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Abstract: - Neural gas network is a single-layered soft competitive neural network, which can be applied to 

clustering analysis with fast convergent speed comparing to Self-organizing Map (SOM), K-means etc. 

Combining neural gas with principal component analysis, this paper proposes a new clustering method, namely 

principal components analysis neural gas (PCA-NG), and the online learning algorithm is also given. The soft 

competitive learning of PCA-NG is based on local principal subspace, which characterizes the profile of a 

certain cluster. We utilize the PCA-NG to the domain of intrusion detection. Some experiments are carried out 

to illustrate the performance of the proposed approach by using a synthetic Gaussian-distributed dataset and the 

KDD CUP 1999 Intrusion Detection Evaluation dataset. 
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1 Introduction 
With the increase of network attacks in number and 

severity over the past few years, intrusion detection 

systems (IDSs) have became a necessary addition to 

the security infrastructure of most organizations. 

Intrusion detection technique is one of the most 

crucial methodologies in network security, which 

can guarantee the security in a certain degree of a 

system, a network or a user, behind the first line of 

defense (e.g., fire-wall). Bace et al. [1] gave a 

definition of intrusion detection systems as 

"software or hardware systems that automate the 

process of monitoring the events occurring in a 

computer system or network, analyzing them for 

signs of security problems''. 

In a network-based IDS, by analyzing the 

network stream data, e.g. IP packets, a norm profile 

(normal activity profile) can be constructed from 

those normal behavior exhibited by either a user or a 

system. Any behavior with a certain degree 

deviation from the norm profile is determined as an 

intrusion, or an attack. This is called anomaly 

detection. Another intrusion detection technique is 

misuse detection, also called signature-based 

detection, which attempts to model attacks 

(abnormal connections in network-based IDS) on a 

system as specific patterns, then systematically 

scans the system for occurrences of these patterns 

[2]. Artificial neural networks (ANNs) resemble a 

powerful tool to separate clusters of feature vectors 

in a high-dimensional space. The goal of clustering 

is grouping given training data into classes of 

similar objects such that data points with similar 

semantical meaning are linked together. The most 

popular method to clustering analysis is the self-

organizing feature map (SOM) proposed by 

Kohonen [3]. SOM is an unsupervised neural 

network which can transform an incoming signal 

pattern of arbitrary dimension into a one- or two-

dimensional discrete map, and perform this 

transformation adaptively in a topologically ordered 

fashion [4]. SOM has been applied to the domain of 

intrusion detection for many years for different 

purposes [5-10]. But the limitations of SOM 

network will yield a big impact to the performance 

of intrusion detection, such as the static architecture 

and limited capabilities of representation of 

hierarchical relations of the input data [11]. 

As an alternative way for clustering, Martinetz et 

al. proposed the Neural Gas (NG) algorithm in 1993 

[12], as a fast neural net-based clustering method, 

and it has been successfully applied to vector 

quantization, prediction and topology representation, 

etc. The name Neural Gas is just because the centers 

of the clusters move around in the data space similar 

to the Brownian Movement of gas molecules in a 

closed container. In [12], the authors gave an in-

depth discussion of the Gas-like dynamics of the 

neurons and how this tends to result in a 

homogeneous distribution of the cluster centers over 

the input space. In [13], the Neural-Gas network 

was used to gas chromatographic patterns of 

Maillard reaction products. A robust clustering 

algorithm was presented within the growing neural 
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gas (GNG) framework in [14], which was 

insensitive to initialization, input sequence ordering 

and the presence of outliers. In [15], an extension of 

the neural gas to local principal component analysis 

was proposed and applied to the recognition of 

handwritten digits. In [16], based on the cost 

function of NG, a batch variant of NG was proposed 

which shown much faster convergence and which 

can be interpreted as an optimization of the cost 

function by the Newton method compared with 

SOM and k-means in a unified formulation. 

In this paper, we combine the neural gas with 

principal component analysis, namely PCA-NG. 

