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Abstract: - This paper investigates the tracking control of a wheeled mobile robot in the unknown environment. 

A disturbance observer is developed with utilization the integral filter. The proposed control scheme employs 

the disturbance observer control approach to design an auxiliary wheel velocity controller to make the tracking 

errors, which includes the velocity tracking error, the angular velocity tracking and the trajectory tracking error 

vector, as small as possible in consideration of unknown bounded disturbance in the kinematics of the mobile 

robot, and makes use of the disturbance controller to reject the unknown bounded disturbance. The 

approximation errors and the unknown bounded disturbance can be efficiently rejected by employing the 

integral filter. A major advantage of the proposed methods is that the position (or velocity/angular velocity) and 

the desired trajectory (or velocity/angular velocity) are no longer necessary. This is because the observer 

controller “tracking” both the mobile kinematics and the unknown bounded disturbance. Most importantly, all 

signals in the closed-loop system can be assured to be uniformly ultimately bounded. The system stability and 

convergence of the motion control and the trajectory tracking errors are proved using the Lyapunov stability 

theory. Simulation results are provided to verify the proposed control strategy. It is shown that the control 

strategy is feasible. 

 

 

Key-Words: - Disturbance observer, Velocity tracking, Trajectory tracking, Time-varying disturbance, Mobile 
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1 Introduction 
Motion controls of wheeled mobile robot 

(WMR) have attracted the attention of many 

researchers [1, 2, 3, 4, 5, 6]. Interest in such systems 

stems primarily from the WMR with loading 

capacity which is necessary in industry. However, 

WMR has nonholonomc nature and doesn’t meet 

Brockett’s condition, which is the necessary 

condition to make a smooth time-invariant control 

law. 

Kanayama et al. [2] proposed an asymptotic 

motion controller which used continuous feedback 

control mode. However, this controller adopts local 

linearization using Lyapunov indirect stability 

theorem and cannot be globally stable. Fierro and 

Lewis [3] designed a controller for both motion 

control and point stabilization using backstepping 

mode. Bakir and Jasmin [7] proposed global 

asymptotic motion controller using backstepping. 

Coulaud et al. [8] and A.G. Lorence et al. [9] also 

proposed a globally asymptotically stable controller 

using image-processing algorithm. Anti-disturbance 

adaptive control was studied for the mobile robots 

using dual adaptive neural control where unknown 

network parameters are estimated in real time [10]. 

The tracking problem of the mobile robots has also 

attracted the attention of many researches [11]-[15]. 

Using Barbalet lemma or the backstepping method, 

some controllers have been proposed such that the 

mobile robots could globally follow the special 

paths such as circles and straight lines. W. Dong et 
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al. [16] proposed controller ensures the entire state 

of the dynamic system asymptotically track the 

desired trajectory, considering unknown inertia 

parameters. When the input of the mobile robot 

appears saturation, Z.P. Jiang et al. [17] presented a 

control strategy to deal with the problem of global 

stabilization and global tracking control for the 

mobile robot. All these papers assumed that 

disturbances are to be constant or slow time-varying, 

or even without consideration. When the 

disturbances are fast time-varying, the performances 

of those control modes are unsatisfactory. 

And, because of the difficulty in dynamic 

modeling, artificial intelligence controls using 

neural networks and fuzzy logic can be considered 

as an effective tool for nonlinear controller design. 

In [18] and [19], the observer using multilayer 

neural-network was developed for the mobile robot 

tracking control, but the controller structure and the 

neural-network learning algorithm are complicated, 

and it is computationally expensive. In [20], the 

observer using fuzzy method was presented to 

compensate the load disturbance that makes the 

tracking inaccuracy, furthermore, the method 

considered only the tracking error, and the real 

external disturbances in the velocity and the angular 

velocity of the mobile robot were not considered. 

