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Abstract: - This paper mainly deals with the issue of early fault diagnosis for rotating machinery. An alarm 

strategy called the slow-changing alarm (SCA) is proposed to predict early fault of equipment timely and 

effectively. Meanwhile, the SCA system is the integration of adaptive lifting de-noising scheme, adaptive 

learning algorithm and decision-making strategy of alarm monitoring and diagnosis for the early fault of 

rotating machinery. In the paper, both the theories and realization of SCA system are thoroughly researched. 

Firstly, an adaptive lifting de-noising scheme is proposed to eliminate noise, and then the features of early fault 

are extracted from de-noised signal. Secondly, the key problem to implement on the SCA system is 

successfully resolved through adaptive learning algorithm and the decision-making strategy of SCA. To be 

specific, the alarm threshold of SCA system is obtained based on a novel adaptive learning algorithm, and the 

alarm based on features of vibration signals is activated according to decision-making strategy of SCA, while 

the relevant alarm log and data of SCA are instantly saved into database to analyze the causes of faults 

effectively, acquiring the early fault result synchronously. The proposed system has been applied in some 

petrochemical projects. In an engineering case, this system can preferably capture the early fault signal of 

rotating machinery, and considerably enhance the capability of predicting and diagnosing early fault. 

Key-Words: - rotating machinery; condition monitoring; early fault; adaptive lifting de-noising scheme; 

adaptive learning; decision-making strategy; slow-changing alarm 

 

1 Introduction 
Rotating machinery is extremely important and 

widely-used in industrial applications, such as 

turbines and compressors, which are the key 

equipments in oil refineries, power plants, 

chemical engineering plants and so on. However, 

an unexpected fault in these machines may cause 

enormous economic loss and personnel casualty [1-

2]. With the development of condition monitoring 

and fault diagnosis technique, rotating machinery 

condition monitoring system are not only required 

to monitor real time (RT) operational conditions of 

plants, but also should decide whether the whole or 

only parts of the plant are in normal condition or 

not. As a result, early fault and its cause should be 

detected effectively and efficiently [3-5]. At the 

present time, various methods of condition 

monitoring and fault diagnosis have been developed 

and applied to detect the early stage faults in the 

machinery. 

 In the last few years, numerous new methods 

have been proposed to address warning and 

diagnosis of early fault for rotating machinery. Zhao 

et al. [6] considered that signal of the early fault of 

the hydraulic pump was a periodic weak signal, so 

an intermittent chaos, sliding window symbol 

sequence statistics-based method was proposed to 

detect the early fault of one single piston loose 

shoes of hydraulic pump on a hydraulic tube tester, 

and a control limit was introduced to realize 

automatic early fault alarm. Hu et al. [7] presented a 

study of application of duffing oscillator for 

extracting the features of early mechanical failure 

signal, which could be used to detect weak signal, 

such as the feature signal of early machinery fault. 

An example was presented here to demonstrate the 

utility of this method by analyzing the early rub-

impact signal appearing in a rotor. And Hu et al. [8] 

also introduced a new method to detect weak useful 

signal buried in noise. This method was based on 

stochastic resonance (SR) theory and the model is 

applied to detect the weak frequency component 

signals characterizing the inception of rub-impact 

fault of rotor system. The result showed that this 

method was simple, robust and reliable. 
C.Capdessus [9] introduced the theory of 

cyclostationary processes as a powerful tool for the 

diagnosis of rotating machines. Dieter-Heinz 

Hellmann [10] explained how the use of easily 
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measured parameters in combination with suitable 

mathematical algorithms could provide early 

diagnosis of faults. But these methods mainly 

focused on the signal processing, and what’s more, 

those researchers didn’t take enough account of the 

process of early fault. 

Generally speaking, the generation of most 

faults in rotating machinery is always a slow-

changing process, but the early features of the faults 

are often ignored. When alarm of RT monitoring 

system occurs and thus makes the equipment stop, 

some components of this equipment may have 

already been broken seriously, which might cause 

huge economic loss, so capturing symptom 

signals in the early stage of the fault is very 

crucial to prevent it. This paper mainly deals with 

the design of SCA system, which can be well 

applied into RT monitoring system. It can capture 

the early fault symptom signal timely, and save it to 

the database in order to facilitate the analysis of 
the cause and overcome the fault before it become 

more severe [11]. In an example of engineering 

application case, The SCA system is applied in a 

machine-set in a petrol-chemical enterprise, which 

has proven the feasibility of this system. 