The learning algorithm is different from Ref. [15], 

and we apply it to the domain of intrusion detection 

for clustering analysis. It is a novel method for 

intrusion detection, from the author's knowledge. 

The rest of this paper is organized as follows. 

Some basic knowledge of Euclidean distance 

measure based neural gas algorithm is described in 

Section 2. In Section 3, the proposed principal 

component neural gas (PCA-NG) is given. In 

Section 4, two experiments are carried out; the first 

one is performed on a synthetic 2-D Gaussian-

distributed dataset, and the other on the KDD CUP 

1999 intrusion detection datasets. Finally, 

conclusion is given in Section 5. 

 

2 Euclidean Distance Based Neural 

Gas Algorithm  
Assume that{ ( )}x t 1,2,t l= ⋯ , are n-dimensional 

stochastic input data, the mean vector e and the 

covariance matrix of ( )x t  are defined by  

 
1

1
( )

l

t

e x t
l =

= ∑ ,    (1) 

 

1

1
[( ( ) )( ( ) ) ]

1

l
T

t

R x t e x t e
l =

= − −
− ∑ . (2) 

A traditional neural gas training algorithm with 

Euclidean distance measure can be stated as follows: 

1) Initialize the neural gas network. Obtain the 
following inputs from the user: 

― Number of predefined neurons (clusters), 

namely the number of Clusters c. 

― Randomly initialized weigh vectors over the 
input space, 1 2[ , , ]cW w w w= ⋯ . 

― Initial learning rate 0η  and final learning rate 

       endη , e.g., 0 0η =  and 0.001endη = . 

― Number of training set N ,and the maximum         
training epoch Ep with 0 0Ep =  and maxEp M= . 

― Maximum number of iterations maxt MN= , 

initial and final decay constants, 0λ and endλ  (e.g.,10 

and 0.001). 

2) Input a sequential vector ( )x t  at time instant     

t in 
thm training epoch. The total training iteration     

step is 

 *itert Ep N t= + .   (3) 

3) Calculate the distance (e.g., Euclidean distance) 

between  ( )x t  and iw  as   

( ) , 1, 2, ,i id x t w i numClusters= − = ⋯ . (4) 

4) Calculate the neighbourhood ranking 
ir  

(initial 0, 1, 2, ,ir i c= = ⋯ ) as follow (for 

1,2, ,i numClusters= ⋯ and

, ,j i numClusters= ⋯ ): 

1,

0,

i j

i i

d d
r r

otherwise

≥
= + 


   (5) 

     The number
ir , associated with each iw , denotes 

the order obtained due to the above sorting 

procedure. 

5) Update the weight vectors 
iw  as 

 
1 ( ) ( )( ( ) )i i i iw w t h r x t wλη+ = + − . (6) 

The neighbourhood function is, 

 
( )( )
ir

t

ih r e λ
λ

−

= ,    (7) 

where the learning rate ( )tη  and decay constant 

( )tλ  are calculated as follows, 

 max
0

0

( ) ( )
t

end tt
η

η η
η

= ,   (8) 

 max
0

0

( ) ( )
t

end tt
λ

λ λ
λ

= .   (9) 

6) Increase t to t+1, repeat step 2 to step 6 

until
maxt t= . 

7) In the last training epoch, label the input 
( )x t as one of the stabilized clusters according to 

the following criteria, 

argmin{ }, 1, 2,j j
j

C r j c= = ⋯ .  (10) 

Note that the winning neuron 
jC  with minimum 

neighbourhood ranking r is the Best-Matching-Unit 
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(BMU) in the competitive process in a Euclidean 

sense. 

The neural gas is a kind of single-layered soft 

competitive learning neural network with many 

advantages, including [12]: (1) faster convergence 

to low distortion errors, (2) lower distortion error 

than that of resulting from k-means clustering, 

maximum-entropy clustering and Kohonen's self-

organizing map algorithm, (3) obeying a stochastic 

gradient descent on an explicit energy surface. 

