
A High Speed Reconfigurable USART IP Core with Support for Multi-
Drop Networks

ALI H. EL-MOUSA, NASSER ANSSARI, ASHRAF AL-SUYYAGH, HAMZAH AL-ZUBI

Computer Engineering Department
University of Jordan

Faculty of Engineering & Technology, Amman 11942
Jordan

elmousa@ju.edu.jo, n.anssari@ju.edu.jo, a.suyyagh@ju.edu.jo, hamzah_alzubi@yahoo.com

Abstract: - Field Programmable Gate Arrays (FPGA) are increasingly becoming the mainstay of embedded
systems due to their flexibility, speed, ease of use and reusability. At the same time, networking and data
communications between the different parts of an embedded system and between different embedded systems, is
becoming a necessity due to large complex projects. This paper presents the design, implementation, and
testing results of a flexible and user reconfigurable Universal Synchronous Asynchronous Receive Transmit
(USART) IP core suitable for use in embedded systems and Systems on Chip (SoC). The design scheme
employed, allows the USART to be used in various modes of operation such as standalone and 9-bit
addressable mode for multi-drop network of serial devices. It also supports high speed data rates of up to 3
Mb/s. The design utilizes Hardware Description Language (HDL) to describe the operation, ease
implementation and allow cross platform utilization. The paper shows through a comprehensive testing
methodology that the proposed design functions properly while consuming minimum resources from the target
FPGA.

Key-Words: - embedded systems, addressable USART, IP core, FPGA, multi-drop networks, HDL

1 Introduction

Interest in embedded systems has grown
drastically in recent years. The global market for
embedded systems is expected to increase from
$92.0 billion in 2008 to an estimated $112.5 billion
by the end of 2013, a compound annual growth rate
(CAGR) of 4.1%. Embedded hardware was worth
$89.8 billion in 2008 and is expected to grow at a
CAGR of 4.1% to reach $109.6 billion in 2013.
Embedded software generated $2.2 billion in 2008.
This should increase to $2.9 billion in 2013, for a
CAGR of 5.6%. [1]. At the same time, embedded
systems are increasing in complexity and more
frequently they are also networked. As designs
become more complex, embedded systems based on
FPGA are required to interact with software running
on stock commercial processors [2]. This interaction
more often than not makes use of a serial
communications transmission link. Design
techniques based on hardware-software co-design
are generally implemented on platforms that utilize
FPGAs as accelerators together with embedded
CPU cores for control and operational procedure
definition [3]. Frequently these platforms also

require high speed serial data communication
blocks.

USARTs have been around for years and they
have become established for easy and simple serial
transmission. However, most of these take the form
of hardwired specialized ICs which make them
unattractive and unsuitable for use in recent
embedded systems; especially those utilizing FPGA
technology, since they cannot be incorporated
within the HDL design. Also, most are designed
with limited features and capabilities; for example:
limited speed and no capability for use in multi-drop
networks. Attempts at the design of an HDL-based
USART have been reported in the literature. Many
are just HDL implementation of the well known
industry standard 16550 UART without additional
features [4-6].

This paper presents the design, implementation,
testing and verification of a high speed user
configurable USART suitable to be used efficiently
on platforms that utilize FPGAs. The architectural
design allows serial communications in multi-drop
networks using 9-bit operational mode using master-
slave operation. It also features configurable high
speed transmission rates and transmission error
detection and recovery. User configuration is

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 815 Issue 8, Volume 9, August 2010

mailto:elmousa@ju.edu.jo�
mailto:n.anssari@ju.edu.jo�
mailto:a.suyyagh@ju.edu.jo�
mailto:hamzah_alzubi@yahoo.com�

accomplished through specialized internal registers.
The design is suitable to be used for inter-chip,
inter-processor, and inter-system communications
among others. The design implements both modes
of operation synchronous and asynchronous.

The rest of the paper is organized as follows:
Section 2 presents a general description of USART
theory of operation and describes the modes of
operation. Section 3 provides a detailed description
of the specifications of the developed USART.
Section 4 discusses the design methodology
followed and provides a description and operational
features of the various blocks used in the design.
Section 5 is concerned with the testing and
verification procedures followed. Section 6 is for
discussions and conclusions.

2 USART Theory of Operation
USARTs operate as parallel to serial converters at
the transmitter’s side where data is transmitted as
individual bits in a sequential fashion whereas at the
receiver’s side, USARTs assemble the bits into
complete data and thus act as serial to parallel
converters.

USARTs mandate preliminary configuration of
data format, transfer rates and other options specific
to the design model. The user can send individual or
a block of data, whose size is determined by the
design model, to the transmitter section of the
USART. Data is stored in the internal buffer and
framed according to the transfer mode and user
defined options. Finally, the frame is sent to its
destination one bit at a time. On the receiver side,
the data frame bits are received and sampled. The
extracted data from the received frame resides in the
internal receiver buffer waiting to be read by the
user. The receiver monitors the reception for
possible errors and informs the recipient of their
existence should the proper control bit(s) be set.
Most USARTs offer a status monitoring mechanism
via a dedicated status register(s) through which
some of the internal operation aspects can be
viewed.

2.1 Modes of Operation
There are two major modes of operation in
USARTs: synchronous and asynchronous modes.
The latter prevails in most applications.

2.1.1 Synchronous Mode
In synchronous mode, both the transmitter and
receiver are synchronized to the same clock signal

which is usually generated by the transmitter and
sent along with the data on a separate link to the
receiver. The receiver in turn utilizes the received
clock to extract the timing sequence and to
determine the beginning and end of the received bit
interval. Therefore, the receiver knows when to read
the bit’s value and when the next bit in the sequence
begins. However, when the line is idle (i.e. no data
is exchanged), the transmitter should send a fill
character in order not to lose synchronization.

A synchronous communication session begins by
sending one or more synchronizing frames to
indicate the beginning of transmission then the
sequence of data frames follow (a parity bit is
appended to the end of the data frame if single error
detection is required), transmission is terminated by
sending a stop frame after which the line returns to
the idle state.