In the past, a novel disturbance observer [21], 

which use in the mobile application with arbitrarily 

fast time-varying disturbance, has been successfully 

used for hard disk drives. Based on the disturbance 

observer, we consider the situations where tracking 

control using disturbance observers are to obtain 

desired velocity and desired trajectory in unknown 

environment, as shown in Fig. 1. One control 

purpose of the mobile robot is that the actual 

velocity is equal to the desired velocity, and making 

sure the angular velocity of the mobile robot is 

desired one. Another control purpose is that the real 

trajectory of the mobile robot can be located quickly 

to the desired trajectory. To this effect, actuator 

dynamics is combined with the mobile robot and the 

input torques of two driving wheels. We propose a 

new control method using disturbance observers for 

the mobile robot, which reject bounded disturbances. 

The proposed schemes estimate unknown 

parameters, and control the mobile robot with 

desired posture, while having the characteristic of 

global stability. Besides, in presented scheme can 

reject external arbitrary fast time-varying 

disturbances. 

The main contributions of this paper are listed as 

follows: 

(1) Decoupled tracking and orientation control 

strategies are proposed for the WMB without 

imposing any restriction on the system dynamics; 

(2) Controller design for the WMB with anti- 

disturbance;  

(3) Disturbance observers design for arbitrarily 

fast time-varying disturbances in the WMB system; 

and 

(4) Trajectory tracking based the control design 

is developed in unknown environment. 

Simulation results are described in detail to show 

the effectiveness of the proposed controls. 

The remainder of this paper is organized as 

follows. The model of a nonholonomic mobile robot 

is introduced in Section 2. The main problems of the 

formulation to position and orientation control are 

discussed in Section 3. The nonlinear observer and 

the controller design are presented in section 4. 

Simulation studies are showed in section 5. 

Concluding remarks are given in Section 6. 

 

 

2 Model of a Nonholonomic Mobile 

Robot 
The mobile robot shown in Figure 1 is a typical 

example of a nonholonomic mechanical system. It 

consists of a vehicle with two driving wheels 

mounted on the same axis, and a front passive 

wheel. The position and the orientation are achieved 

by independent actuators providing the necessary 

torques to the rear wheels. The two driving wheels 

have the same radius denoted by r and are separated 

by 2R. Point C is located in center of mass of the 

mobile robot; point P is located in the intersection 

of the midline of the mobile base and the axis of the 

driving wheels. The distance between point C and 

point P is denoted by d. The position and the 

orientation of the robot in an inertial Cartesian 

frame {O, X, Y} is completely specified by the 

vector T
cc yxq ],,[ θ= , where cx , cy are the 

coordinates of the center of mass of the vehicle, and 

θ  is the orientation of mobile platform {C, Xc, Yc} 

measured from X axis. 
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Fig.1  A nonholonomic mobile platform.
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A nonholonomic mobile robot system having an 

n-dimensional configuration space L with 

generalized coordinates (q1, … , qn) and subject to m 

constraints can be described by [22] 

  
λτ )()(),()( qAqBDqqqCqqM T

m −=++ ɺɺɺɺ
 (1)  

where 
nnRqM ×∈)(  is a symmetric, positive 

definite inertia matrix, 
nn

m RC ×∈  is the Centripetal 

and Coriolis matrix, 
1×∈ nRD  is the external 

disturbance vector, 
rnRqB ×∈)(  is the input 

transformation matrix, 
1×∈ rRτ  denotes the input 

vector, 
mnT RqA ×∈)(  is the matrix associated with 

the constraints, and 
1×∈ mRλ  is the vector of 

constraint forces. 

All kinematic constraints of the mobile platform 

are independent of time, and can be expressed as 

                                  
0)( =qqA ɺ

 (2) 

With respect to the dynamics of mobile robot (1), 

the following properties are known [23]. 

Property 2.1: )(qM  is a symmetric and positive-

definite matrix; 

Property 2.2: The matrix mCM 2−ɺ  is skew-

symmetric [24], that is, 0)2( =− xCMx m

T ɺ ，
nRx∈∀ . 