Neural Gas (NG) constitutes a very robust clustering 

algorithm given Euclidean data which does not 

suffer from the problem of local minima like simple 

vector quantization, or topological restrictions like 

the self-organizing map [16]. 

 

 

3 Neural Gas Combined with 

Principal Components Analysis 
In a traditional Euclidean-distance-based neural gas 

algorithm, the weight vector of one neuron 

represents the mean vector of one cluster in a high 

dimensional space. But it is not enough to use mean 

vector merely to match well for some cases of data 

distribution, such as Gaussian-based distributed data 

clusters. Principal component analysis (PCA) [17] 

can be used to tackle this problem in a subspace-

decomposition sense [4]. PCA has been widely used 

in data compression and feature selection 

(extraction). Feature selection (extraction) refers to 

a process whereby a data space is transformed into a 

feature space, which has exactly the same (or 

reduced) dimension as the original data space. 

Suppose R in equation (2) is the covariance matrix 

of input vector ( )x t . By sorting the eigenvalues iλ  
of R in descending order, we obtain m eigenvectors, 

also called principal directions, denoted by 

{ | 1,2, , }i i

jB B j m= = ⋯  corresponding to those m 

largest eigenvalues (usually m<n) for feature 

extraction.  

It is well known that the variance of the 

projections of the input data onto the principal 

direction is greater than that of any other directions. 

Giving a new input ( )x t , we can project it onto the 

principal space that is composed of the first m 

principal directions. 

As shown in Fig. 1, there are tow Gaussian-based 

clusters, namely 
1C  and

2C , and each mean vector 

(the centroid of a cluster) is denoted by a small solid 

circle. The two lines with arrows crossed the data 

represent the principal directions of the two 

Gaussian-based clusters (only one principal 

direction selected in a 2-D plane). In a Euclidean 

sense, the separation line is vertical to the line which 

joints the centroids of the two clusters and passes 

through its midpoint. Obviously, there exist data 

samples in cluster 
1C  are misclassified into 

2C  by 

the Euclidean-metric-based separation line (the bold 

dashed line). But the separation line in a local 

principal subspace decomposition sense (the bold 

solid line) can match this Gaussian-based 

distribution data clusters well and can separate them 

distinctly (see Fig. 1). 

 

 
Fig.1 Different separation lines representation by using NG and 

PCA-NG. 

 

Therefore, combining neural gas algorithm with 

PCA, the belongingness of an input vector ( )x t  to 

neuron i can be denoted by a new parameter set as 

follows: 

{ , ,{ | 1, 2, , }}i

i i i jC r e B j m← = ⋯ ,  (11) 

where 
ie  is the mean vector of cluster i at time 

instant t, and , 1, 2, ,i

jB j m= ⋯  are basis vectors of 

the local principal subspace (m is the number of 

principal directions used in a local cluster, usually m 

is less than n.). 

Correspondingly, the projection of ( )x t  on the 

local principal subspace, is written as 

                
1

( ( ) )
K

iT i

i h i h

h

p B x t e B
=

= −∑  ,             (12) 

and the distance calculation between ( )x t and 

neuron i is as follows, 

( )i i id x t e p= − − .                   (13) 

 

This can be illustrated by Fig. 2 in a 2-D plane, 

where only one principal direction is selected, 1

iB . 

The projection ip  is the approximation of ix  and 

id  is the distance error. Different from  || ( ) ||ix t e−  

in the Euclidean distance sense, the id  calculated 
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by different neurons in PCA-NG network is the 

criteria to determine which clusters ( )x t belongs to. 

It can be written as, 

1

argmin || ( ) ( ( ) ) ||
K

iT i

i h i h
i

h

C x t e B x t e B
=

 
= − − − 

 
∑  

(14) 
 

By sorting the distance , 1, 2, ,id i numclusters= ⋯ , 

different neighbor ranking 
ir  is calculated using 

equation (5). The parameters sets updating of the 

neurons include mean vector 
ie  and the basis 

vectors of the local principal subspace
i

jB . 

 

ei 

Bi2 
Bi1 

pi di 

x(t) 

 
 

Fig.2 Illustration of local principal subspace, projection of the 

input, distance error of the input in a 2-D plane. 

 

PCA has two main properties. First, it finds the 

uncorrelated directions of maximum variance in the 

data space, and second, it provides the optimal 

linear projection in the least square sense. There 

exist many online PCA methods [18-20]. In [15], an 

extension of neural gas to local PCA was 

implemented by using RRLSA [2], a neural method 

for principal component analysis based on the 

recursive lease-squares method. In our PCA-NG 

algorithm, an online estimation of covariance matrix 

is performed to store the information of the basis 

vectors of the principal subspace. Hence, the 

updating of mean vector 
ie  and covariance matrix 

iR  can be stated as follows, 

1 ( ) ( )[ ( ) ]i i i ie e t h r x t eλη+ = + − ,  (15) 

1 ( )[( ( ) )( ( ) ) ]T

i i t i i i iR R h r x t e x t e Rλη+ = + − − − (16) 

 

By using the eigen-decomposition of covariance 

matrix R, the principal eigenvectors can be obtained. 

Generally, in a high-dimensional input space, the 

determination of the number of principal basis 

vectors, denoted by K is based on the following 

criteria, 

1 1

min( | )
i n

j j
i

j j

K i λ α λ
= =

= ≥∑ ∑ .  (17) 

Where 
iλ  represents the corresponding 

eigenvalues (in a descending order) of covariance 

matrix R, and α  is the proportion factor usually 
more than 90%. 

 

4 Experiments 

 
4.1 Synthetic Data 
We construct several 2-D synthetic datasets to test 

our PCA-NG algorithm. The datasets include five 

clusters and each cluster contains 40 data samples. 

Every cluster is apparently Gaussian-based 

distribution. The initialization of the PCA-NG 

algorithm is as follows,  

(1) Neuron number is 5. 

(2) The mean vectors are chosen randomly. 

(3) Only one subspace principal component is 

chosen with 
iB   randomly selected. 

(4) Learning rates 0η  and 
end

η  is 0.8 and 0.008, 

respectively. 

(5) The initial and final decay constants, 0λ  

and
end
λ , are 10 and 0.01. 

(6) The training epoch is 50.  

We input all the data samples to the PCA-NG 

network randomly. Figure 3 shows the updating 

process of the parameter sets of the five neurons. 

Different mean vectors and principal directions are 

denoted with different symbols and arrow lines, 

respectively. The first sub-figure shows the 

initialization of the parameter sets and the other five 

sub-figures demonstrate the updating process in 

different training epoch, namely 1, 3, 5, 10, 50, 

respectively. In order to test the robustness of the 

PCA-NG algorithm, we perform the experiments 20 

times with different initialization and different 

random input sequence of the training data, and Fig. 

2 shows the average performance state. It shows that 

the mean vectors ei (I from one to five) of every 

neuron converge to the centroid of every data cluster, 

and  1

iB  (one principal direction in a 2-D plane) 

converge to the principal eigenvectors of each 

Gaussian-distribution dataset at the same time. 

As for the convergence speed of the PCA-NG, 

figure 4 shows the error decreasing process in 

different training epoch. Only mean vector errors of 

the five neurons (distances calculated by Euclidean 

norm) are illustrated in the figure. Obviously, each 

of the five neurons converges to its stable state after 

only 10 epoch training. 
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Fig.3 PCA-NG cluster analysis using synthetic 2-D Gaussian-distributed datasets. Six sub-figures with different titles represent 

different network states in different training epoch. 

 

. 

 

 
Fig 4. Convergence speed illustration in cluster analysis using 

PCA-NG on synthetic 2-d Gaussian-distributed datasets. 

 

 

4.2 KDD CUP 1999 Intrusion Detection 

Evaluation Datasets 
 

4.2.1 About the Datasets 

The DARPA 1998 and 1999 Intrusion Detection 

Evaluations consist of comprehensive technical 

evaluations of research intrusion detection systems 

[22]. The 1998 DARPA Intrusion Detection 

Evaluation Program was prepared and managed by 

MIT Lincoln Labs. The objective was to survey and 

evaluate research in intrusion detection.  A standard 

set of data to be audited, which includes a wide 

variety of intrusions simulated in a military network 

environment, was provided.  Lincoln Labs set up an 

environment to acquire nine weeks of raw TCP 

dump data for a local-area network (LAN) 

simulating a typical U.S. Air Force LAN. They 

operated the LAN as if it were a true Air Force 

environment, but peppered it with multiple attacks. 

The raw training data was about four gigabytes of 

compressed binary TCP dump data from seven 

weeks of network traffic. This was processed into 

about five million connection records. Similarly, the 

two weeks of test data yielded around two million 

connection records. The 1999 KDD intrusion 

detection contest uses a version of this dataset. The 
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KDD Cup 1999 dataset, which is a subversion of 

DARPA project, includes good normal connections 

and bad intrusion connections. The datasets contain 

a total of 24 training attack types, with an additional 

14 types in the test data only. All the attacks fall in 

four main categories, such as DoS, R2L, U2R and 

Probe [23], which are stated as follows: 

(1) DoS: denial-of-service, e.g. syn flood, 

(2) R2L: unauthorized access from a remote 

machine, e.g. guessing password, 

(3) U2R:  unauthorized access to local super user 

(root) privileges, e.g., various ``buffer overflow'' 

attacks, 

(4) Probing: surveillance and other probing, e.g., 

port scanning. 

 

4.2.2 Data Preprocessing 

Every network connection is a sequence of TCP 

packets starting and ending at some well defined 

times, between which data flows to and from a 

source IP address to a target IP address under some 

well defined protocol. Each connection includes 

forty-one feature values. The detailed description of 

the available features and intrusion instances can be 

found in [24]. The attributes in each connection of 

the KDD datasets has some forms, namely 

continuous, discrete and symbolic with significantly 

varying resolution and ranges. Most pattern 

classification methods are not able to process data in 

such a format. Hence preprocessing was required 

before pattern classification models could be built. 

For a symbolic type attribute, we first order them 

with a sequence number from 0 to n-1, where n is 

the specific class number of the attribute. Then we 

linearly map them to [0, 1]. For the discrete type 

attributes, e.g., land, with value 0 or 1, they do not 

require any preprocessing. The results of 

preprocessing of some attributes in our experiments 

are shown in Table 1. 

 

4.2.3 How to Label the Clusters 

The trained PCA-NG can be used as a detector or a 

classifier after each cluster is labeled. A simple 

scheme is used to label a trained cluster. Assume 

there is Tn testing observations which are 

categorized for k classes. 
in  denotes the number of 

observations belonging to testing class i. Input one 

class (e.g., the label is
il ) of observations to the 

trained PCA-NG, denote the number of observations 

tested for one cluster j as 
jn . The label il  will be 

assigned to the cluster which obtains the maximum 

testing observations, this is stated as, 

                              max{ }
i i

i
l n→ ,                      (18) 

and the detection rate of 
il  is 

 i

i

n
DetectionRate

n
= .  (19) 

If 
in  is equal to 

in , we call the cluster 
il  a 

homogeneous cluster with 100% detection rate.  The 

training, labeling and testing processes for intrusive 

connections clustering using PCA-NG Algorithm 

are illustrated by Fig. 5. 

 

Feature 

Name 

Data 

Type 
Range Preprocessing 

protocol-type symbolic 3 0~2→ [0,1] 

service symbolic 70 0~69→ [0,1] 

flag Symbolic 11 0~11→ [0,1] 

duration continuous [0,58329] [0,1] 

wrong-

fragment 
continuous [0,3] [0,1] 

urgent continuous [0,14] [0,1] 

hot continuous [0,101] [0,1] 

num-failed-

logins 
continuous [0,5] [0,1] 

num-

compromised 
continuous [0,9] [0,1] 

su-attempted continuous [0,2] [0,1] 

num-root continuous [0,7468] [0,1] 

num-file 

creation 
continuous [0,100] [0,1] 

num-shells continuous [0,5] [0,1] 

num-access-

files 
continuous [0,9] [0,1] 

count continuous [0,511] [0,1] 

srv-count continuous [0,511] [0,1] 

dst-host-

count 
continuous [0,255] [0,1] 

dst-host-srv-

count 
continuous [0,255] [0,1] 

Table 1: Preprocessing of some attributes from the raw datasets 
of each network connections. 
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4.2.4 Clustering Results Using PCA-NG 

The training data are chosen from a 10% subset 

(kddcup.data_10_percent.gz) randomly and the 

testing data are from the labeled dataset 

(corrected.gz). We merge the testing and labeling 

two processes into single testing process. The first 

four columns of Table 2 show the data preparation 

for training and testing. Remind all the individual 

attack except for normal type connections belongs 

to the four main categories, such as DoS, Probe, 

U2R and R2L. 

 

PCA-NG Algorithm 

Training Data 

                      … 
C1 C2 Cn 

Label Machine 

& Testing Data 

 Output: Normal or Intrusion Type Name. 

 
 

Fig 5. Training, testing and labeling processes for intrusion 

detecting using PCA-NG Algorithm. 
 

In the training stage, we select the neuron number 

of PCA-NG model as 14 and hope to cluster all the 

training dataset to proper number of clusters. The 

PCA-NG initializations of all the other parameters 

are same to the first experiments before (on 

Synthetic Datasets). We input the training data 

samples into PCA-NG model in random order with 

10 training epochs, and then test it in same manner 

with testing dataset. The performance calculated 

using equation (19) is listed in the last column of 

Table 2. 

Obviously, the number of training data will 

influence the performance of PCA-NG. Generally, a 

larger amount of training data for one cluster will 

obtain better detection rate (see Table 2, e.g., more 

than 94% detection rate achieved for normal, back, 

smurf, neptune, satan, etc.). On the other hand, the 

detection rate is lower for that with less training data, 

e.g., rootkit, buffer-overflow, etc. 

Furthermore, we set the neuron number as 5 and 

expect to cluster all the training dataset to five main 

categories, namely Normal, DoS, Probe, U2R and 

R2L. At the same time, from Table 2, we can 

compute the average detection rate of the five main 

categories. We denote the average detection rate of 

one main category j as
jADR , and 

iDR  are the 

detection rate of one individual attack belongs to the 

main category j, 
in  is its testing data number. Hence, 

the average detection rate of one main category can 

be calculated as follows, 

 , 1, 2, ,5
i ij

i

DR n
ADR j

n
= =∑
∑

⋯ . (20) 

 

Attack 
Category 

(#Train/#Test) 

Detection 

Rate 

normal Normal (2500/3200) 97.2% 

back DoS (1200/890) 98.9% 

smurf DoS (3488/5680) 95.2% 

neptune DoS (4500/3500) 94.3% 

teardrop DoS (748/112) 80.4% 

ipsweep Probe (1200/140) 78.6% 

nmap Probe (123/26) 96.2% 

portsweep Probe (880/220) 96.4% 

satan Probe (1023/1500) 93.8% 

rootkit U2R (10/12) 66.7% 

buffer-

overflow 
U2R (30/22) 63.6% 

guess-

passwd 
R2L (1210/255) 82.4% 

imap R2L (119/200) 70.0% 

waerzclient R2L (350/55) 60.0% 

Table 2: Data preparation from KDD CUP 1999 for training 
and testing of PCA-NG are listed in the first four columns; the 

last column is detection rate using clustering analysis. (DR 

means Detection Rate.) 

 

Table 3 shows the performance comparison of 

PCA-NG model by using different neurons number 

on the five main categories. Clearly, the detection 

rates are higher by using 14 neurons than that by 

using 5 neurons. The reason is that more neurons 

can represent the input connections more accurately. 

The individual attacks, e.g., back and neptune, 

belong to the category DoS, but they are not 

necessarily close to the cluster DoS completely. On 

the other hand, there are many other type 

connections falling into the big cluster, and this will 

result in misclassifications and lower detection rate. 

WSEAS TRANSACTIONS on SYSTEMS Xiufen Fang, Guisong Liu, Ting-Zhu Huang

ISSN: 1109-2777 48 Issue 1, Volume 9, January 2010



Table 3 also shows that PCA-NG can detect 

97.2% normal connections; the 2.8% of them are 

misclassified as intrusions; it means the false 

positive rate of PCA-NG for intrusion detection is 

only 2.8%. It is known that the false positive rate is 

more important than detection rate in an actual 

intrusion detection system. 
 

4.2.5 Related work and Comparisons with Other 

Approaches 

In the intrusion detection field, the widely used 

clustering methods include K-means, SOM and its 

variations etc. 

Ref. [10] designed an Anomalous Network-

Traffic Detection with Self Organizing Maps 

(ANDSOM) module to detect anomalous network 

traffic based on the Self-Organizing Map algorithm. 

Each network connection is characterized by six 

parameters and specified as a six-dimensional vector. 

The ANDSOM module creates a Self-Organizing 

Map (SOM) having a two-dimensional lattice of 

neurons for each network service. During the 

training phase, normal network traffic is fed to the 

ANDSOM module, and the neurons in the SOM are 

trained to capture its characteristic patterns. During 

real-time operation, a network connection is fed to 

its respective SOM, and a “winner” is selected by 

finding the neuron that is closest in distance to it. 

The network connection is then classified as an 

intrusion if this distance is more than a pre-set 

threshold. 

 

Type Detection Rates 

#neurons (5) #neurons (14) 

Normal 91.5% 97.2% 

DOS 88.6% 95.1% 

Probe 85.9% 93.0% 

U2R 58.4% 64.7% 

R2L 40.8% 75.1% 

Table 3: The performance of PCA-NG on main categories 
using different neurons number 

 

Sarasamma et al. used a multilevel hierarchical 

Kohonen network to detect anomalous events in 

network data [8]. A cost effective hierarchical 

extension of the simple Kohonen network was used 

to detect maximal number of attack types at low 

false positive rates. They also evaluated the effects 

of various feature subsets on the detection rate and 

false-positive rate. Another motivation of the work 

was to achieve a high-order nonlinear classifier 

model to create clusters that model the intersection 

of hyper cylinders in a computationally efficient 

way. Using a three-level hierarchical Kohonen net, 

they achieved detection rates between 90.94% and 

93.46% at false-positive rates between 2.19% and 

3.99% for three feature combinations. Their work 

show that when the attack types were limited to 

Neptune, satan, and portsweep, they achieved a 

99.63% detection rate at a 0.34% false-positive rate. 

However, detection rates for attack types such as 

buffer-overflow, guess-passwd, and xsnoop in KDD 

CUP 1999 data were poor. 

In Ref. [9], the authors create hyper ellipsoidal 

clusters of maximum intra-cluster similarity and 

minimum intercluster similarity to more accurately 

classify data points of a highly intertwining nature, 

as seen in the KDD CUP 1999 data sets. They 

addressed this problem by accretively building 

hyper ellipsoidal clusters at a slightly higher cost 

than that in [8]. They were able to get detection 

rates of 77.27%, 95.83%, and 100%, respectively, 

for the attack types buffer-overflow, guess-passwd, 

and xsnoop. The achieved overall detection rates is 

between 91.55% and 91.71% at false-positive rates 

between 2.68% and 4.84% when used for the entire 

attack range of the KDD Cup 1999 data. 