A point in favor of synchronous communication
is that it is data efficient especially for long
messages since data bits are only sent thus
preserving bandwidth in contrast to the
asynchronous mode discussed shortly. Also, the
required hardware is simpler. Nevertheless, despite
the efficient data transmission rate, the overall
bandwidth requirements are high due to the clock’s
bandwidth demands. Moreover, synchronous
transmission is more costly since it requires extra
wiring, limiting its usage to short distances.
Furthermore, synchronous communication is
susceptible to clock skew which produces timing
discrepancy and reduces the reliability of data
transfer though such discrepancy can sometimes be
accommodated [7].

2.1.2 Asynchronous Mode
In asynchronous mode of communication, the
transmitter and receiver are preconfigured to the
required timing parameters in advance and special
bits are appended to the data frame for
synchronization purposes. Thus timing is embedded
in the frame and the need to send a timing signal to
the receiver is eliminated.

In asynchronous mode, an idle line remains at a
predetermined level. The frame consists of a start
bit which differs in polarity to that of the line’s idle
state, followed by the data bits and a parity bit - if
single error detection is used - and ends with at least
one stop bit which has the same polarity as that of
an idle line. A stop bit might be followed by another
frame – back to back transmission - or an idle state
of transmission. Both the transmitter and receiver
are preconfigured to run at the same fixed clock rate
which is an exact multiple of the required baud rate.
Once the receiver recognizes the transition from the

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 816 Issue 8, Volume 9, August 2010

idle state polarity to the opposing polarity, it waits a
half bit interval duration and verifies the presence of
a start bit, if start bit arrival is confirmed, the
receiver reads the values of the bits every full bit-
width interval until the reception of a stop bit is
confirmed denoting the end of the frame. The
receiver resynchronizes its clock repeatedly at the
start of every frame thus tolerating any slight
discrepancy in frequency between the transmitter
and receiver.

Asynchronous communication is advantageous
when data is sent sporadically and when it is costly
to spare a discrete link for timing purposes. On the
other hand, asynchronous communication is
bandwidth inefficient when it comes to sending
large blocks of data. It is mostly used in medium
and long distances [8].

2.2 Common Communication Errors
Encountered in USARTs
The most common types of error encountered in
USARTs are parity, framing and overrun errors. A
parity error indicates that noise affected the data
during transmission; such errors occur frequently in
hostile environments especially when cables are
improperly shielded. A framing error indicates that
the start and stop bits are not in their proper places
which is mainly due to different baud rate
configurations at the transmitter and receiver sides.
Finally, the overrun error indicates that data have
been lost in the receiver side because the internal
reception buffer is full [9].

3 Specifications of Developed USART
The specifications included in the design were
chosen to meet modern serial communication
demands of high performance and reliability, taking
compatibility with legacy devices into
consideration.

Performance oriented features include an
interrupt driven approach and universal eight bit
addressability which make the USART ideal for
industrial and control applications. Eight-level
buffering allows for data block transfers that is
beneficial considering the high speeds the USART
can handle in data transfer which can reach 3 MHz.

Reliability oriented specifications include the
programmable odd/even parity bit with the ability to
detect parity, framing and overrun errors.

To adapt to modern practices, the USART offers
eight bit mode synchronous or asynchronous
communication, variable stop bit options and full

duplex mode. However to retain compatibility, it
also offers five to seven bit transfer and half duplex
mode of communication. Table 1 lists the detailed
specifications of the proposed USART.

4 Design Methodology of the USART
System
The methodology adopted in carrying out the
USART system design was based on systems and
software engineering approaches. It used a variation
of both the waterfall and incremental approaches
suited to the design environment and constraints.
The design steps that the system went through are
[10]:

1. System Requirements Definition. The
requirements definition phase specified the
functionality as well as the essential and desirable
system properties. This involved the process of
understanding and defining what services were
required from the system and identifying the
constraints on system operation and development.

2. System/Subsystem Design. This phase was
concerned with how the system functionality was to
be provided by the components of the system and
where the system specification was converted into
an executable system specification.

3. Subsystems Implementation and Module
Testing. The subsystems identified during
subsystem design were implemented and mapped
into hardware code using the Verilog Hardware
Descriptive Language HDL. In this critical stage,
individual modules were extensively tested for
correct functional operation. Each component, once
implemented, was tested independently without the
other system components and the assessment of the
functional behavior was concluded from the
simulation output.

4. System Integration. During system integration,
the independently developed subsystems were
merged together to build the overall USART system
in an incremental approach.

5. System Testing. The overall integrated system
was subjected to an extensive set of tests to assure
correct functionality, reliability and performance.
The tests were aimed to test the behavior of the
system as a whole in addition to the interfacing
between the subsystems.

Verilog HDL language was used to develop and
simulate the USART system and subsystems under
Xilinx ISE 8.2i environment [11]. USART modules
were designed and verified separately, and then they
were integrated together. Fig. 1 shows the major
parts of the USART system:

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 817 Issue 8, Volume 9, August 2010

Table 1: Functional Specifications of the USART

Specification Justification

Support for the following transmission
modes (Programmable):
• Asynchronous (Full/Half duplex modes)
• Synchronous (Full/Half duplex modes)

Full duplex mode is employed in modern systems while half
duplex mode is retained for compatibility with legacy systems.

Supports a wide range of
transmission/reception rates (from 50 Hz to
3MHz)

High frequencies are essential for high speed communication.
Lower speeds are needed to communicate with older USARTs.
Moreover, lower speeds can be used to minimize cross talk if
similar links are adjacent.

Eight-level Transmitter/Receiver Buffer

To account for the high speeds of communication that the
USART can reach, blocks of data can be received and buffered
until read by the user. Also, this allows the user to issue the
transmission of a block of eight-frame size in a single
operation. This will also reduce the load on the module that
controls the USART operation in the system.

Parity Supported (Programmable –
Enable/Disable parity and Odd/Even parity).

Single error detection techniques might prove beneficial in
noisy operation environments.

Variable data lengths supported
(Programmable - five to eight bits)

Byte communication is the modern norm. Five to seven bits
data length is to retain compatibility with legacy systems.

Variable stop bits supported (Asynchronous
mode) (Programmable – One or two stop
bits)

This is to comply with the RS232 standard where two stop bits
mode is used to accommodate slightly different clocks in the
transmitter and receiver sides when USARTs from different
vendors are connected together.

