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Abstract:- In this paper, cepstral features derived from the Differentiated Relative Higher Order
Autocorrelation Sequence Spectrum (DRHOASS) are proposed for improving the robustness of a speech recognizer
in the presence of background noise. Proposed method is analyzed and compared in terms of the autocorrelation
coefficients they employ with the traditional feature extraction methods based on Linear Pediction (LP) analysis.
LP- based techniques used are Linear Predictive Cepstral Coefficients (LPCC), Short-Time Modified Coherence
(SMC) and the One-Sided Autocorrelation Linear Prediction Coefficient (OSALPC). We evaluate the speech
recognition performance of the proposed features on the Hindi isolated-word task and show that the proposed
features show better recognition performance than the features derived from the robust liner prediction based
methods for noisy speech.
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1 Introduction
Speech signal carries information from many sources.
But not all information is relevant or important for
speech recognition. In speech recognition, the first
crucial step is the feature extraction, where the speech
signal of a given frame is converted to a set of acoustic
features with the hope that these features will
encapsulate the important information that is necessary
for recognition. Once these features are computed, a
backend classifier is used to recognize the input speech
signal into a sequence of words in light of the extracted
features and pre-trained models.
Use of the autocorrelation domain in speech feature
extraction has recently proved to be successful for
robust speech recognition. Among the techniques
introduced that exploit the autocorrelation properties
are Short-Time Modified Coherence (SMC) [1] and
One-Sided Autocorrelation LPC (OSALPC) [2]. Pole
preserving is an important property of the
autocorrelation domain, i.e. if the original signal can be
modeled by an all-pole sequence which has been

excited by an impulse train and a white noise, the poles
of the autocorrelation sequence would be the same as
the poles of the original signal [3]. This means that the
features extracted from the autocorrelation sequence
could replace the features extracted from the original
speech signal. Extracting appropriate speech features is
crucial in obtaining good performance in ASR systems
since all of the succeeding processes in such systems
are highly dependent on the quality of the extracted
features. Therefore, robust feature extraction has
attracted much attention in the field.
Another property of autocorrelation sequence is that for
many typical noise types, noise autocorrelation
sequence is more significant in lower lags. Therefore,
noise-robust spectral estimation is possible with
algorithms that focus on the higher lag autocorrelation
coefficients such as autocorrelation mel-frequency
cepstral coefficient (AMFCC) method [4]. Moreover,
as the autocorrelation of noise could in many cases be
considered relatively constant over time, a high pass
filtering of the autocorrelation sequence, as done in
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relative autocorrelation sequence (RAS)[5], could lead
to substantial reduction of the noise effect.
Furthermore, it has been shown that preserving spectral
peaks is very important in obtaining a robust set of
features for ASR [6]. In differential power spectrum
(DPS) [7], as an example, differentiation in the spectral
domain is used to preserve the spectral peaks while the
flat parts of the spectrum, that are believed to be more
vulnerable to noise, are almost removed.
In this paper we use different order ranges of the
autocorrelation function separately for deriving speech
recognition features, and investigate their role in speech
recognition performance. This paper is organized as
follows. In section 2, the specific algorithms for the
five different speech feature sets are introduced.
Following this in sections 3 and 4 the implementation
and experimental framework is described, along with
the results and discussion. Finally conclusions are
given in section 5.

2 Autocorrelation Derived Features

To evaluate the effect of different order ranges of the
autocorrelation function on a speech feature set’s
robustness to noise, five different feature sets are
investigated. These include linear prediction cepstral
coefficients (LPCC), short time modified coherence
(SMC), one-sided autocorrelation linear prediction
coefficient (OSALPC), mel frequency cepstral
coefficients (MFCCs), and our newly proposed
differentiated relative higher order autocorrelation
coefficient sequence spectrum (DRHOASS). LPCC, in
comparison, use the fewest coefficients of the features
in the study, with only 13 lower-order autocorrelation
coefficients (order 12 model). MFCCs use 256 unique
autocorrelation coefficients for a 16 ms frame sampled
at 16kHz system. Each of the feature sets used in the
study are introduced next, along with the proposed
DRHOASS features.