Assume that )(qS  be a full rank matrix (n - m) 

formed by a set of smooth and linearly independent 

vector fields spanning the null space of  )(qA , i.e., 

                               
0)()( =qAqS TT

 (3) 

Using (2) and (3), it is possible to find an 

auxiliary vector time function 
mnRtv ×∈)(  such 

that, for all t [3], [25] 

                               
)()( tvqSq =ɺ

 (4) 

 

 

2.1 Kinematics and dynamics of a mobile 

platform 

The pure rolling and nonslipping nonholonomic 

constraint states that the robot can only move in the 

direction normal to the axis of the driving wheels, 

and the mobile base satisfies this nonholonomic 

constraint [26, 27]. And the velocity component of 

the contact point with the ground, perpendicular to 

plane of the wheel is zero, namely 

                     
0sincos =−− θθθ ɺɺɺ dxy cc  (5) 

From (3) and (5), the constraint matrix of the mobile 

platform is expressed as 

]cossin[)( dqA −−= θθ  (6) 

Thus, matrix )(qS  can now be expressed as 

                















 −

=

10

cossin

sincos

)( θθ

θθ

d

d

qS  (7) 

Therefore, it is easy to verify that the kinematic 

equations of tracking (4) can be expressed as 

          






















 −

=
















=
ω

θθ
θθ

θ

0

10

cossin

sincos
v

d

d

y

x

q c

c

ɺ

ɺ

ɺ

ɺ           (8) 

where [ ]Tvv ω0= . 0v  and ω  are bounded linear 

and angular velocities of the mobile robot 

respectively. Eq. (8) is called the steering system of 

the vehicle. 

The Lagrange formalism is used to find the 

dynamic equations of the mobile robot. The 

dynamical equations of the mobile platform can be 

expressed in the matrix form (1), where 

















−

−=

Imdmd

mdm

mdm

qM

θθ
θ
θ

cossin

cos0

sin0

)( , 

















=

000

sin00

cos00

),( θθ
θθ

ɺ

ɺ

ɺ md

md

qqCm , 

















−

=

RR
r

qB θθ
θθ

sincos

sincos
1

)( , 

















=

2

1

1

sin

cos

d

d

d

D θ

θ

, 

              







=

l

r

τ

τ
τ , 

















−

−

=

d

qAT θ

θ

cos

sin

)(  .   (9) 

where 1d  and 2d  are the disturbances of linear and 

angular velocities of the mobile robot, respectively; 
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rτ  and lτ  denote torques of right and left wheel 

respectively. 
 

2.2 Structural properties of a mobile platform 

The system (1) can be transformed into a more 

appropriate form for control purposes. Using (4) 

substituting (1), and then multiplying by 
TS , the 

constraint matrix λ)(qAT
 can be eliminated. Thus, 

the appropriate form of system (1) can be obtained. 

The complete equations of tracking of the 

nonholonomic mobile platform are given by 

                              )()( tvqSq =ɺ  (10) 

                          τBDvCvM m =++ɺ   (11) 

where ,MSSM T= ),( SCSMSTC mm += ɺ

,DSD T= .BSB T= Eq. (11) describes the 

behavior of the nonholonomic system in a new set 

of local coordinates, i.e., )(qS  is a Jacobian matrix 

that transforms velocities in mobile base coordinates 

v  to velocities in Cartesian coordinates q . 

Therefore, the properties of the original dynamics 

hold for the new set of coordinates. 

Property 2.3: The matrix )(qM  is symmetric 

positive definite;  

Property 2.4: the matrix 







−

⋅

mCM 2 is skew-

symmetric; and  

Property 2.5: the D  are bounded. 

Use of (9) in (11) yields 










−
=

20

0

mdI

m
M

,  










−
=

RRr
B

111

, 









=

00

00
mC

,  









=

ωd

d
D

v

 

Finally, the decoupled system (11) can be expressed 

as 

                             1111 τ=+ dvm ɺ  (12) 

                           222 τω =+ dm ɺ   (13) 

where ,1 mm = ,2

2 mdIm −= ( ) ,/1 rlr τττ +=  

./)(2 rRlr τττ −=  Furthermore, (12) and (13) can 

be rewritten as 

11
0

2

2

1 )( τ=+






∫ ddssv

dt

d
m

t

  (14) 

22
0

2

2

2 )( τω =+∫ ddss
dt

d
m

t

  (15) 

 

 

3 Problems Formulation to Motion 

Control 
The overview of a mobile robot is shown in Fig. 