Error Detection of the following errors:
• Parity Error
• Overrun Error
• Framing Error (Asynchronous mode)

Parity error detection provides a measure of the reliability of
communication. Framing error detection indicates the necessity
of reconfiguring the internal clocking sources at both ends
correctly. Finally, overrun error informs that data has been lost
and the need to frequently read the received data.

Interrupt Support (Programmable – with
ability of Global Masking)

Most modern systems are interrupt-driven for the reason that
interrupt techniques save processing clock cycles in comparison
with polling techniques and are essential in real time
applications.

Supports Addressability (8-bit Universal –
Addresses up to 256 devices) while sending
9-bits.

Widely used in industrial and control applications in multi-drop
networks where a master USART can communicate with a
certain other slave USART(s).

Fig. 1: The USART module

The input/output signals involved are:
System clock: The oscillator clock
Reset: Master reset of the system.

Serial out: Transmitted data
Serial in: Received data
TXInt: Transmitter interrupt
RXInt: Receiver Interrupt
ErrInt: Error Interrupt
 The following sections show the design details of
the different subsystems used in the USART.

4.1 Control and Status Registers

Table 2 describes the functionality of all registers
used in the design including the justification for
their use.

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 818 Issue 8, Volume 9, August 2010

Table 2: Control and Status Registers

Reg.
Name

Reg.
Address Type* Width

(bits) Functionality Justification

Control
register

1
0 W 8 Used to select mode of

operation, frame length,
parity and stop bits options,
interrupts enabling and 9th
bit mode selection

To Accommodate the multiple
options and modes supported in
the system Control

register
2

1 W 6

LS
Divisor 2 W 8

Used to determine the
clock needed for sampling
and the clock needed for
transmission (baud rate
clock)

Using 16-bit divisor gives wide
range of baud rates to select
among. This allows the system to
be able to support wider range of
requirements. MS

Divisor 3 W 8

TX
Buffer 4 W 8

Seven-location buffer used
to store the frames wanted
to be transmitted until the
transmit shift register is
empty (ready).

To allow the user to send a block
of seven frames each time the
buffer is empty.

RX
Buffer 5 R 10

Seven-location buffer used
to store the received frames
until the user reads them.

Decreases frame losses, thus
increases system reliability.

Status
register 6 R 7

Describes the status of the
entire system. It indicates
the emptiness of the
transmitting buffer,
fullness of the receiving
buffer, parity error
existence, framing error
existence and overrun error
occurrence.

In many cases, it is not possible
for the interrupted system to
respond directly for the interrupt
signal. Thus, the status register is
used such that it can be checked
whenever it is possible.

Address
register 7 W 8

Stores the address of the
USART chip. This address
is written by the user (not
fixed for a certain chip).

Used when 9th bit mode is
selected. The TX must send the
address of the destination before
transmitting data.

*W indicates writable while R indicates readable register

4.2 Clock Generator

The USART system contains a programmable clock
generator. Inputs to this module are the system
clock and the values of the two divisor registers.
Fig. 2 shows a block diagram of the clock generator.
 This module is designed to generate a square
clock irrespective of the divisor value (odd or even
divisor). In synchronous mode of communication,
this clock is transmitted along with the data. Also, it
is used to generate the baud-rate clock, through a
division by 16.

Fig. 2: The clock generator

Divisor: 16-bit value initialized by the user.
Clock_16: 16*baud-rate clock.

The output frequency of the clock generator is
determined by (1):

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 819 Issue 8, Volume 9, August 2010

Fig. 3: The transmitter module

X
foscClock == Rate BaudCalculated*1616_ (1)

Where X is a 16-bit integer divisor loaded into the
two divisor registers to obtain the desired baud rate.
Setting the divisor registers to the value of (1)16
yields the maximum clock frequency. Setting the
divisor to zero yields the minimum clock frequency
(divisor is 216 in this case).

4.3 Transmitter Module
Fig. 3 shows the functional block diagram of the
transmitter module.
It consists of the following sub modules:

A- Transmitter buffer
B- Parity Generation Logic
C- Bypass logic
D- Shift logic
E- Transmit shift register (TSR)
F- TSR empty detection logic

A- The Transmitter Buffer
The transmitting buffer is the memory where data to
be sent are stored waiting for the transmit shift
register (TSR) to be empty. It becomes an essential
component when the inter arrival time of
transmitted frames becomes very small. Moreover,
when the system is accessed using a processor/DSP
that operates at a higher frequency than the
transmission baud clock, this buffer will reduce the
number of times the processor is interrupted to
request for new data. The signal TDR_empty is
generated to indicate that the buffer has at least one
empty slot. Fig. 4 shows the input/output signals
associated with the transmitting buffer while Fig. 5
shows its data flow diagram.

Fig. 4: The I/O signals of the TX buffer

B- The Parity Generation Circuit
Parity generation logic circuit reads the frame to be
sent and produces the appropriate parity bit
according to the predetermined word length and
parity type in the second control register. The
maximum frame length possible is 12 bits (1 start
bit + 8 data bits + parity bit + 2 stop bits). Fig. 6
shows the I/O signals associated with the parity
generator while Fig. 7 shows its data flow diagram.

Fig. 6: I/O signals for the parity generator

C- The Bypass Logic Circuit
The bypass logic circuit is used to insert the most
significant 6 bits of the data frame in the transmit
shift register depending on the control options
selected by the user in the appropriate control
registers (word length, parity enabled/disabled and
number of stop bits).

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 820 Issue 8, Volume 9, August 2010

Fig. 5: Transmitting buffer dataflow diagram

 If 9th bit mode is used, address/data bit is inserted
into the frame instead of the parity bit irrespective
of whether parity is enabled or disabled. The least
significant 5 bits of the frame in addition to the start
bit in asynchronous communication mode are
passed directly from the transmitting buffer to the
TSR register. Fig. 8 shows the dataflow diagram
associated with the bypass logic circuit and Fig. 9
the I/O signals for the same circuit.