 

 

2 Theoretical analysis 
2.1 The  features of early fault signal 
 The features of early fault signal of rotating 

machinery are often weak and diversified [12], and 

the most valuable signal feature of early fault may 

be buried in noise. So the first step, which is quite 

important, is to find an effective way of de-noising.  

In this paper, an adaptive lifting de-noising 

scheme which is based on lifting wavelet transform 

is proposed to perform de-noising of the signal. 

After de-noising, the method of FFT-based 

spectrum analysis is adopted to extract the features 

of signal, which can help obtain the features of early 

fault signal effectively.  

 Just from the aspects of time domain or 

frequency domain alone, it is difficult to achieve 

accurate warning and diagnosis of early faults. FFT-

based spectrum analysis method is the most mature 

and stable method; literature [13] studied the FFT 

analysis method in detail. But few of researchers 

systematically combined the changing of spectrum 

features of vibration signals with the warning and 

diagnosis of early faults, which can reflect the 

changing state of the equipment. 

 As reflected in the frequency domain, features of 

the fault signal are more obvious, which could 

activate warning and diagnosis timely. Therefore, 

this paper mainly deals with the issue of capturing 

the early fault symptom through continuous 

changing of the spectral features of vibration signals 

in time domain.  

 

2.2  Lifting wavelet transform and de-noising 

2.2.1 Lifting wavelet transform 
  

 Wavelet analysis, which is a new time-frequency 

analysis methods, is rapidly developing in recent 

years. It is especially effective in noise reduction, 

which can improve the extraction of features in 

weak signals.  

 The lifting method was proposed by Wim 

Sweldens in 1995 [14] , which not only can realize 

the filtering operation fast and effectively, but also 

can construct biorthogonal wavelet through space 

domain and it does not depend on Fourier 

Transformation. Wavelet basis function is not 

generated by translation and expansion of a function. 

Every operation is done in the time domain, and can 

get the same result as those gained from traditional 

wavelet transformation, which means that the signal 

can be separated in different frequency bands and 

thus achieving the goal of multi-resolution. This 

algorithm comprises of subdivision, prediction and 

updating [15], as Fig. 1 shows. 

 (1) Subdivision：Separate the original data 

into two uncorrelated subset, which are even 

sample subset [ ]ex n   and odd sample 

subset [ ]ox n . 

 [ ] [2 ]ex n x n=                                 （1） 

 [ ] [2 1]ox n x n= +                            （2） 

 (2) Prediction ： Prediction error [ ]d n  (which 

can be deemed as wavelet coefficient) can be gained 

by subtracting the product of [ ]ex n and prediction 

operator P from [ ]ox n . 

 [ ] [ ] ( [ ])o ed n x n P x n= −                 （3） 

 
Fig.1 Framework of lifting wavelet decomposition 

and reconstruction 
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 (3) Updating ： Scale coefficient [ ]c n  is the 

approximation of the original signal [ ]x n , which is 

gained by adding the product of update operator U 

and wavelet coefficient [ ]d n  to [ ]ex n . 

          [ ] [ ] ( [ ])ec n x n U d n= +                   （4） 

The three steps above formulate a lifting process, 

by iterations of which a complete multi-resolution 

wavelet transformation can be achieved. Just as Fig. 

1 shows, the lifting method can be easily 

reconstructed, which can also be adaptable when 

even P and U are non-linear or space-variant 

functions. All we need to do is just rearrange the 

orders of formula (3) and (4). The reconstruction 

steps are (5) and (6). 

         [ ] [ ] ( [ ])ex n c n U d n= −                   （5） 

         [ ] [ ] ( [ ])o ex n d n P x n= +                  （6） 

 In regard to the frequency domain, detail signal 

(wavelet coefficient) reflects the high frequency 

component of the original signal, while the 

approximation signal reflects the low frequency 

component. In formula (3) and (4), the choice of P 

should reflect the correlation of the original data, 

while the choice of U aims at reducing aliasing 

effect of subdivision. As a result, wavelet functions 

and scale functions which have some specific kinds 

of properties can be constructed. 

 

2.2.2 Adaptive lifting de-noising scheme 
Currently, the most widely used de-noising 

methods are based on hard-threshold or soft-

threshold, which were proposed by Donohue 

[16].The core idea of wavelet threshold de-noising 

is to concentrate the energy extracted from the 

signal to some few wavelet coefficients, while noise 

signals are distributed in all the wavelet coefficients. 