1. Since the mobile robot works in an unknown 

environment, we should focus on the accuracy of 

the tracking and orientation control, which is 

accessed via corresponding sensors. The position 

error signal (PES) indicates the displacement of the 

center of mass of the mobile base from the desired 

tracking control location, and the orientation error 

signal (OES) represents the XC axis deviation from 

the desired orientation control of XC axis. 

Using (14) and (15), we consider the double 

integrator model representing the mobile robot as 

follows: 

1111 τ=+ dym ɺɺ  (16) 

                            2222 τ=+ dym ɺɺ  (17) 

where ∫=
t

dssvy
0

1 )( , ∫=
t

dssy
0

2 )(ω . ,1y ,1yɺ  1yɺɺ  

are the position, velocity, and acceleration of the 

mobile robot respectively; 2y , 2yɺ , 2yɺɺ  are angle, 

angular velocity, and angular acceleration of the 

mobile robot respectively. 

  Remark 3.1:  In a standard servo control 

system, it is general practice and understanding that 

the positional signals including its position 1y , 

velocity 1yɺ , and sometimes its acceleration 1yɺɺ , are 

available for feedback control design. For tracking 

control purpose, the desired trajectory dy1 , its first 

and second derivatives dy1
ɺ  and dy1

ɺɺ , are also 

known bounded and continuous signals. 

Furthermore, the tracking control error 

dyye 111 −=  is easily computable. As such, these 

involved angular variables 2y , 2yɺ , 2yɺɺ  and 2e  are 

available. 

However, in a mobile robot system, the things 

will be changed. We can not get both the position of 

the center of mass of the mobile robot 1y , and the 

desired trajectory dy1 . As such, the actual and 

desired orientations are unavailable. The main 

objective of the track following servo is to maintain 

the center of mass on the track, at same time, to 

maintain the actual orientation of the mobile in 

required one. Since we do not know the exact shape 

of the servo track, we can only demodulate a signal 

using a sensor to tell us the relative distance 

between the center of mass and track center, which 

is PES. As PES can be measured quite accurately, 

its derivative can be estimated quite well and is 
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generally assumed to be known for control system 

design. The case of corresponding angular variables 

is similar the positional one. Then PES and OES are 

expressed as 

dyye 111 −=  (18) 

 dyye 222 −=  (19) 

where 1e  and 2e  denote PES and OES respectively, 

though 1y , dy1 , 2y  and dy2  are unavailable for the 

mobile robot. 

Assumption 3.1: The external disturbances )(1 td  

and  )(2 td  are bounded with an unknown bound. 

  Assumption 3.2: In a mobile robot system, both 

the PES signal 1e  and its first derivative 1eɺ ,  are 

available; the OES signal 2e  and 2eɺ  are available 

too. 

  Assumption 3.3: The track position dy1 and 

track orientation dy2 , and them first and second 

derivatives are bounded and continuous signals, 

though they are not available for feedback control in 

the mobile robot. 

  The control object is to present a control 

strategy to resist the external arbitrarily fast time 

varying disturbance and to make the PES and the 

OES ideally at zero in the tracking control. 

 

 

4 Disturbance Observer Design 

and Simulation 
4.1 Disturbance observer design 

From (16), (17) and (18), the following tracking 

control error dynamics can now be expressed as 

                         idiiiii ymdem ɺɺɺɺ −−= τ  (20) 

where 2,1=i . And the subscript i denotes 1 or 2 in 

the following text. 

Remark 4.1: In the standard servo setting where 

signals iy , iyɺ  and iyɺɺ  are available, we can design 

the following ideal certainty equivalent control 

            )(ˆ)( tdymekek iidiidipi +++−= ɺɺɺτ  (21)  

where ipk  and idk  are positive constants, )(ˆ tdi  is 

the disturbance observer for )(tdi .  