Fig. 7: The parity generation flow diagram

Fig. 8: Dataflow for the bypass circuit

Fig. 9: I/O Signals of the bypass Circuit

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 821 Issue 8, Volume 9, August 2010

D- The Shift logic circuit
The Shift Logic Module is inherently a control
module which produces the main control signal of
the transmitter module: TSR_Enable. This signal is
used to indicate that both the TSR is empty and that
data exists in the buffer for transmission. This signal
is vital for the proper operation of the transmitter. It
is used to accomplish the following:
 1. Indicate when to load the Transmit Shift

Register with data.
 2. Advance the read pointer of the transmitter

buffer to point to the next data to be
transmitted.

 3. Reload the ‘detect empty TSR logic’ internal
counter to indicate the next frame size.

 This sequence of operation allows the
transmission of back-to-back frames. Also, it is
further used to derive the baud rate from the
clock_16 clock produced by the Clock Generator
module by dividing it by 16. Fig. 10 shows the
dataflow diagram associated with the Shift circuit
and Fig. 11 shows its I/O signals.

Fig. 10: Dataflow diagram of the shift circuit

Fig. 11: The I/O signals for the Shift Circuit

E- Transmit shift register (TSR)
The Transmit Shift Register or TSR is the parallel to
serial converter which is responsible for sending the
data in a serial fashion. It is the core of the
transmitter communication circuit. Upon
initialization, the TSR is loaded with ones.
Therefore, the communication line is in the mark
state and the TSR is declared empty. Furthermore,
the TSR is clocked at the desired baud rate; this
means that sixteen cycles of the clock_16 are
required for each bit shifted out the serial output.

The baud rate is generated by the shift logic module.
The frame contains the data bits and parity (if
enabled) in synchronous mode. A Start bit and one
or two Stop bits are appended in their appropriate
positions into the frame in asynchronous mode. The
frame can take a maximum value of 12 bits (1 start
bit, 8 data bits, 1 parity bit and 2 stop bits in
asynchronous mode) and a minimum of five (Only
five data bits in synchronous mode). When the
frame size is less than twelve, a string of one’s fills
the empty positions in the TSR to allow the line to
go to the mark state if only one frame is sent. Fig.
12 shows the dataflow diagram associated with the
TSR, while Fig. 13 shows the I/O signals.

Fig. 12 The dataflow diagram for the TSR

Fig. 13: The I/O signals associated with the TSR

F- TSR empty detection logic
This module is responsible for indicating when the
TSR is empty (upon initialization or after frame
transmission). The TSR state is passed to the Shift
Logic module to enable loading the TSR if data
exists in the buffer. The TSR Empty Detect Logic
utilizes an internal 32* 4-bit ROM (look-up table)
which holds all the possible frame sizes for all
modes of operation. The ROM is accessed by a 5-bit
address composed of the combination of the
following control bits in sequence: Synchronous
mode, word length, parity enable and number of
stop bits. If addressability mode is selected, the
above control bits sequence will be reduced to:
Synchronous mode, number of stop bits. This is due
to the design choice that addressability is applicable

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 822 Issue 8, Volume 9, August 2010

only in 8-bit word length mode and to the notion
that the parity bit is replaced by the ADD-Data bit.
The frame size is retrieved in a look-up table
manner. Fig. 14 shows the dataflow diagram
associated with the TSR empty circuit, while Fig. 15
shows the I/O signals.

Fig. 14: The TSR empty dataflow diagram

Fig. 15: The I/O signals of TSR empty circuit

4.4 Receiver Module
The receiver subsystem operates much in the same
way for both the synchronous and asynchronous
modes of communication except for the start and
end of the reception detection mechanism.
 In the asynchronous mode, the receiver waits for
a transition from a mark to space (Logic “1” to
Logic “0”) after an idle line state or an expected
stop bit to initiate the data reception logic provided
that the transition is not caused by a noise notch.
This is ensured by sampling each of the received
bits at three different times and then using a
majority detection circuit. The end of asynchronous
reception is detected at the frame level by waiting
for a stop bit at the end of the frame.
 However, in the synchronous mode, instead of
waiting for logic transition, the receiver waits for a
synchronizing character which if received after an
idle state line, a start of reception is detected. In the

same way, an end of reception is signaled if a
certain stop character is received.
 When data reception is detected at the serial_in
input, the internal receiver logic is enabled and the
received data bits are serially shifted into the
Receiver Shift Register (RSR). Meanwhile, the
parity is calculated per each received bit for the
received word and finally compared to the received
parity value. Parity and framing errors are evaluated
and stored along with the data in the receiver buffer.
The buffer can hold up to seven received words, if
data are received while the buffer is full, the data is
dropped and an overrun error is indicated.
 If 9-bit address detection mode is enabled, the
previous scenarios for synchronous and
asynchronous transmission modes still hold but with
slight modifications; one of which is that
transmission is fixed at eight bits and that the ADD-
Data bit is substituted for parity. The address of the
receiving node must be received with ADD-Data bit
is set to “1” in order for the frame to be considered
an address frame. The address frame is handled as
any other frame sent using asynchronous mode in
terms of having a start and stop bits.
 In the synchronous addressable mode of
operation, a synchronizing character with ADD-
Data bit value set to zero must be initially received,
followed by a frame containing the address of the
receiving node but with ADD-Data bit value set to
one, followed by the data frames with ADD-Data bit
reset again. Fig. 16 shows the functional block
diagram of the receiver module, which consists of
the following sub-modules:

Fig. 16: Receiver module

A- Sampling and Majority Detection Logic
B- Detect Start Bit Logic
C- Receiver Shift Register Enable Logic
D- Receiver Shift Register (RSR)
E- Receiver Shift Register Full Detection

Logic

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 823 Issue 8, Volume 9, August 2010

F- Parity Error Detection Logic
G- Framing Error and Stop Bit Detection Logic
H- Receiver Buffer Write with Synchronous

and Stop Character Detect Logic
I- Receiver Buffer with Overrun Detection

Logic
A - Sampling and Majority Detection Logic
This sub-module detects the beginning of a possible
new data reception indicated by a transition from a
Mark (idle) state to a Space. Once genuine start of
reception is detected, each received bit is sampled
three times before its value is determined. This
ensures correct decoding of data and minimizes
noise effects. This sampling process is illustrated in
Fig. 17.

Fig. 17: Sampling operation.

 This sub-module extracts the baud rate clock
used in the receiver section of the USART, either
from the locally generated system clock in
asynchronous mode or from the received clock input
in synchronous mode. Fig. 18 shows the transmit
shift register data flow diagram.