This means that the better the matching degree of 

the wavelet and the extracted signal is, the better it 

will be [17]. To improve the de-noising effect and 

extract the features of the pulse signals much better, 

we conduct the de-noising as follows: 

 (1) Construct the prediction coefficient and 

updating coefficient of the lifting wavelet 

transformation according to the adaptive lifting 

method proposed in 2.2.1 

(2) Perform the lifting wavelet transformation 

using the prediction coefficients and updating 

coefficients constructed above. The iterative 

decomposition can be done to the Jth layer, resulting 

the approximation coefficients 
,j kc  and detail 

coefficients
,j kd ; 

 (3)According to the threshold criterion, 

expansion should be done from the 1st to the Jth 

scaling wavelet coefficient, so the estimated value 

of wavelet coefficient 
,j ka  can be obtained.   

(4) Reconstruct the approximation coefficient of 

scaling signal J and estimation value 
,j ka  of scaling 

wavelet coefficient 1 to J, and the de-noised signal 

can be obtained. 

 

2.2.3 Simulation data analysis 
 In order to verify the effect of the adaptive 

lifting wavelet construction method of de-noising 

mentioned above, simulation of data analysis is 

conducted, comparing the results from both adaptive 

lifting scheme de-noising and the traditional de-

noising method. 

 As shown in Fig. 2, the noise is added to the 

simulation signal, In order to compare the effect of 

de-noising from the two techniques, the db4 wavelet 

is adopted. The results of de-noising are shown in 

Fig. 3, Fig.4, and Fig. 5. 

 
Fig 2 the simulation signal of vibration signal 

after adding noise 

 
Fig 3 the result of de-noising using the adaptive 

lifting wavelet 

 
Fig 4 the results of de-noising using db4 wavelet 

hard-threshold 

WSEAS TRANSACTIONS on SYSTEMS Wei Zhong-Qing, Jiang Zhi-Nong, Ma Bo, Zhong Xin

ISSN: 1109-2777 54 Issue 1, Volume 9, January 2010



 
Fig 5 the results of de-noising using db4 wavelet 

soft-threshold 

 For the results above, the effectiveness of de- 

noising using the adaptive lifting de-noising scheme 

has been proved. 

 

2.3 Basic principles of SCA system 
After adaptive lifting de-noising scheme of 

signal, the features of signal would be obtained 

through the FFT-based spectrum analysis method 

effectively. But first of all, the meaning of slow-

changing must be clarified. 

In brief, the notion of slow-changing means "to 

change slowly", which has two implications [18]: 

one is that the operational condition of the 

machinery changes slowly, such as rotor scaling, 

bearing wearing in rotating machinery, and the 

deposit of catalyst on the rotor, causing the change 

of operational condition from normal to abnormal 

through slow-changing accumulation for the whole 

machine, the other is the slow-changing trend which 

occurs in machine vibration signal because of the 

change of its condition. For instance, when rotating 

machinery rotor scales, bearing wear and tear and 

the deposit of catalyst on the rotor would happen, 

one or more features of the vibration signal may 

increase or decrease slowly. 

Generally speaking, when early fault occurs in 
machine sets which are in normal conditions, the 

variation of operational condition of plants can be 

described as: stage of smooth operation stage of 

fault deterioration  stage of smooth operation, 

just as shown in Fig 6. 

In the stage of fault deterioration, which lasts 

from the starting point of alarm to ending point of 

alarm as shown in Fig 6, different kinds of slow 

changes will cause machine vibration signals to 

have a slow-changing trend during a period of time. 

Vibration signals which exist in certain duration 

before and after the SCA occur are very crucial to 

analyze the slow-changing fault. As a result, 

capturing and saving these signals will be of great 

significance to condition monitoring and fault 

diagnosis. These vibration signals are called Slow-

Changing Signals (SCS). 

SCS can be quantitatively described by slow-

changing value, which is defined as follows. The 

difference between current and former (which is 

usually several minutes earlier) machine condition is 

minute-level changed information amount[19-20], 

which can describe the changing trend of machine 

set in a particular period, and is very important to 

capture early fault signal and prevent the fault from 

happening. 