2.1 Linear Prediction Cepstral Coefficients
(LPCC)
LPC features are generated in accordance with the
vocal cord or human vocal tract. LPCC is based on
LPC features. They model the speech as a linear but
time varying system. Speech samples from previous
time points are combined linearly to predict the current
value. The conventional LPCC technique is very
sensitive to the presence of background noise.
Beginning with the speech signal, frames of 256

samples are formed with an overlap of 128 samples. A
Hamming window is applied to each of these frames,
before a biased autocorrelation estimate is made. Using
these autocorrelation co-efficients, the Yule-Walker
equations are solved using the Levinson-Durbin
algorithm, then converted to cepstral coefficients using
a recursion relation [8][9]. A block diagram for
extracting  LPCC feature vector set is shown in Fig.
1(a).

2.2. Short Time Modified Coherence (SMC)

SMC based technique of speech signals gives more
robust estimation of the standard LPC parameters. This
is based on LPCC features. SMC performs better in
case of loud signals. They are more robust to additive
white noise. SMC is an all-pole modeling of the
autocorrrelation sequence with a spectral shaper. The
spectral shaper is the square root operator in the
frequency domain, which compensates for the inherent
spectral distortion introduced by the autocorrelation
operation on the autocorrelation sequence of the signal.
For extracting the features by this method we split the
speech signal into frames and apply a pre-emphasis
filter, then autocorrelation is applied followed by
windowing to remove discontinuities. Then FFT is
applied to convert time domain to frequency domain
followed by computing the absolute and the IFFT to
convert back to time domain. A set of cepstral
coefficients is  then  derived by applying Levinson
Durbin Recursion Algorithm. Block diagram for SMC
extraction is given in Fig. 1(b).

 2.3 One-sided autocorrelation linear prediction
coefficient (OSALPC)

OSALPC algorithm is based on LPCC features.
OSALPC performs better in case of noisy signals. It is
closely related to the short-time modified coherence
(SMC) representation. SMC is also based on AR
modeling in the autocorrelation domain. However,
whereas in the OSALPC technique, the entries to the
Levinson-Durbin algorithm are calculated from the
OSA sequence using the conventional biased
autocorrelation estimator, in the SMC representation,
they are computed using a square root spectral shaper.
OSALPC shows better speech recognition performance
than conventional LPCC in severe conditions of
additive noise. In this approach we split the speech
signal into frames and apply a pre-emphasis filter, then
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one-sided autocorrelation sequence is computed
followed by windowing to remove discontinuities.
Then, autocorrelation of order 12 is applied. A set of
cepstral coefficients are then derived by applying
Levinson Durbin Recursion Algorithm. Fig. 1(c) shows
the OSALPC feature set extraction.

2.4 Mel- Frequency cepstral coefficients
(MFCC)

The MFCC feature extraction algorithm starts in the
same way as the LPCC analysis. The speech signal is
broken into 16 ms Hamming windowed time frames,
which overlap by 8 ms. The power spectrum of the
windowed  time frames  (computed  through  FFT
algorithm) is then found before a filter bank is applied.

In this analysis, a 23 channel Mel warped filter bank is
applied to the estimated power spectrum. The resulting
filter bank energies are converted to cepstral
coefficients by taking the discrete cosine transform
(DCT) of their logarithm values, then retaining 12
cepstral coefficients after discarding C0.