B - Detect Start Bit Logic
This sub-module signals the detection of the first 0
bit on an idle line. This indicates either the start bit
in asynchronous mode, or the start of a possible
synchronizing character in synchronous mode. Fig.
19 shows the Detect Start Bit Logic data flow
diagram.

C - Receiver Shift Register Enable Logic
This sub-module enables the Receiver Shift Register
(RSR) to accept received data bits. This occurs
when a start bit is detected in asynchronous
transmission mode. In synchronous mode, the RSR
is always enabled, but received bits are ignored until
a valid sync character is received. Fig. 20 shows
RSR Enable Logic data flow diagram

Fig. 18: Sampling and majority detection dataflow

diagram.

Fig. 19: Detect start bit dataflow diagram.

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 824 Issue 8, Volume 9, August 2010

Fig. 20: RSR enable data flow diagram.

D - Receiver Shift Register (RSR)
The Receiver Shift Register (RSR) is the serial-to-
parallel converter which is responsible for receiving
serially transmitted data. It is the core of the receiver
communication circuit. RSR is a Serial In – Parallel
Out 8-bit shift register which is clocked at the baud
rate generated by the Sampling and Majority
Detection Logic. Fig. 21 shows the RSR data flow
diagram.

Fig. 21: RSR dataflow diagram

E - Receiver Shift Register Full Detection Logic
This sub-module indicates the reception of a
complete frame by the RSR. It is a countdown
counter operating at the baud rate and initialized to
the predetermined frame size. Fig. 22 shows the
RSR full detection logic data flow diagram.

Fig. 22: RSR full detection dataflow diagram

F - Parity Error Detection Logic
This sub-module checks for single-bit errors that
occur during transmission. It calculates the expected
parity bit for each received frame and compares it
with the actual parity bit received. If the extracted

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 825 Issue 8, Volume 9, August 2010

and received parity values do not match, the module
flags a parity error to indicate this incidence. This
sub-module calculates parity commutatively instead
of waiting for receiving the whole frame. This way
parity error can be detected as soon as the parity bit
arrives. Fig. 23 shows the data flow diagram for this
sub-module.

Fig. 23: Parity error detection dataflow diagram

G - Framing Error and Stop Bit Detection Logic
This sub-module is responsible for detecting the end
of a received frame (the stop bit) as well as
signaling framing errors in asynchronous mode of
communication. Fig. 24 shows the data flow
diagram for this sub-module.

 H - Receiver Buffer Write with Synchronous and
Stop Character Detect Logic
This sub-module is responsible for generating an
internal signal to write the received frames in RSR,
together with their corresponding parity and framing
information, into RDR buffer only if certain
conditions are met. In synchronous mode of
operation, this involves checking for the reception
of valid sync and stop characters that delimit a block
of consecutive frames. If 9th bit mode is used, all
received frames are dropped if the USART is not
the targeted node, which is indicated by receiving a
valid address frame prior to receiving data. Fig. 25
shows the data flow diagram for this sub-module.

Fig. 24: Framing error and stop bit detection

dataflow diagram

Fig. 25: Receiver buffer write dataflow diagram

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 826 Issue 8, Volume 9, August 2010

Fig. 26: RDR dataflow diagram

I - Receiver Buffer with Overrun Detection Logic
The receiver’s buffer is composed of an array of
eight registers which is controlled in a circular
fashion. The number of levels is chosen to account
for the high speeds the USART can reach in
operation and the need to buffer the data at high
speeds of operation. For each level, the parity and
framing error status is saved and the whole
buffering system is monitored for overrun errors.
Fig. 26 shows the data flow diagram for this sub-
module.

4.5 Interrupt Logic
Interrupts are particularly useful when interfacing
I/O devices that provide or require data at relatively
low data transfer rates. Unlike polling techniques,
interrupt processing allows the system to execute
other operations while the USART device is in the

process of sending or receiving data thus sparing
processor cycles.
 Interrupt signals are generated when one of the
following actions happens:

1. Transmitter buffer becomes empty after being
completely full (one empty slot can declare the
buffer as empty).

2. New data frame is received and written on the
receiving buffer. This means that if the buffer is
full, overrun error will be declared and the
received frame will get lost.

3. When one or more of the parity, framing or
overrun errors occur(s).

 All interrupts can be enabled or disabled
individually or collectively by masking their
corresponding bits in control register 1.
 To deliver these interrupt signals to the external
system, three different pins are used instead of one
pin for all interrupts. This is especially useful when
full duplex mode is used since it can be used to

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 827 Issue 8, Volume 9, August 2010

determine the interrupt source by knowing the pin
which generates the signal instead of polling the
status register.

5. Testing and Verification Procedures

5.1. Introduction
Most systems undergo testing throughout their
development and before they are delivered to the
customer. In general, the system testing process has
two distinct goals:
1. To demonstrate to the developer and the customer
that the system meets its requirements.
2. To discover faults or defects in the system where
the behavior of the system is incorrect, undesirable
or does not conform to its specification [10].
 The first goal leads to validation testing, where
the system is expected to perform correctly using a
given set of test cases that reflect the system's
expected use. The second goal leads to defect
testing, where the test cases are designed to expose
defects. The test cases can be deliberately obscure
and need not reflect how the system is normally
used. For validation testing, a successful test is one
where the system performs correctly. For defect
testing, a successful test is one that exposes a defect
that causes the system to perform incorrectly.
 Tests fall into two general types – black box and
white box tests. Black box tests are those that are
performed without any internal knowledge of the
system. In a black box test, the testing is typically
conducted by changing the inputs and observing the
system outputs. White box tests are conducted with
knowledge of the internal working of the system.
Therefore, knowledge of internal operation may
influence how the test is constructed [12].
 Yunshan and Marshall [13] formalize design
verification as a model checking problem, where an
implementation is modeled as a finite state machine
with a set of properties. Each property typically
consists of an assumption and a guarantee, and the
verification task is to prove that the guarantee holds
for the model under the corresponding assumption.
For a design under test, there are two common
sources of guarantee properties: assertion, where the
design is tested as a white box, and reference model,
where the design is tested as a black box. However,
in cases where it is impractical to build an abstract
reference model that represents all possible
implementations, a gray box approach is adopted
where most of the reference model is derived from
the specification while certain signals from the
design under test are treated as witnesses.