K-means  clustering algorithm  [25]  positions  K  

centers  in  the  pattern  space such  that  the  total  

squared  error  distance  between  each training 

pattern and the nearest center is minimized. Using  

the  K-means  clustering  algorithm,  different 

clusters  were  specified  and  generated  for  each  

output class. In Ref. [25], simulations were run 

having 2, 4, 8, 16, 32, 40, 64, 75, 90, 110, 128, and 

256 clusters.   Each simulation had equal number of 

clusters for each attack class.    For number  of  

clusters  (K)  that  are  not  integer  powers  of  2, 

after generating P clusters (P being an integer power 

of 2) where P>K, the cluster centers having 

minimum variance among  its  patterns were  

removed  one  at  a  time  until  the clusters  were  

reduced  to  K.    An epoch consisted of presenting 

all training patterns in an output class for which 

centers are being generated.   Clusters were trained 

until the average squared error difference between 

two epochs was less than 1%.    During  splitting,  

the  centers  were disturbed  by ±1%  of  the  
standard  deviation  in  each cluster so  that new 

clusters are  formed. The model that achieved the 

lowest cost per example value (0.2389) had 16 

clusters in each class.  

  In this paper, the proposed PCA-NG algorithm, 

as an alternative clustering analysis way, is applied 

for intrusion detection. Table 4 shows the 
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comparative results using the published results. The 

comparative approaches include HSOM [8], ESOM 

[9], and K-means [25]. It is fair for the comparison 

because all of these clustering methods are based on 

the KDD CUP 1999 data sets. But these 

experiments are based on different feature subsets or 

different sampled network connections. We choose 

the best performance of these methods for the 

comparison.  

As Table 4 shows, the best methods for the five 

main categories are highlighted with gray 

background color. For DoS detection, all the 

methods get higher detection rate. For Probe 

detection, PCA-NG and ESOM are better. HSOM is 

the best for detection U2R and the PCA-NG is the 

best for detection R2L. The results show that our 

method PCA-NG outperforms the other listed 

clustering approaches, in average detection rates 

sense and especially in U2R and R2L detection. It 

seems that PCA-NG is very promising in the 

domain of intrusion detection.  

 

Type 
HSOM 

[8] 

ESOM 

[9] 

K-means 

[25] 

PCA-

NG 

Normal - 7.3% - 97.2% 

DOS 97.2% 97.1% 97.3% 95.1% 

Probe 88.2% 97.5% 87.6% 93.0% 

U2R 71.2% 52.9% 29.8% 64.7% 

R2L 20.9% 1.7% 6.4% 75.1% 

Table 4: The performance comparison of the five main 
categories data clustering on KDD CUP 1999 datasets using 

different clustering methods. 

 

 

5 Conclusion 
In this paper, we propose a new clustering method, 

namely principal components neural gas (PCA-NG), 

and its online learning algorithm is also given. The 

self-organizing process of neural gas network is 

held in the input space, while that of  Kohonen's 

SOM is held in the out space. Combined with local 

principal component analysis, the PCA-NG is more 

suitable for Gaussian-distributed data clustering. 

Another contribution of this paper is that we first 

utilize neural gas network to the domain of intrusion 

detection. We give a simple labeling scheme; 

furthermore, the trained and labeled PCA-NG can 

perform as a detector or a classifier for intrusion 

detection. We first carry out an experiment to test 

the PCA-NG model on a synthetic dataset. Then we 

perform PCA-NG on KDD CUP 1999 intrusion 

detection evaluation datasets, and the results of the 

experiments and comparisons demonstrate the 

effectiveness of the methods.  

Nevertheless, there are some problems in the 

PCA-NG method, such as the limitations of its static 

architecture, the influence on performance and 

convergent speed of its parameter initializations, the 

hierarchical netowrk architecture for effectiveness, 

etc. We will take them into account in our future 

work. 
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