2.5 Differentiated relative higher order
autocorrelation coefficient sequence spectrum
(DRHOASS)

The proposed  DRHOASS method is a robust feature
extraction procedure on the basis that the additive noise
distortion has most of its autocorrelation coefficients
concentrated near the lower time- lags and their higher-
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                           Fig. 1 (a) Block diagram of LPCC (b) Block diagram of SMC (c) Block diagram of OSALPC
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lag autocorrelation coefficients are zero (or, very
small). Theoretically (and asymptotically), the
autocorrelation function should be zero for all the
orders except for the zeroth order. To verify this fact we
take 3 s long  computer- generated (artificial) white
Gaussian noise and perform a short-time analysis
(with Hamming window) using a frame length of 16
ms. For illustration, we take three different frames
starting from 0.5, 1 and 1.5 s. In Fig. 2 (a) (b) and (c),
we show the waveform of the frame at 0.5 s, its power
spectra and its autocorrelation spectra. Similarly Fig. 2
(d) (e) and (f)  and Fig. 2(g),(h) and (i) show
waveform of the frame, their respective power
spectrum and their respective autocorrelation spectrum
at 1 and 1.5 s. As expected, the higher-order
autocorrelation coefficients are smaller in magnitude
than the zeroth autocorrelation coefficient, but they
have non-zero values due to short-time analysis. The
extraction of features based on DRHOASS is as
follows:
If u(m,n) is the additive noise, x(m,n) noise-free
speech signal and h(n) impulse response of the
channel, then the noisy speech signal y(m,n) can be
written as :

y(m,n) = [ ]x(m,n) + u(m,n) ⊗ h(n),0≤m≤M-1 , 0≤n≤N-1  (1)

Where M denotes the number of frames in an

utterance and N denotes the number of samples in a
frame and ⊗ denotes the convolution operation. As we
intend to use
our method to remove or reduce additive noise from
noisy speech signal, therefore the channel effect will
not be considered here. We will then have :

y(m,n) = [ ]x(m,n) + u(m,n) ,  0≤m≤M-1 , 0≤n≤N-1       (2)
If the noise is uncorrelated with the speech, it follows
that the autocorrelation of the noisy speech y(m,n) is
the sum of autocorrelation of the clean speech x(m,n)
and autocorrelation of the noise u(m,n),i.e.

ryy(m,k) = rxx(m,k) + ruu(m,k), 0≤m≤M-1,0≤k≤N-1           (3)

where ryy(m, k), rxx(m, k) and ruu(m, k) are the one-
sided  autocorrelation sequences of  noisy speech,
clean speech and noise respectively, and k is the
autocorrelation sequence index within each frame. If
the  additive noise is assumed to be stationary, the
autocorrelation sequence of noise can be considered to
be identical for all frames.  Hence, the frame index m
can be dropped out, and (3) becomes

ryy(m,k)=rxx(m,k)+ruu (k),0≤m≤M-1,0≤k≤N-1            (4)

The N-point ryy (m,k) is computed from  N-point
y(m,n) using the following equation,

Fig. 2. Short-time analysis of a  noisy signal using 16
ms frame. (a) Waveform of noise frame taken at 0.5
sec.(b)  Power spectrum estimate of  given frame (c)
Autocorrelation spectrum corresponding to power

Fig. 2. Short-time analysis of a  noisy signal using 16
ms frame. (d) Waveform of noise frame taken at 1.0
sec.(e)  Power spectrum estimate of  given frame (f)
Autocorrelation spectrum corresponding to power

Fig. 2. Short-time analysis of a  noisy signal using 16
ms frame. (g) Waveform of noise frame taken at 1.5
sec.(h)  Power spectrum estimate of  given frame (i)
Autocorrelation spectrum corresponding to power

WSEAS TRANSACTIONS on SYSTEMS Poonam Bansal, Amita Dev, Shail Bala Jain

ISSN: 1109-2777 4 Issue 1, Volume 9, January 2010



ryy(m,k) =  ∑
i=0

 N-1-k
 y(m,i) y(m,i+k)                                         (5)