 

 

3 The realization of SCA system 
3.1 System design 

According to the basic principle of SCA, the 

accurate capturing of SCS is the key to its 

realization. The exact moment or time interval 

must be ascertained when the machine condition 

slowly changes. Therefore, physical quantity that 

can be accurately measured should be found to 

describe the slow-changing events. As to the 

description of the events, specifically to the rotating 

machinery, amplitude and initial phase of the 

overall, 1X, 2X, 3X and 1/2X frequency etc (where 

NX denotes the N-th harmonic) of the vibration 

signal can be acquired[21]. If these features exceed 

the threshold for some times, it can be deemed that 

the signals change slowly. These thresholds are 

obtained through a certain adaptive leaning 

algorithm before the slow change occurs [22]. When 

adaptive leaning procedure is completed, we should 

decide if SCA should be confirmed according to its 

result, and save alarm log and alarm data to the 

database so as to analyze the cause of the faults
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Fig.6 Schematic rig of equipment running status with fault in early stage 

 
 

Fig.7 Framework of SCA system 
 

 

As shown in Fig 7, this SCA system is made up 

of four parts: Adaptive lifting de-noising scheme, 

adaptive learning threshold, SCA decision-making 

strategy and saving alarm-related data. 

Currently, the issue of how to realize the 

functions of SCA by software is the bottleneck on 

how to implement it. This paper proposes a novel 

adaptive threshold algorithm to perform SCA 

judgment and operation, and save alarm-related 
data. This algorithm is realized by object-oriented 

C++ language according to the structure of SCA 

system, and it can successfully resolve the critical 

problem of realizing SCA system. As shown in Fig 

8, the overall flow chart of the software of SCA 

system is as depicted. 

 

 
Fig.8 Flow chart of procedure 
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3.2 Adaptive learning threshold 

At first, when the machine set is in normal and 

smoothly operational condition, a set of length-

assigned feature signals series can be kept by saving 

them in an array-buffer, as shown in Fig 9. 

 

 
Fig.9 Schematic rig of adaptive learning threshold 

 

About 24 hours after the machine starts 

running, if it is thought to be in stationary condition, 

the threshold of SCA can be acquired by a certain 

adaptive learning algorithm. As to the amplitude of 

vibration signals of rotating machine, the feature 
series signal can be manifested as [23-24]: 

)...,,( 321 iniiiiN xxxxX =             (7) 

i denotes type of features, including overall, 

1X, 2X, 3X, 1/2X and other multiple frequency and 

fractional frequency, while n is the n-th feature of 

all the feature type. 
Based on Eq. (7), the mean-variance 

standardization of the different type of features can 

be represented as: 

n

x

X

n

N

iN

iN

∑
== 1                           (8) 

Furthermore, Based on Eq. (8), the deviation 

of the different type of features can be represented 

as: 

iNiNiN XX −=∂                    (9) 

Therefore, on the basis of both Eq. (8) and Eq. 

(9), the corresponding matrix S which represents the 

intensity of variation of the different types of 

features can be presented as follows: 


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
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X

X

X

X

S

.................

33

22

11

                          (10)  

Generally speaking, the value of matrix S may 

be affected by interference signals and some other 
external factors. And it could be modified by 

expectation coefficient and amplification coefficient, 

which are set in advance based on practical 

experience. So the expectation coefficient matrix 

Hope and amplification coefficient matrix Zoom are 

described in Eq. (11) and Eq. (12): 


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




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
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H
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                           (11) 























=

iZ

Z

Z

Z

Zoom

.....

3

2
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                           (12) 

As a result, the adaptive learning threshold 

matrix Th, Esq. (13) is as follows: 

ZoomHopeSTh ••=                      (13) 

As to the actual situation of the machine set, it 

can reset the expectation coefficient and 

amplification coefficient repeatedly, and thus the 

adaptive learning threshold can be optimized, 

improving the robustness of system. 
 

3.3 The decision-making strategy of SCA 
After the threshold is acquired through adaptive 

learning algorithms, the moment when the slow 

change event occurs can be obtained by alarm 

judgment.  

The key to realize it is to capture the time when 

feature of signal changes slowly, that is to say, 
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when the amplitude of vibration signal becomes 

smaller, it will cause no significant effect to device 

running normally, but when it becomes larger, some 

early faults may occur. As a result, the core thought 

of the SCA decision-making of this system is that 

[25]: when signal feature becomes smaller, no SCA 

is activated; while on the contrary, it is activated. As 

shown in Fig 10, if activated, check if feature of the 

current signal exceeds the threshold acquired by 

adaptive learning algorithm. Once the threshold is 

exceeded, the counter will be added by 1 

automatically. When the total count exceeds the 

specified value, slow-changing event is believed to 

have happened, so that new slow-changing 

instruction is send. 