As mentioned earlier, idyɺɺ  is not available in the 

system. Compared with standard servo control 

setting, consider the following control based on 

available signals: 

               )(ˆ)( tdekek iidipi ++−= ɺτ  (22) 

where 2/1>idk .Substituting (22) into (20) yields a 

closed-loop system 

             iiidipii dtdekekem −++−= )(ˆ)( ɺɺɺ   (23) 

where ,vdvvv ymdd ɺɺ−−=  .dww ymdd ωω ɺɺ−−=  

 From the closed-loop dynamics (23), if we can 

design a disturbance observer such that 
t

iii
iedtd

βα −≤−)(ˆ  

 where iα  and iβ  are positive constants, then the 

stability of the system (23) will be achieved easily. 

Consider the following differential equation: 

0))(ˆ()(ˆ =+−+−
⋅

−
⋅

i

ty

iiiii dedtddtd iγɺ
 (24) 

where iγ  are positive constants. Its solution is 

)0()()1()(ˆ
i

t
i

t

i detdetd ii λγ −− +−= . It show that 

)(ˆ tdi  converge to their true value )(td i  

exponentially. However, because )(td i  and )(
.

td i  

are not available, )(ˆ tdi  cannot be obtained from 

(24) directly. 

  Lemma 4.1: According to the listed below 

integral filters 

∫+

−+−=
−−

−

t
i

rt

i

t

iiiii

de

zetztz

i

i

0

)(

)0()()()(

µ

νυµµɺ

  (25) 

∫+

−+−=
−−

−

t

i

rt

i

t

iiiii

de

zetztz

i

i

0

)( ˆ

)0(ˆ)()(ˆ)(ˆ

µ

νυµµɺ

   (26) 

where iµ , iυ  are positive constants, )0(iz  and 

)0(ˆ
iz  are initial values, the following conclusions 

can be obtained: 

(i) The signal )(ˆ tdi  can converge to its true value 

exponentially, i.e., 
t

ii
ietd

βα −≤)(
~

 

 where )(ˆ)(
~

tdtdd iii −= , iα is positive constant, 

and iβ  is positive design parameter; 

(ii) The signal )(ˆ tdi   can be obtained from the 

following integral equation 

).()()(ˆ
00

tdrreedrrde i

t

i

rt

ii

t r iii ψψµ µµµ +∫=∫
−

  (27) 

where 
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.])()([

])([)()1(

)()1()0(ˆ

))0(ˆ)0(()()(

0 0

0

)(

)(

dsdrdssEer

ete

drrEeeze

zzet

t r

i

s

i

t

iiii

t

i

t rt

i

t

ii

t

iii

i

ii

iiii

iii

∫ ∫+⋅

−++−+

∫−+⋅+

−−=
−

−+

µ

γγ

µγυµ

υγµ

ϑ

µγµϑ

γυψ

  (28) 

are computable signals, with ,iidiipi ekekV ɺ+=  

drreeeteemt
t

i

r

iii

t

ii
ii ∫−−=

0
)()0()(()( ɺɺɺ

µµ µϑ , and 

constant 0>iγ  is design parameter. 

Proof: See Appendix A. 

The stability of the system (23) is given in the 

following theorem. 

Theorem 4.1: Assume the equation (23) 

consisting of system (14) and (15) satisfying 

Assumptions 4.1—4.3, the controller (22) and the 

observer (27). The external disturbance can be 

rejected exponentially, the PES and the OES can 

converge to zero, i.e., the estimated values of 1d̂  

and 2d̂  globally exponentially converge to their true 

values respectively, the tracking control errors 1e , 

2e , 1eɺ  and 2eɺ  are all converge to zero, as t is 

infinity. 

Proof:  Using the Lemma 4.1, we have 
t

ii
ietd

βα 222)(
~ −≤ . As ∞→t , 0)(

~ 2 →td i , i.e., the 

estimated values id̂  in (27) globally exponentially 

converge to their true values respectively. 