Eliminating the lower lags of the noisy speech signal
autocorrelation should lead to removal of the main
noise components. The maximum autocorrelation index
to be removed is usually found experimentally. The
resulting sequence after the removal of lower lags
would be

ryy(m,k) = r yy(m,k),         D ≤ m ≤ M-1 

ryy(m,k) = 0,                       0 ≤ m < D                              (6)

Where D is the Elimination threshold (found
experimentally). Differentiating the resultant
autocorrelation sequence with respect to m, will
remove the noise autocorrelation and gives:

          
 ∂ryy(m,k)

 ∂m  =
 ∂rxx(m,k)

 ∂m + 
 ∂ruu(k)

 ∂m  ≅  
 ∂rxx(m,k)

 ∂m

         =   

 ∑
t=-L

 L
 t. ryy(m+t,k)

    ∑
t=-L

L
t2

 ,  0≤m≤M-1 , 0≤k≤N-1            (7)

The sequence, 
⎩
⎨
⎧

⎭
⎬
⎫

∂ryy(m,k)
N-1
 k=0  is named the Relative

Autocorrelation Sequence (RAS) of noisy speech at the
mth frame. In order to get DRHOASS, we take
differentiation of the spectrum of the filtered signal
(which we get from previous step i.e. RAS). This
further contributes to immunization against noise. By
this approach the flat parts of the spectrum are almost
removed while each spectral peak is split into two, one
positive and one negative.  The differential power
spectrum of the filtered signal in discrete domain, can
be defined as

    Diff Y(k)≈ ∑
l=-Q

 P
al Y(k+l), 0 ≤k ≤ K-1                        (8)

                       Fig. 3. Block diagram of proposed front end
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where P and Q are the orders of the differential
equation, al are some real-valued weighing coefficients
and K is the length of FFT.

3 Implementation

In this section we describe the implementation of the
proposed method (DRHOASS) to obtain new robust
features for speech  recognition. First, we pre-emphasis
the  input speech signal using a  pre-emphasis  filter
H(z) = 1- 0.97 Z–1 . In order to carry out short time
analysis of the pre-emphasized speech signal, we
perform frame blocking with a frame size of 16ms and
a frame shift of 8 ms and the signal is then analyzed
sequentially in a frame-wise manner. The Hamming
window is applied to the pre-emphasised signal and
then, the autocorrelation sequence of the framed signal
are obtained. The lower lags of the autocorrelation
sequence less than 1.375 ms (experimentally derived)
are removed. A FIR high-pass filter is then applied to
the signal autocorrelation sequence to further suppress
the effect of additive noise. Then, a Hamming window
is applied to the filtered signal and the short-time
Fourier transform of this filtered signal is calculated.

In the next step, differential power spectrum of the
filtered signal is found. Since the noise spectrum may
in many occasions be considered flat, in comparison to
the speech   spectrum, the  differentiation either reduces
or omits these relatively flat parts of the spectrum,
leading to even further suppression of the effect of
noise. A set of cepstral coefficients (DRHOASS-
MFCC) are derived from the magnitude of the
differentiated high order relative autocorrelation power
spectrum by applying it to a conventional mel-
frequency filter-bank and passing the logarithm of the
output to a DCT block.

MFCC feature vector set of dimension 39 is formed
concatenating energy feature, Delta MFCC and Delta-
Delta MFCC. Front-end for extraction of MFCC
feature vector set by DRHOASS has been shown in
Fig.3.

4 Recognition Experiment

To evaluate the performance of different feature vector
sets  TIFR Hindi speech database base of 200 Hindi
words (Table1) spoken by 30 speakers was used. The

spoken samples were recorded by 15 male, 10 female
and 5 child speakers in a studio environment condition
using Sennheiser microphone model MD421 and a tape
recorder model Philips AF6121. Each speaker uttered 5
repetitions of words. Database was divided into training
set and testing set.
We evaluate the recognition performance of the
proposed feature vector set in the presence of white and
colored noises and compare it with other feature
extraction methods. We compared it with the LPCC,
SMC, OSALPC and MFCC methods. With the
extracted features vector sets, word models of training
database for different front-ends are created by seven
state left-right Hidden Markov Model. Afterwards word
recognition rates for testing database are computed with
all the above methods and analysed.