 
Fig.10 Schematic rig of slow-changing alarm 

judgment 

 

After the alarm is activated, it means there must 

be some kinds of faults that cause the alarm. Based 

on the historical or expert experience of early fault 

diagnosis of SCA, as shown in Table1, the early 

fault types could be acquired from SCA system [26-

28]. It is effective to predict and diagnose the typical 

early fault. 

 

Table.1 The early fault result of SCA diagnosis 

 
 

 

4 An application case 
In a domestic petroleum-chemistry enterprise in 

China, a SCA system was applied in RT condition 

monitoring system in a compressor machine set.  

At first, the adaptive lifting de-noising scheme of 

signal was performed to help extract the features of 

signal. The waveform of original signal was shown 

in Fig. 11, and the result of adaptive lifting de-

noising was shown in Fig. 12. 

 Fig.11 Waveform of original signal 

 

 Fig.12 Waveform of signal after adaptive lifting de-

noising 

 

When the machine set run stably, after adaptive 

lifting de-noising, the parameters of SCA were 

ascertained, and the thresholds were acquired 

through adaptive learning algorithms. The results 

were shown in Table 2.  

 

Table.2 Thresholds and parameters of SCA 
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Over a period of time, The SCA occurred in 

vibration channel 1H of the machine through RT 

monitoring. At this time, the value of Overall 

frequency in this channel was 40.67um, which had 

not exceeded regular alarm limit assigned by the 

machine itself, and it could still operate normally. 

However, the SCA had occurred, which indicated 

some kinds of faults or abnormities existed. The 

next step was to find out what kind of fault it is. 

We could acquire historical trend of alarm when 

SCA took place in channel 1H through diagnosis 

analysis function of the system, inquiring alarm log 

and alarm database. Just as shown in Fig 13, the 

Overall frequency value trend in channel 1H had 

little change during this period of time, but the 2X 

frequency value had an apparent growing trend, 

this value grew from 4.94um to 11.86um slowly, 

which caused the occurrence of SCA. After that, it 

was restored to a new stable value. This signified 

that some potential abnormity or fault had existed in 

the machine set. 

 
Fig.13 History tendency chart of alarm 

 

 
Fig.14 the waveform graph of channel 1H 

 

 
Fig.15 the spectrum graph of channel 1H 
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Through analysis of the historical alarm 

waveform, the waveform shape of channel 1H had 

an abnormal shape, as shown in Fig 14. 

In addition, based on the spectrum graph as 

shown in Fig 15, the value of 2X frequency in 

channel 1H became larger, which was up to 11.5um. 

It was evident that the machine had some potential 

fault.  

Then the specific diagnosis result could be 

acquired from the SCA diagnosis table as Table 1 

shows, which could be deemed as early fault in rotor 

misalignment. The result was consistent with the fact 

when we check it afterwards. It had been proved that 

by adopting some solutions in time would overcome 

the hidden danger, and ensured the long term stable 

operation of the machine set. 

 

 

5 Conclusion 
Early fault prediction and diagnosis in 

condition monitoring of rotating machinery has 

always been a tough problem. The SCA system using 

a novel adaptive learning algorithm and decision-

making strategy is developed to address this issue in 

this paper. Some of the conclusions are summarized 

as follows: 

 

(1) Through monitoring real time changing trends of 

features of vibration signal in each channel, to 

capture the slow-changing signals, a novel 

adaptive learning algorithm is proposed to 

acquire alarm threshold, and based on the 

running status, the threshold can be optimized by 

the expectation coefficient and the amplification 

coefficient. 

(2) The decision-making strategy can activate slow-

changing alarm to predict the occurrence of early 

fault when the machine set has potential 

abnormity, thus it can prevent the fault from 

becoming apparent or even causing breakdown. 

(3) Through an example of engineering application, 

it has been proved that the SCA system can be 

successfully applied in the field of condition 

monitoring system, and it can be quite 

effective in predicting early fault of rotating 

machinery and directing the maintenance and 

management of the equipment. 

(4) Further research is needed regarding how to 

combine the advanced expert system with the 

SCA system to diagnose and predict early fault 

of rotating machinery more effectively. In such 

circumstance, the SCA system can perform this 

task optimally and effectively. 
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