 Yunshan and Marshall apply this verification
technique on a generic UART design using a
compositional methodology. The UART is broken
into a number of blocks, and each of these blocks is
verified on its own before their integration to prove
that its guarantee properties hold upon their
predefined assumptions. However, unlike
verification techniques such as directed simulations
where block test-benches are often wasted after
block verification, the results obtained during this
stage are subsequently utilized in interface
verification, where it is proven that the environment
satisfies these predefined assumptions, and
integration verification, where the verified blocks
are abstracted and replaced with simpler models that
are in turn tested as a single unit.
 Wohlin and Regnell [14] suggest a modeling
approach suitable for reliability certification of
modular systems. Modularization is pin-pointed as
being suitable for reuse, but modules are often not
reused if their reliability cannot be guaranteed.
Therefore, it is essential to realize that reliability
certification is a must when discussing reuse. The
reliability must reflect the intended usage of the
module, as a module may be viewed as being
reliable for one purpose and unreliable for another
depending on the intended usage of the module.
Therefore, the ability to certify software during
testing is based on a user-oriented approach. This
requires a model of the anticipated usage of the
software and quantification of the expected usage as
the software is released. Wohlin and Regnell
propose a classification of components to simplify
the derivation of such usage profiles, and identify
several approaches to determine system reliability
based on knowledge about the components.
 Yeandel, Thulborn, and Jones [15] implement an
on-line testable UART using IFIS (If it Fails It
Stops) approach. This approach has several
advantages such as eliminating the need to generate
and apply test vectors to propagate failures to an
observable primary output since any internal fault is
automatically propagated to a primary system
output. Moreover, since there is only one
manifestation of failure using this approach, that is a
circuit node does not change its value when
expected, fault identification is made easier through
having to observe whether a node changes its
values, rather than continuously compare actual and
expected values. Finally, since the effect of a failure
is propagated through all circuit elements causing
them all to halt, failure detection can be achieved by
merely observing any primary output. However,
these benefits are not obtained cost free. Overheads
are incurred in terms of both circuit complexity and

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 828 Issue 8, Volume 9, August 2010

slower operation which may be inappropriate for
applications where the highest operational speed is
required or where device complexity is important.
Since this is exactly the case for the system in hand,
where both high speed and minimal size were taken
into consideration, this approach could not be
adopted.
 The development of the described USART
system was based on an incremental approach. The
system specification, design and implementation
were broken into a series of increments that were
each developed in turn. In this incremental
development process, the services to be provided by
the system were first identified. A number of
delivery increments were then defined, with each
increment providing a subset of the system
functionality. Once the system increments had been
identified, the requirements for the services to be
delivered by each increment were defined in detail,
and those increments were developed.
 This incremental approach to development
allowed each increment to be tested as it was
developed, with these tests based on the
requirements for that increment. This represented a
preliminary stage in the testing process; unit testing.
As new increments were developed, they were
integrated with existing increments so that the
system functionality improved with each increment.
At this stage, testing was concerned with finding
errors that result from unanticipated interactions
between components and component interface
problems. During these two stages of the testing
process, unit testing and integration testing, some of
the concepts and methods presented by Yunshan
and Marshall mentioned above were utilized. For
instance, each component in the system was tested
individually, where some were tested as a black box
while others were tested as a white box. The verified
components were then combined and treated as a
single unit in the subsequent tests.
 Once the system was completely integrated, it
was tested for fulfillment of its requirement
specifications. This stage of the testing process;
acceptance testing, continued until it was verified
that the final system represented an acceptable
implementation of its requirements. Finally, as
suggested by Wohlin and Regnell above, the
reliability of the system was investigated. Not only
was the system subjected to a set of tests that
reflected the expected mix of services that it should
handle, but also tests were designed to expose it to
its operating limits to check its behavior and
response.
 The proposed USART design was implemented
and tested using firmware from Xilinx Corporation.

For software, the free ISE Webpack version 8.2i
was used [16]. As for hardware, different
development kits were used throughout the stages of
the project. These include: Digilab 2 XL (D2XL)
Development Board [17], Digilent Spartan-3 System
Board [18], and Spartan-3E Starter Kit Board [19].
However, since the design was entirely
implemented using a universal hardware description
language, Verilog HDL, it is expected to be directly
interoperable with any environment provided by
other vendors.

5.2 Testing Process
In general, the project went through several phases
during the testing process as illustrated in Fig. 27:

Fig. 27: Phases of the testing process

5.2.1 Unit Testing
A unit test is a test of the functionality of a system
module in isolation, and the unit test should be
traceable to the detailed design. A unit test consists
of a set of test cases used to establish that a
subsystem performs a single unit of functionality to
some specification. Test cases should be written
with the express intent of uncovering undiscovered
defects [12].

5.2.1.1 Baud Rate Generator
Actual snapshots were taken for clock16 and baud-
clock signals using Agilent DSO5014A
oscilloscope. One of these is shown in Fig. 28.

Fig. 28: Clock16 signal for divisor = 00A3H

5.2.1.2 Buffers
Seven-level buffers are used in the transmitter and
receiver module to hold data words that are to be
sent or that has already been received. Since both
buffers fundamentally have the same architecture,

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 829 Issue 8, Volume 9, August 2010

then the test results obtained from one would be
equally applicable to its counterpart. Fig. 29
illustrates the operation of the buffer.

Fig. 29: Simulation of the buffer

 At the beginning of the simulation, buf_empty
output was high indicating that the buffer was
empty. As soon as the first word was written into
the buffer at the positive edge of the write signal,
buf_empty went low. When another six words were
written into the buffer, buf_full signal became high.
The next word attempted to be written into the
buffer caused overrun signal to go high indicating
an overrun condition that caused that word to be
lost. Next, seven read pulses were applied to the
buffer to investigate its contents. The words
previously written into the buffer sequentially
appeared on the data bus at the positive edge of each
read pulse. The buffer was disconnected from the
data bus when the read signal became inactive.
 When all the contents of the buffer were read, the
overrun signal went low while buf_empty signal
went high. The last word written into the buffer
before the overrun condition appeared on the data
bus again upon the application of an eighth read
pulse. This indicates the eighth word applied at the
input of the buffer was not written into it since
writes are disallowed if the buffer is full.
 After confirming from the simulations that the
buffer operated as it is supposed to do, the buffer
was implemented on the development board, and the
test results conformed to the previous simulations
for a wide range of frequencies.