(a) Testing on clean speech

This experiment is to evaluate the performance of
LPCC, SMC, OSALPC, MFCC and DRHOASS-
MFCC, when training data & the testing data are in
clean (40 dB) environment.
The results are shown in Table2.  These are the baseline
results for comparison purposes. Performance on the
basis of recognition rates is observed to be more or less
same if we use either LPCC, SMC, OSALPC, MFCC,
or DRHOASS-MFCC. This shows that the spectral
information derived by DRHOASS method captures
the speech information to the same extent as that by
other methods.

(b) Testing on noisy speech

The polluted testing utterances are generated by adding
the artificial noises at five SNR levels. The white noise
is generated by using a random number generation
program, and other colored noises, i.e., factory noise,
F16 noise, and babble noise, are extracted from the
NATO RSG-10 corpus [10]. The noises are added to
the clean speech signal at 20, 15, 10 5 and 0 dB SNRs.
Feature sets by LPCC, SMC, OSALPC and
DRHOASS-MFCC are evaluated and word recognition
rates are compared with the traditional MFCC front
end. Fig. 4(a)-(d) shows the results obtained using
LPCC, SMC, OSALPC, MFCC and DRHOASS front-
ends for different noises at various SNR levels. For the
case of white noise corruption, i.e., in Fig. 4(a), the
performance of LPCC, SMC and OSALPC degrades
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most significantly among all features, its performance
is worse than MFCC and DRHOASS-MFCC. It is
obvious that  DRHOASS-MFCC are quite robust to the
additive noises.
Fig. 4(b), (c) and (d) show the performance when the
testing speech is corrupted by factory, babble, and f16
noises, respectively. The figures depict that best
performance comes from DRHOASS-MFCC. This is
due to peak preserving property of power spectrum
domain, which helps in better recognition in noisy
environment. The experiments show the better
performance of the new feature vector set in
comparison to the other autocorrelation based robust
speech recognition parameters.

5 Conclusion

In this paper, several features that are derived from
different ranges of the autocorrelation sequence are
evaluated for their robustness to noise for a speech
recognition task. It is shown that all regions of the
autocorrelation sequence produce features that give
high recognition accuracy in clean conditions. It is
shown that features that are derived from the magnitude
of the differentiated high order relative autocorrelation
power spectrum are always more robust to noises. The
experiments also show that speech recognition features
that are derived from higher order range autocorrelation
coefficients are more robust than features that use all
orders (MFCC) for all tested noise types. They also
show that higher order range  derived features are more
robust than lower order ranges (LPCC, SMC,
OSALPC) for most of the tested noise types.

1. Language Standard Hindi (Khari Boli)

2. Vocabulary Size A set of 200 most frequently
occurring Hindi words

3. Speakers 30 Speakers

4. Utterances (15 male, 10 female and 5
children) 5 repetitions each

5. Audio Recording Recording on a casette tape in
studio S/N > 40

6. Digitization 16 kHz., Sampling 16 bit
quantization.

Feature Extraction Method Recognition
Rate (%)

LPC 96.55

OSALPC 98.27

SMC 93.00

MFCC 98.24

DROHASS 99.67
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Fig. 4 (a) Recognition rate (%) for testing speech corrupted by white noise Fig. 4 (b) Recognition rate (%) for testing speech  corrupted by factory noise

⎯∗⎯ DRHOASS-MFCC
⎯×⎯MFCC
---ο----SMC
⎯+⎯OSALPC
---◊--- LPC

Fig. 4 (c) Recognition rate (%) for testing speech corrupted by  F16 noise      Fig. 4 (d) Recognition rate (%) for testing speech corrupted by  babble noise
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