aspects of the limits of 
its operation. For example, the output of the baud 
rate generator was examined at the highest baud rate 
possible, and the buffers were tested with increasing 
read and write speeds. Moreover, the operation of 
the entire USART was checked while operating at 
the highest baud rate possible when two systems on 
separate boards were connected together, as well as 
when the transmitter section was used to drive the 
receiver section of the same system. 
 
 
6 Conclusion 
We presented in this paper the detailed design and 
implementation of a reconfigurable USART IP core 
suitable for use in FPGA-based systems and systems 
on chip (SoC). The USART supports both 
synchronous and asynchronous modes of operation 
with variable configurable date rates and frame 
formats. We incorporated support for multi-drop 
networks of serial devices using 9-bit address 
generation and detection which increases the utility 
of such a device in modern networked processors 
and embedded systems. It is shown through 
comprehensive testing that the design performs 
according to its specifications and can operate at 
high bit rates reaching 3 Mbps. The USART is able 
to detect and recover from common serial 
communication errors such as overflow and framing 
errors. It can also detect false start bits. It features a 
universal 8-bit bus interface and interrupt driven 
operation. The design is implemented using HDL so 
it is platform neutral. 
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