Consider the Lyapunov function candidate 

                         
22

iiiipi emekV ɺ+=  (29) 

then, differentiating Vi with the time and integrating 

(23), and we have 

)(
~

)(
~

)2/1(2

)(
~

2222

22

1

2

0

22

2

tdekek

tdek

tdeekeemeekV

iiiii

iiid

iiiidiiiiiipi

+−−≤

+−−≤

+−=+=

ɺɺ

ɺ

ɺɺɺɺɺɺɺ

  (30) 

where 02/)(2/1 10 >+=− iiid kkk  with 

00 >ik and 01 >ik . When 1)( /
~

itii kde ≥ɺ , we 

have 0≤iVɺ . Therefore, we know 1)( /
~

itii kde ≤ɺ . 

Noticing that 0)(
~

→td i  as ∞→t , 0→ieɺ as 

∞→t  can be obtained. Thus, we have 0→ieɺɺ  as 

∞→t . It follows that 0→ie  as ∞→t .  

 

 

4.2 Simulations 

The proposed controllers and observers in this 

section are verified with computer simulation using 

MATLAB. The parameter values of the mobile 

robot are taken as m = 9 kg, I = 5 kg.m
2
, 2R = 0.306 

m, r = 0.052 m. The parameters of the controllers 

are chosen as 5.321 == pp kk ; 6.021 == dd kk . The 

parameters of the observers are chosen 

as ;621 == µµ  421 ==υυ ; 821 == γγ . Initial 

velocity and angular velocity are taken as 0.1 m/s 

and 0 respectively; the target posture is taken as 

velocity and angular velocity are taken as 2)( =tv  

m/s and 1)( =tω rad/s respectively. The peaks, 

frequencies of two disturbances are optional. For the 

purpose of simulation, the parameters of two 

disturbances are taken as: )40sin(1.0 tdv π= and 

).20cos(15.0 td πω =  The simulation results for 

velocity tracking and angular velocity tracking are 

shown in Fig. 2 and Fig. 3.  

 

 
Fig. 2 shows the tracking and the orientation 

control performance respectively. Fig. 3 shows 

Fig. 2   Velocities. 
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the input torques of two driving wheels. The 

simulation results show that the tracking and the 

orientation of control tend to the desired values, 

which validates the effectiveness of the 

disturbance observers in Theorem 4.1. Under 

the proposed control mode, tracking control of 

the desired trajectory and desired orientation is 

achieved and this is mainly due to the 

“disturbance observer” mechanism. The 

simulation results demonstrate the effectiveness 

of the proposed disturbance observers in the 

presence fast time-varying external disturbances. 

Although fast time-varying external 

disturbances are introduced into the simulation 

model, the tracking/orientation control 

performance of system, under the proposed 

control, is not degraded. Different 

tracking/orientation control performance can be 

obtained by adjusting the values of design 

parameter. 

Furthermore, this kind of disturbance observer 

also can track velocity with time-varying. The 

initial velocity and angular velocity are the 

same as above case.  The target velocities are 

taken as ttv =)(  m/s and tt 5.0)( =ω rad/s 

respectively. The simulation results for velocity 

tracking and angular velocity tracking are 

shown in Figs. 4 and Fig. 5. 

 
 

 
 

 

5 Tracking and Controller Design 
5.1 Tracking errors 

In this section, under the desired velocity, the 

tracking problem for mobile robot is presented. To 

validate the tracking, it is assumed that the reference 

trajectory ),,( rrr yx θ  can be expressed 
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where rv  and rω  are desired reference velocity and 

angular velocity. 

  As in [28] and [29], the tracking error is 

expressed as 
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Clearly, for any value of θ , ( ) 0,, =eee yx θ  if and 

only if ( ) ( )rrr yxyx θθ ,,,, = . The first derivative 

of pE  can be written as 
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 (33) 

 

 

5.2 Proposed control law 
To solve the tracking problem, the control laws 

are proposed as follows 

)arctan(
2

cos 1 eer xvv
π

ρθ +=
 (34) 

Fig. 5  Angular velocity 
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where 1ρ , 2ρ  and 3ρ  are positive design 

parameters. 

Theorem 5.1: Assume that rω  and rv  are 

bounded and uniformly continuous over [0, ∞). If 

either rω  or rv does not converge to zero, then the 

zero equilibrium of the closed-loop system (33)-(35) 

is globally asymptotically stable. 

Proof: Consider the Lyapunov function candidate 
222

23 )1log( eee yxV θρ +++=
 (36) 

then, differentiating V3 with the time, considering 

(33)- (35), and we have 

0
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Therefore, the trajectories ))(),(),(( ttytx eee θ  are 

uniformly bounded on [0, ∞). According to [23], 

[ ] 0)arctan()arctan(lim =+
∞→ eeee

t
xx θθ

 (38) 

which, in turn, we know 

0))()((lim =+
→∞

ttx ee
t

θ  (39) 

It remains to prove that 0)( →tye  as ∞→t . 

This can be established by method of arguments 

used in the proof of [30]. 

 

 

5.3 Simulation 
The proposed controllers in this section are 

verified with computer simulation using MATLAB, 

considering the proposed controllers and the 

observers in section 4. The parameter values of the 

mobile robot and the disturbances of velocities are 

the same as ones in section 4.2. The trajectory 

tracking is based on the velocity tracking and the 

angular tracking. The parameters of three controllers 

are chosen as 1=pk ; 6.0=dk . The parameters of 

three observers are chosen as ;4=µ  55.0=υ ; 

5=γ . The desired trajectory has been given to be 

2=rv  m/s, 1=rω  rad/s, i.e. a circle. Tracking of 

the mobile robot with initial error vector is 
TT

eeep yxE ]5.012[][ == θ . The 

simulation results of tracking are shown in Figs. 6 – 

8. Fig. 6 shows the position tracking errors in X and 

Y coordinates. Fig. 7 shows the angular tracking 

error. Fig. 8 shows the input torques of two driving 

wheels. The simulation results show that the 

tracking errors tend to the desired values, which 

validates the effectiveness of the disturbance 

observer in Theorem 5.1. Under the proposed 

disturbance observer and the controller law, tracking 

problem can be achieved, and the tracking error 

vector exponentially converges to zero vector. 

 

 
 

 

Fig. 6  Position tracking errors. 
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Fig. 7  Angle tracking. 

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

T
ra
k
in
g
 e
rr
o
r 
(r
a
d
)

 

 

θe

WSEAS TRANSACTIONS on SYSTEMS Haitian Wang, Ge Li

ISSN: 1109-2777 38 Issue 1, Volume 9, January 2010



 
 

 

6 Conclusion 
In this paper, effective disturbance observer 

based on the series of integral filters has been 

presented systematically to velocity/angular velocity 

tracking and trajectory tracking for the mobile robot 

with unknown environment. For the controller, the 

stability and error boundedness is proved using 

Lyapunov stability theory. The proposed observer 

requires no information on the system. Simulation 

studies have verified the effectiveness of the 

proposed observer. 

 

 

Appendix 

A.  Proof for Lemma 4.1 
 Proof  (i) Consider the following differential 

equation 
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exponentially. From (25) and (26), one has 
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Substituting (41) and (42) into (40) results in 
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Define the following variable 
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Differentiating both sides of (46) twice yields 
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Differentiating both sides of (47) twice yields 
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Comparing (47) and (49), one has 
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Substituting (44) and (48) into (50) yields 
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where 1ic , 2ic and 3ic are constants. Obviously, there 
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Furthermore, we do not need )(teiɺɺ signal. 

Substituting (51) into (42) yields 
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where 

Fig. 8  The input torques. 
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To simplify (52), we define the following variable 
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Its solution is 

                    dree i

t rt

i
ii ψς µµ

∫= −
0

  (56) 

Substituting (56) to (54) yields 

)()()(ˆ
00

tdrreedrrde i

t

i

rt

i

t

i

r iii ψψµ µµµ +∫=∫
−

 (57) 

This is completed the proof. 
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