5.2.2 Integration Testing
 After the units of a system have been constructed
and tested, they must then be integrated into larger
subcomponents leading eventually to the
construction of the entire system. The intermediate
subsystems must be tested to make sure that
components operate correctly together. The purpose
of integration testing is to identify errors in the
interactions of subsystems [12].

5.2.2.1 Transmitter Module
 After testing the remaining components that
comprise the transmitter section of the USART each

on its own in a similar manner to the baud rate
generator and buffer, these sub-modules were
integrated together to test the transmitter module as
one unit.
 The operation of the transmitter module was
simulated for the different modes of operation and
options for the word length, parity bit and stop
bit(s). One example is shown in Fig. 30 which
illustrates the asynchronous mode of operation with
word length of five bits, odd parity, one stop bit, and
with the addressability feature disabled.

Fig. 30: Asynch. simulation of transmitter module

 The simulation illustrates two frames transmitted
one after the other. As it is clear from the serial
output signal (SOUT), the transmission began with
the start bit of the first frame followed by the five
data bits that comprise the first word (10) starting
with the least significant bit. A parity bit was then
transmitted before the stop bit marked the end of the
first frame. After that, the second frame was
transmitted in a similar manner.
 Fig. 31 illustrates the synchronous mode of
operation, with word length of eight bits and the
addressability feature enabled.

Fig. 31: Synch. simulation of transmitter module

 Before transmitting the actual data words, a sync
character (254d = FEh) was transmitted to indicate
the beginning of a block of data for all possible
receivers. To capture the attention of the receiver of
interest, its address (11d in the figure) was then
transmitted. After that, three data frames were
transmitted. Each of them consisted of eight data
bits followed by an address/data bit. The clock
signal transmitted from the sender to the receiver in
the synchronous mode of operation is not shown in
the figure for clarity purposes.
 Actual snapshots were taken for the serial output
of the transmitter module in the different modes of
operation and at various baud rates using a digital
storage oscilloscope. Fig. 32 illustrates the serial
output of the transmitter at a data rate of 1200 bps in

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 830 Issue 8, Volume 9, August 2010

asynchronous mode of operation, with 6 data bits,
even parity, one stop bit, and with the addressability
feature disabled.

Fig. 32: Tx module in normal asynch. mode

 Fig. 33 illustrates the serial output at a data rate
of 110 bps in asynchronous mode of operation, with
word length of eight bits and the addressability
feature enabled.

Fig. 33: Asynch. Tx module output with 9-bit

addressability feature enabled

The previous results show that the transmitter
module operates as expected in the two modes of
operation of the USART at various baud rates.
Moreover, all word lengths and options for parity
and stop bits specified in the requirements of the
system are supported.

5.2.3 Acceptance Testing
The primary goal of an acceptance test is to verify
that a system meets its requirement specification. To
demonstrate that the system meets its requirements,
it must be shown that it delivers the specified
functionality, performance and dependability, and
that it does not fail during normal use. Ideally, the
acceptance test plan is developed with the
engineering requirements and is traceable to them.
Acceptance testing is usually a black-box testing
process where the tests are derived from the system
specification. The system is treated as a black box
whose behavior can only be determined by studying
its inputs and the related outputs. Another name for
this is functional testing because the tester is only

concerned with the functionality and not the
implementation of the system [10].
 After testing the transmitter module, the next
logical step in the testing process would be testing
the receiver module. However, since the receiver
module is inextricably linked to a corresponding
transmitter which must supply the serial data, testing
the receiver module was utilized as a test to the
whole system at the same time.

5.2.3.1 Testing the USART with the Transmitter
Connected to the Receiver

Before connecting the USART to an external
system, it was tested at first by connecting the serial
output of its transmitter section to the serial input of
its receiver section to locate any potential errors
within the system itself. Similarly, the clock output
of the transmitter section was connected to the clock
input of the receiver section in the synchronous
mode.
 A collection of simulations that covers various
features of the system were run using the Xilinx ISE
Simulator. Fig. 34 illustrates a simulation of the
USART operation in asynchronous mode with eight
data bits, no parity, two stop bits, and with the
addressability feature disabled.

Fig. 34: Asynch. TX & RX Simulation of the

USART in normal mode

 The data received at the serial input of the
USART (SIN) was shifted in one bit at a time
starting with the least significant bit. After receiving
the whole first frame, the status register (address 6)
was read and indicated that a new word was
received. This new word (240) appeared on the data
bus from the receiver buffer (address 5) while the
read input was active. After reading this received
word, the status register indicated that the receiver
buffer became empty again. Meanwhile, another
frame was being received. The received word
appeared on the data bus while the read input was
active and the status register again indicated the
status of the receiver buffer.
 Another simulation of the USART operation in
the synchronous mode with seven data bits, odd

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 831 Issue 8, Volume 9, August 2010

parity and the addressability feature disabled is
shown in Fig. 35. Since it is synchronous mode, a
sync character was transmitted at first to indicate the
beginning of a data block. This sync character
would not be written into the receiver buffer.

Fig. 35: Tx & Rx synch. simulation of USART

5.2.3.2 Serial Communication between Two
directly connected USARTs
Next, the entire system was implemented on two
Xilinx development boards. Both were programmed
with the same USART design. However, one was
used to transmit data, while the other was used to
receive the sent data. Special temporary
modifications to the internal design were
implemented to allow certain internal signals to be
observed with the digital storage scope. The PC was
used to configure the USARTs with the different
communication options by sending the appropriate
control words to the respective registers and also to
supply the data and to be transmitted serially.
 Half-duplex and full-duplex communication
sessions were then established between them, with
the PC used to supply each system with the data to
be transmitted serially and to read the received data.
From this test, more indications were obtained that
the system complies with its requirements
specification. Error conditions reflected the true
state of the received data when the two USARTs
were deliberately configured with conflicting
communications options. Moreover, the USARTs
functioned as expected in the 9-bit mode of
operation.
 Figs. 36-38 illustrate some snapshots of the
communication sessions that were established
between the two USARTs. Each snapshot indicates
the mode of communication options that were used
in the session.

5.2.4 Performance Testing
The complex relationships between the components
in a system mean that the system is more than
simply the sum of its parts. It has properties that are
properties of the system as a whole. These emergent
properties cannot be attributed to any specific part

of the system. Rather, they emerge only once the
system components have been integrated. Such
properties include reliability, reparability, and
usability of the system [10].

Fig. 36: Asynchronous 9-bit address transmission

and detection between two USARTs

Fig. 37: Asynchronous 9-bit data transmission and

reception between two USARTs

Fig. 38: Asynch. 8-bit normal mode data

transmission between two USARTs at 3 MHz

 Therefore, once a system has been completely
integrated, it is possible to test the system for
emergent properties. Performance tests have to be
designed to ensure that the system can process its
intended load. This usually involves planning a

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 832 Issue 8, Volume 9, August 2010

series of tests where the load is steadily increased
until the system performance becomes unacceptable.
In performance testing, an effective way to discover
defects is to design tests around the limits of the
system; that is, stressing the system (hence the name
stress testing) by making demands that are outside
the design limits of the system until the system fails.
 During the test cases described previously, the
USART design was subjected to some extreme
conditions to explore various aspects of the limits of
its operation. For example, the output of the baud
rate generator was examined at the highest baud rate
possible, and the buffers were tested with increasing
read and write speeds. Moreover, the operation of
the entire USART was checked while operating at
the highest baud rate possible when two systems on
separate boards were connected together, as well as
when the transmitter section was used to drive the
receiver section of the same system.

6 Conclusion
We presented in this paper the detailed design and
implementation of a reconfigurable USART IP core
suitable for use in FPGA-based systems and systems
on chip (SoC). The USART supports both
synchronous and asynchronous modes of operation
with variable configurable date rates and frame
formats. We incorporated support for multi-drop
networks of serial devices using 9-bit address
generation and detection which increases the utility
of such a device in modern networked processors
and embedded systems. It is shown through
comprehensive testing that the design performs
according to its specifications and can operate at
high bit rates reaching 3 Mbps. The USART is able
to detect and recover from common serial
communication errors such as overflow and framing
errors. It can also detect false start bits. It features a
universal 8-bit bus interface and interrupt driven
operation. The design is implemented using HDL so
it is platform neutral.

References
[1] Krishnan, Ravi, Embedded Systems:

Technologies and Markets, BCC Research
Report, IFT016C, Published: April 2009.

[2] John A. Stankovic, Insup Lee, Aloysius Mok,
Raj Rajkumar, “Opportunities and Obligations
for Physical Computing Systems”, IEEE
Computer Magazine, Nov. 2005, pp. 23-31.

[3] Wayne Wolf, “High performance Embedded
Computing”, Elsevier, 2007, pp.383-387.

[4] Mohd Yamani, Idna Idris, Mashkuri Yaacob
and Zaidi Razak, “A VHDL Implementation of

UART Design with BIST Capability”,
Malaysian Journal of Computer Science, Vol.
19 (1), 2006, pp. 73-86.

[5] Azita Mofidian, “DesignWare foundation
DW_16550: A fine work of UART”,
Designware Technical bulletin, Technical
Forum for Design Automation information,
Volume 4 issue 3 Q4/99,
http://www.synopsys.com/news/pubs/dwtb/q49
9/dwtb_art1.html.

[6] Shouqian Yu, Lili Yi, Weihai Chen and
Zhaojin Wen, “Implementation of a Multi-
channel UART Controller Based on FIFO
Technique and FPGA”, Proceedings of 2nd
IEEE Conference on Industrial Electronics and
Applications ICIEA, May 2007, pp. 2633 -
2638

[7] Tim Wilmshurst, Designing Embedded Systems
with PIC Microcontrollers – Principles and
Applications, 1st Edition (2007), Elsevier
Publication, UK.

[8] Tim Wilmshurst, An Introduction to the Design
of Small-Scale Embedded Systems, Palgrave,
2001.

[9] Barry Brey, The Intel Microprocessors –
Architecture, Programming and Interfacing, 7th
edition. Pearson Prentice Hall, Upper Saddle
River, New Jersey, 2006.

[10] I. Sommerville, Software Engineering, 8th
Edition. Addison Wesley, 2007.

[11] Xilinx web site,
http://www.xilinx.com/ise/logic_design_prod/webpa
ck.htm.
[12] Ford R.M, Coulston C., Design for Electrical

and Computer Engineers, McGraw Hill, 2005.
[13] Zhu Yunshan and Tom Marshall. “Design

Verification Using Formal Techniques”. In:
Proceedings of the IEEE 4th International
Conference on ASIC, 2001, pp. 21-28.

[14] C. Wohlin and B. Regnell “Reliability
Certification of Software Components”, IEEE
Symposium on Software Reuse, 1998, p.56-64

[15] J. Yeandel, D. Thulborn and S. Jones,”An On-
line Testable UART Implemented Using IFIS”.
In: Proceedings of the 15th IEEE VLSI Test
Symposium, 1997, pp. 344-349.

[16]http://www.xilinx.com/ise/logic_design_prod/w
ebpack.htm
[17] www.digilentinc.com, Digilent D2XL System

Board Reference Manual, Revision: June 9,
2004.

[18] www.xilinx.com, Spartan-3 Starter Kit Board
User Guide, version 1.1: May 13, 2005.

[19] www.xilinx.com, Spartan-3E Starter Kit Board
User Guide, version 1.0: March 9, 2006.

WSEAS TRANSACTIONS on SYSTEMS Ali H. El-Mousa, Nasser Anssari, Ashraf Al-Suyyagh, Hamzah Al-Zubi

ISSN: 1109-2777 833 Issue 8, Volume 9, August 2010

http://www.synopsys.com/news/pubs/dwtb/q499/dwtb_art1.html�
http://www.synopsys.com/news/pubs/dwtb/q499/dwtb_art1.html�
http://www.xilinx.com/ise/logic_design_prod/webpack.htm�
http://www.xilinx.com/ise/logic_design_prod/webpack.htm�

