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Abstract: - In this paper, a sequential design method is proposed for analyses and designs of
multivariable feedback control systems. The overall compensator is implemented systematic-
cally with a cascaded layer-wrapped structure and diagonal compensators. The method can take
into consideration of stability, integrity, diagonal dominance and performance in a sequential
manner. Roots of stability-equations are used to select parameters of compensators in the
parameter plane. Three 2x2 and one 4x4 multivariable examples are given and comparisons with

the methods in current literature are made.
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1 Introduction

There are many design techniques developed
for multivariable feedback control systems
[1-2]. Even for stable system, most modern
control techniques based on various optimi-
zation techniques, such as H,,H_, L /1, horm

based or x optimization based designs tend

to give unstable controllers. The industrial
processes using unstable controllers have
been limited. Furthermore, integrities [3, 4]
of controlled systems for coping with sensor
failures cannot be guaranteed.

The main purpose of this paper is to get stable
compensators with integrity considerations for
multivariable feedback control systems in a
sequential manner. This implies that at each stage
only one loop of a loop gain matrix is closed. The
feedback loops can open or close for checking
integrities. Sequential design methods have
been used widely for design techniques in
frequency domain of single-input single-
output (SISO) systems can be easily applied to
multi-input multi-output systems[5-19]. In general,
constant precompensating matrices have been
widely used to achieve diagonal dominance
[5-19]. The concept of the diagonal dominance
plays a central role in the frequency domain design
methods. However, diagonal dominance with
precompensating matrix cannot cope with plant
uncertainties. The commonly used methods based
on this concept are Nyquist array method,
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inverse Nyquist array method [5-10], and
sequential return difference method [11-15].
The method used in this paper is to

extend the stability-equation method [20-22] and
to present a layer-wrapped precompensating matrix
for the analysis and design of multivariable
feedback control systems.

In this paper, for an NxN multivariable
feedback system the constant pre-compensating
matrix is decomposed into N cascaded constant
matrices with N parameters in each matrix.
Corresponding to these N matrices, there are
N steps for design. In each step, there are N
parameters and one diagonal compensator to be
determined. The proper values of parameters for
each specified diagonal compensator can be chosen
by inspecting the stability boundaries and the
constant- @ curves generated by the stability-
equation method. The stability boundaries can be
used to show that the proper choice of
parameters in the boundaries can keep the
compensated system stable even when some of the
transducers are failing. Meanwhile, the
relative difference among the constant-
curves will show the relative damping
characteristics of the system [20-22].

Similar procedure has been developed by
Maine[11-14]. Under his approach, a
constant precompensating matrix is first
selected to achieve the diagonal dominance,
and then close the loops systematically with
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diagonal-compensators in the diagonal
elements. In  comparison to Mayne's
approach, the method proposed in this paper
is to use different structure for the pre-
compensating matrix and to achieve high
integrity against transducer failures [3, 4].
In addition, since the stability-equation
method is highly capable of handling multi-
parameter problems, the overall
compensator for achieving desirable system
performance can be implemented easily.

A brief review of the stability-equation
method is given in Section 2, then the concept of
the layer-wrapped structure is presented in Section 3,
and finally the detail design procedure is
illustrated by the numerical examples given
in Section 4.

2 The Basic Approach

Assume that the system characteristic equation is
F(S) which can be decomposed into two parts
concerning even and odd terms of s; i.e.,

F(s)=F.(s) + F,(s) 1)
Let s= jw, then the stability-equations are

f.(w)=F.(jo)) 2)
and

f,(0)=F,(jo)/ jo (©)

From reference 20, one has the following stability
criterion.

Stability Criterion: If the roots w, and w, (ij=1.2..)
of the stability-equations f (w)=0 and f (w)=0,

respectively, are all real and alternating in
sequence, then the system with characteristic
polynomial F(s) is stable.

For a system with two parameters (m, and
m, ), the stability-equations can be written as

f (@) = iaiaf‘ 4)

and

f (o) =_§n:bjwzi (5)

where the coefficients a;'s and b;'s are in the
form of

a, = A, +B,m +C,m, (6)
and
bj =A; +Bym, + Cojmz (7)
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where the A's, B's and C's are constants. By
inserting Eqgs.(6) and (7) into Egs.(4) and (5), the
result can be arranged as

i A + mli B, 0" + iceiwz‘ =0 (8)
i=0 i=0 i=0

and
n . n X n .
Y A +m Y Bio* +m, Y Ciw?l =0 9)
j=0 j=0 j=0

for the even stability-equation, and for the odd
stability-equation. From these two equations, the
following two kinds of curves can be plotted:

(1)The Stability-boundary Curve: By solving
Egs.(8) and (9) for sufficient number of suitable

values of @, the simultaneous solutions of m;

and m, can be used to sketch a number of curves
ina m, vs. m, plane. Then the curve for o, = o,

which constitutes the stability-boundary can be
determined.

(2)The Constant- @ Curves: By assigning suffi-
cient number of values of @ to Eqgs. (8) and (9)
the constant- @ curves for even and odd stability-

equations can be plotted in the m; vs. m, plane.

From references 20, 21 and 22, it has been shown
that the differences among the magnitudes of the
real roots(w, and w,;) can be used as indications

of damping characteristics approximately;
therefore, the proper values of the parameters
(m, and m,) in a compensator can be chosen

by inspecting the relative differences among
the constant- @ curves[20-22]. This is the
main approach of this paper.

3 Sequential Design using Cascaded

Layer Wrapped Structure
The typical structures of the multivariable
feedback control systems considered in this
paper are shown in Fig.1(a) and 1(b). For
convenient, this kind of structures are called
"layer-wrapped structures".

The precompensating matrix for an NxN
multivariable feedback control system is
implemented by cascading the determined
columns P, (i=12,.,N) in each stage. In stage
j, the precompensating matrix P; s
represented by

Issue 12, Volume 8, December 2009



WSEAS TRANSACTIONS on SYSTEMS

P, O ofr p, . O] |2 0O FR; -0
b _|Pa 1 - 00 P, . 0 |01 PR .0 (10)
il - . - A Lo
Py O 10 P, . 1] |00 P, .. 1
(stagel) (stage 2) (stage j)

the parameters P,(i=12,...,N) together with
the diagonal compensators K,(s) as shown in

Figs.1(a) and 1(b) are determined to satisfy
the performance and integrity against the
failures of transducers. In other words, the
selections of B, will maintain the stability of

the system regardless whether the feedback
loops denoted less than or equal to j are
closed or opened.

Fig.1(a). Block diagram of a 2x2 multivariable
feedback control system.

reg + ~ + |y’
+
b

y3

-

Fig.1(b). Block diagram of a 3x3 multivariable
feedback control system.

G(s)

The stability-equation method is used to
analyze the layer-wrapped structure from
stage 1 to stage N; the constant root loci and
stability boundaries can be generated
automatically by computer facilities. The
types of diagonal compensators K,(s) are

defined by the engineer with experience, and the
proper choice of the parameters can be obtained by
inspecting the results provided in the parameter
plane by use of the stability-equation method.

Assume that a 2x2 multivariable feedback
control system is considered. The transfer function
matrix of the plant is

gll(s) ng (S):|
921(5)  G2(S)

G(s) :{ (11)

ISSN: 1109-2777

1296

Tain-Sou Tsay

The pre-compensating matrix is in the form of

P:Pll 0]f1 P,
2P, 1|0 P,

(stagel) (stage 2)

(12)

and the matrix consists of the diagonal compen-
sators is represented by

Ki(s) 0
o o)

K(s) = { (13)

The steps for analysis and design are:

(1).Close loop-1 and define the diagonal compen-
sator K,(s), then find the parameters P, and P,
for satisfying the desirable performance.

(2).Close loop-2 and open loop-1 to define the
diagonal compensator K,(s) , then find the
parameters P, and P, for satisfying the
desirable performance.

(3).Close both loop-1 and loop-2 to check whether
K,(s) , P, and p, found in step(2) are

acceptable. If not, then go back to step(2) to
select other values of K,(s), P, and P, to

satisfy desirable performance.

For step 1, the transfer function matrix of this
subsystem can be written as

|: K (8)[9:1(S)Py + 1, (S) Py ] 0:|

'(s) = K, (3)[921(8)P1(8) + 95, (S)P,,] O

Tif (14)
1 + Kl(s)[gll (S) Pll + ng (S) PZl]
For step 2, one has
|:0 KZ(S)[gll(S) PlZ + ng (S)PZZ] }
TIs) = 0 K,(8)[Tx(S)P(S) + Ty (S)Py, ] ( 15)

1+ Ki(8)[G2(S)P; + T2 (8) Pau]

Similarly, for step 3, the transfer function matrix of
the overall system is

K1 (s)[Tu1(5) 3 B

KD, (5)Py] < (ONT (P + T (9P ]
a K, ($){02(s)Py,

K. (s)g2(s) +[9,,(8) + K, (s)Dg (9)IP,, }

1+ K, (8)811 (8) + K, (SHT 2 (8)Py, +12 (8) + K, (5)Dg ()P}

T = (16)

where the relations among @ (s)) are defined by
— |:gll(s) g12 (S):||: Pll O:|
91(8) 9(8)]| Py 1

which represents the compensated plant after step 1;
and D, (s) is the determinant of the compensated

(17)

5(s) = {gu(s) gu(s)}

0,(8) ()

plant.
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The characteristic equations of T/(s), T,(s) and
T,/ (s) are, respectively

P (S) = Py ()L + K, ()91, (S)Py + 01, (5)P, 1} =0 (18)

Pz () = Pos ()L + K, ()T ()P + T ()P 1= 0 (19)
and
Pes(S) = Poz (L + K (8)Ty, (5) + K, ()[4 (S)Py,
+ (gzz (S) + Kl(s) Dg (S)) P, ]} =0

(20)

where p (s) is the open loop characteristic
equation of the plant G(s) with K (s) only; and
p,.(s) is the open loop characteristic equation of
the plant with K, (s) only. Similarly _ (s)represents
the open loop characteristic equation of the plant
with both K, (s)and K,(s). Egs.(18) to (20) can be
decomposed into two stability equations, then the
analyses in the P, vs. P, and P, and P,, planes
can be performed.

Other objects for the design of multivariable
feedback systems, such as low-interaction at low
frequency and low-interaction at high frequency,
can also be achieved systematically by use of the

proposed method. For example, in Eq.(14) proper
values of parameters p, and P, can be chosen

to satisfy requirement of diagonal dominance
for all frequencies; i.e.,

[ 911 (J0)Py + 9y, (JO)P oy | >> [ 9y (J@)Py + gy (J@) Py | (21)

Similarly, by use of Eq.(15) proper values of
parameters P, and P, can be chosen to

satisfy

|91 (J0)R, + Ty (j0)Py, [>>T1, (J)P, + 81, (J) Py | (22)
Finally, by use of Eq.(16), the requirement of
column dominance [7,8] can be achieved by
making the coefficients of the off-diagonal
terms as small as possible. From Eqgs.(14) to
(17), it can be seen that the off-diagonal
terms (21)" and (1,2)" elements of T/(s) are

the off-diagonal term (2,)" of T/(s) and the
off-diagonal term (1,2)" of T/(s), respectively.
Therefore, if T/(s) and T[s) are diagonal

dominant (as defined by Eqgs.(21) and (22) )
then the overall system transfer function
matrix T/(s)is also diagonal dominant.

The design procedure and the application
of the stability-equation method in each step
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are explained in the following three 2x2
examples and extended to a 4x4 example.

4 Numerical Examples

Example 1: Assume that the transfer function
matrix of the 2x2 multivariable feedback control
system shown in Fig.1(a) is[23]:

10 -1
6,(s)=| S+ P+2) s(s D) (23)
s(s+2) s(s+1)

For compensation, two first order lead/lag diagonal
compensators K, (s) and K,(s) are used.

In step 1, one of the diagonal-compensator K, (s)
is defined as
~100(s +1)

s+100
The transfer function matrix of this subsystem is

1000P, —100(s+2)P,, 0
250(s +1)P, +600(s +2)P,, 0

s® +102s? + 200s +1000P,, —100(s + 2)P,,

K, ()

(24)

Ti'(s) =

where P, and P,, are two adjustable parameters.

The negative summation of the characteristic roots
is increased from 2 to 102 with the aid of K (s) . The

characteristic equation is
s +102s2 + 200s +1000P,, —100(s + 2)P,, =0 (25)

which can be decomposed into the following two
stability-equations

~102? +1000P,, — 200P,, =0 (26)
and

— * +200-100P,, =0 (27)
Then the stability boundary and the

constant- @ curves can be plotted as shown
in Fig.2(a). In order to have fine damping
characteristics and to satisfy the diagonal
dominance as defined in Eq.(21) suitable
values of P, and P, are selected at 90 and -

52.5, respectively; i.e., point Q, in Fig.2(a).
By this selection, the roots @, and @, of

the stability equations are approximately at
31 and 74, respectively. The characteristic
roots of this subsystem are found at

-30.891, -25.554+j44.601.
This result justifies the description of the stability-
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equation method given in references 1 and 2; i.e.,
larger differences among @, and a,, will give
better damping characteristics of the compensated
subsystem. In addition, from Eq.(24) it can be seen
that the ratio of P, /P, =90/-2.5=600/-350 will

make the coefficients of off-diagonal term much
smaller than that of the diagonal term; i.e., low-
interaction is achieved because the coefficient of the
term s' of the off-diagonal element is zero. In short,
the rules for selecting proper values of P, and P,
are (1) selecting the ratio of P, /P, to achieve
low-interaction and (2) selecting the values of P,

and P,, to obtain desirable performance.

Fig.2. Parameter analyses in (a)Step 1; (b) Step 2;
(c)Step 3; and (d)Time Responses of Example 1.

In step 2, the remaining diagonal-compensator
K,(s) is defined as

50(s+1)
s+50

Since loop-1 is open and loop-2 is closed, the
transfer function matrix T/(s) is

Kz(s) =

0 (26255 +505250)P,, — (505 +100)P,,
0 ~15750P,, + (300s — 600)P,, (28)

T,'(s)=
') s® +52s +100s —15750P,, + (300s + 600)P,,

where P, and P,, are two adjustable parameters.
The characteristic equation is

s® +52s* +100s —15750P,, + (300s +600)P,, =0 (29)

and the stability equations are

— 520 + (~15750)P,, + 600P,, =0 (30)
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and

— »* +100+ 300P,, =0 (31)

Constant- @ curves are shown in Fig.2(b). Proper
values of P, and P,, are selected at 0.3 and 15.75,

respectively; i.e., point Q, in Fig.2(b). The roots of

the stability equations can be read out approximately;
e, w, =10 and @, =70 . The roots of the

characteristic equation are found at
-0.9896, -25.5052+j64.2184

From Fig.2(b) and Eq.(28), it can be seen
that the ratio p,/P,=0.3/15.75=50/2625 Will
make the coefficient of the term s' to be
zero.

In step 3, after loop-1 is closed the
parameter analysis is performed in the P, vs.
P, plane. The transfer function matrix of
the overall system T/(s) is represented by

Eq.(16). Since P, and P, are selected at 90

and -52.5, respectively, the characteristic
equation is

s® +152s* +10550s°% +37300s? + 50250005

+(~15750s? —1575000s)P,, + (300s° +30600s? (32)
+1635000s + 28575000)P,, =0
The stability equations are
1520* - 373000* +157500°P,, (33)
+(~306000” + 28575000)P,, = 0
and
o' —105500” + 5025000 —1575000P,, (34)

+ (=300 +1635000)P,, =0

Constant- w curves are shown in Fig.2(c).
Note that the stability boundaries are
derived from the analyses of the sub-system
considered in step-2, for which loop-1 is
open and loop-2 is close. This implies that
the choices of P, and P, are constrained by
the boundaries for achieving the integrity
against transducer failure in loop-1 which
may cause loop-1 to open.

It can be seen that the choice of point Q, in
Fig.2(b) is corresponding to point Q, in Fig.2(c),
and that the choice of Q, is satisfactory for the

overall system. The roots of the stability equations
are approximately at

w, =240, =485 0, =70,0,, =113.
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The overall compensator is

100(s +1)
ok © Ot 03] sv00 0 |(35)
2 "|-525 1]|0 15.75 0 50(s +1)
s+50

The transfer function matrix of the final
compensated system is

5250s° + 36300052 135005” + 135005
T,"(s) = 1 | +28931250s + 450056250 . 2
AG)|  a1s00s? 15750005 4772258° +477225
+ 252787505 + 450056250
(36)
where

A(s) = s° +1525* +15275s% + 85022557 + 303037505 + 4500566250
The characteristic roots are found at

-29.0899, -35.8683+j43.8834,
-25.5867+j64.5103

The step responses of the overall system are shown
in Fig.2(d), which indicate that the designed system
has nice damping characteristics as predicted.

Note that all the constant- » curves are
straight-lines; therefore locations of characteristics
roots(i.e., damping characteristics) can be predicted
approximately and easily by inspecting the
differences among w,; and @y -

Example 2: Consider the 30-plate distillation
column in the UMIST pilot plant [5,7]. The transfer
function matrix of the plant is

0.088+165s 0.1825+ 353.1385

G,(s) = 1 | +4083.25” +24420s° + 2883552 +253218.75s°
A(s) | 0282+ 28.984s 0.412 + 332.484s

+8641.61s% +229054.55°  +23593.44s% +223098s°

(37)

where A(s) =1+26272s +1.5949x10°s* +1.3879 x10°s® |
+2.7337x10°s* +1.503x10"s®

Following the same design procedure and
discussions stated in Example 1, the constant- @
curves of two subsystems with transfer matrices
Tf(s) and T[s) and the overall system with

transfer function matrix T,(s) are shown in Figs.

3(a) to 3(c). The diagonal compensators K, (s) and
K, (s) are defined as

1
Kl (S) = [1"1‘ TlSJ

in step 1, and
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1
KZ (S) = (1"1‘ Tzsj

in step 2, where T, and T, are selected at

33.33 and 125 seconds, respectively. The
parameters P, (i, j=12) are chosen at

P, =—-38,P, =26, point Q, in Fig.3(a),

P, =-035FP, =20, point Q. in Fig.3(b) and
point Q, in Fig.3(c)
The overall compensator is

PK(S) = -38 0][1 -0.35][1+.03/s 0
2 126 1]|l0 200 0 1+.008/s

} (38)

The characteristic roots of the final
compensated system are found at

-0.0664, -0.0651, -0.013, -0.005222, -0.09415,
-0.001438, -0.0005406, -0.0991,
-0.003081 +j0.006183, -0.006369 * j0.008972

Fig.3. Parameter analyses in (a)Step 1; (b) Step 2;
(c)Step 3; and (d)Time Responses of Example 2.

Step responses of the compensated system
are shown in Fig.3(d). The same system has
been considered by Stojic[7] utilizing the
inverse Nyquist array method[5-10]. In his
approach, a precompensating matrix is first
selected to achieve diagonal dominance and
then find coefficients of the PI controllers in
the diagonal elements by use of the inverse
Nyquist array method. In comparison to
Stojic's approach, the advantages of the
method proposed in this paper are that the
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selections of the parameters P,'s are more

straightforward and that the dominance is
achieved in each step.

Example 3: Consider an aircraft gas turbine engine
with plant transfer function matrix [8,15]

2533+1515.33s 1805947 +1132094.7s 39
G.(s) = 1 +14.95? +95150s? (39)
317 A(s) | 12268.8+8642.68s 252880 +1492588s
+85.252 +124000s*

Where A(s) = 2525 + 3502.7s +1357.3s2 +113.22s° + s*. FoOr

convenient, the plant is first multiplied by a scaling
matrix

1 0
P, =
{0 0.001}

The diagonal-compensators K, (s)(i =1,2) are
selected to be

(40)

s+4
s+0.2

Ki(s) =

in step 1; and

s+25

Ka(8)= s+5.0

in step 2. Similar to Example 1, the constant- w
curves of two subsystems and the overall system
are shown in Figs.4(a) to 4(c). Proper values of
P,'s are selected as

P, =—4,P, =195,
P, =1.5,P,, =40,

point Q, in Fig.4(a),
point Q, in Fig.4(b) and
point Q, in Fig.4 (c) .

The overall compensator is

S+4

F>K(S)_1 0T-4 0][1 -15]552
2 “lo 001195 1||l0 40 0

The characteristic roots of the compensated system
are found at

-1.3371,-1.8823,-2.4907,-4.8665,-9.99809,
-9.06867+j15.30685, -46.4665+j24.4423

(41)
s+2.5
s+5.0

Step responses of the compensated system are
shown in Fig.4(d). Similar results have been
obtained by Chuang [15] utilizing the sequential
return difference method[10-15]. However, the
method proposed in this paper is much simpler.
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Example 4: consider the 4x4 boiler furnace control
system with transfer function matrix [22]

0.2 ]

1+5s
0.35

1+5s
0.6

1+5s
1

1 0.7

1+4s 1+5s
0.6 1 0.4

1+5s 1+4s 1+5s
0.35 0.4 1

1+5s 1+5s 1+4s
0.2 0.3 0.7

L1+55s 1+5s 1+5s

0.3
1+5s

(42)

G4 (S) =

1+4s |

Combing diagonal controllers and re-compensating
matrices with lead/lag sub-compensators, the
overall compensator is in the form of

C(S) = P1 (S) Pz (S) P3 (S) P4 (S)
(s+b, _ i

s+d,

S+b, _
1 0 0f|0
s+d, P

S+by _
—_— 01 0]|0
s+d, P

S+b, _ —
— 0 0 1|/]|0 —=*=
| s+d, Pa

Stagel

b
S35 ofl1 0 0

S+b, _

s+d, ©
S+b,, _

0 0 0|1

s+b, _ ]

s+d,  °
S+Db,

s+d, =
S+by

s+d,

s+d,
S+b,, _

s+d,
S+by,

s+d,

S+b, _
s+d,

S+b,
s+d, °

(43)

Stage3

Fig.4. Parameter analyses in (a)Step 1; (b) Step 2;
(c)Step 3; and (d)Time Responses of Example 3.
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where d.b;,p;(i,j=1234) are adjustable

jl |jy
parameters. Four steps are used for analyses and
designs of this 4x4 multivariable system to find
P,(s)(j =12,34) systematically. Note that diagonal

compensator and precompensating matrix are
merged together in each step.

Step 1: In step 1, the transfer function matrix is in
the form of

pO(S)Z(S+bil)gli(S)ﬁil 000
po(S)Z(Seru)gzi(s)ﬁu 000

pO(S)Z(S+bi1)93i(S)pil 000

Tm(s)__po(s);(wbu)gm(s)pu 00 0_ (44)

po<s){(s+d1)+i(s+bu>g“ (s)pu}

i=1

where p,(s)=s*+0.45s+0.05 . There are nine

parameters to be found and can be reduced to three
adjustable parameters by diagonal dominance
manipulation. One approach is to make coefficients
of the highest order and lowest exponents of off-
diagonal terms of Eq.(44) approach zero. The ratio
of p,(i=12,34) is found as

Pp i Dyt Py o Py =31.089: —13.663: —4.813: —1.00
= p11: p21: p31: pal

where p, =k, p,(i =1.2.3.4). The ratio b, (i =1,2,34)
is found as
b, b, b, b, =1:1.275:1.1887 :3.0127

1:
=Dy, 1by tby tby
where b, =k,b, (i =1.2.3.4). Then the characteristic
equation of T®(s) can be written as

Fa(8) = (5+d,) o (8) + Py (8) (5 + bk, )y (8) Pk, =0
(45)
(5448, (9| 2,930, 9,

+|:po (S)Z Qi (5)6i1 f)il:|k1kz =0

where k, and kk, are considered as two
adjustable parameters to be analyzed for a
specified value of d, . Then, design procedures for

2x2 multivariable feedback control systems can be
applied to this 4x4 multivariable feedback control
system. The parameter analyses are shown in
Fig.5(a) for d,=1 . The constant-X curves

represent the negative sum of the characteristic
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roots. In general. the larger the value of X, the
better damping characteristics of the system will be.
A suitable choice is made at Q,(0.81.6) in

Fig.5(a), for which the roots of the stability-
equations are at

o, =0.498 and @, = 3.0833.
Corresponding to ratios Bu and P, (i=1234)

found above and the choice of (k,,kk,) =(0.81.6),
the P,(s) is in the form of

248713729 4 o o
s+1
210933725 4§ ¢ (46)
R(s)= s+ 2577
—3853F2<ll g 4 9
s+1
080318026 5 4 4
s+1 i

The transfer function matrix is

44885 +8.9885+1423 0 0 0

T - L ~1.2569s 0 o o (47)
Fa(s) ~0.40965 000
0.231s 000

where F,(s) = s° +5.9386s° + 9.4884s +1.4725 .The
characteristic roots of T®(s) are found at

-0.1735,-2.8825+ j0.4235.

Using the found PR,(s) , the open-loop transfer
function of the plant is in the form of

GY(s) =G(s)P.(s)

9%u(s) 9%z(s) 9%n(s) 9%u(s)| (48)
19%2(s) gP2(s) g@u(s) gVu(s)
T19%a(s) gPu(s) 9%as(s) gu(s)

9%au(s) 9%(s) g¥.a(s) gPu(s)

Step 2: Now, the transfer function matrix T ) (s)
of this step is in the form of

0 P> (5+8,)g%(8)p, 0 0
0 Pu(®)>(5+b,)g% ()P, 0 0
0 pu(®> (5 +b,)g%s(s)p, 0 0

c @ . A
T(z)(s) _ _0 pm(S);(S + biz)g 4'(5) Pi- 0 O_ (49)
p01(5)|:(s +d,) + Z(S +,)g%a (S)pi2:|
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where p,,(s) = s* +1.45s% +0.50s +0.05. Similar to
analyzed and designed procedures in stepl. The
ratios of b,, (i =12,34) and p,,(i =12,34) are

b, :b,, :by, b, =-1.8386:-2.4114:-3.2656: -1
=Dy, 1by, 10y, by,
and
P Py i Psy i Py =1:-37.446:10.488:3.1136

= ﬁlZ : ﬁzz : ﬁsz : ﬁ42
respectively. The characteristic equation in this
step is in the form of

Fo(9) = (5 + ;) Pon(8) + Por (53 (5 + Bk, )g i (5) Bk, =0

i=1

=(s+d,)py(s) + |:5po1 (S)Z 9@ (s) ﬁi2:|k1

+ { pm(s)i g% (S)BiZ Pi :|k1k2 =0
(50)

The parameter plane analyses are shown in Fig.5(b)
for d,=1.25. A suitable choice is made at

Q,;(=0.5,0.375) in Fig.5(b), for which the roots of
the stability-equations are at

@, =0.3123,,, =3.893 an @, =1.2738

Corresponding to ratios Bil and p,(i=1234)
found above and the choice of (k,,kk,)=(0.8,1.6),
the found P,(s) is in the form of

1 _0.55+1.379 00
s+1.25

0 1872337189 4 4 (51)
CF NrT)

0 —52445372%%% 4

s+1.25
0 -15573F970 o 4
i s+1.25 |

The characteristic equation is in the form of
F,(s) =s* +6.8522s® +15.2532s” +11.1173s +1.4782

in this step. The characteristic roots are found at
—0.1694,-1,0829,—2.8 + j0.4659.

Step 3: In this step, only loop 3 with P,(s) and
P,(s) are closed; i.e., G®(s)=G(s)P,(s)P,(s) -
The same design procedures in steps 1 and 2 are
extended. The details of this step are omitted. The

parameter analyses are shown in Fig.5(c) for

d,=1.75 and ratios of p,(i=1234) and

P.(i=1234) are
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by i by i by i by, =—-1:-1.0373: -1.49: -1.862
=by3 1Dy by 1 by

and

Pis i Doz Pas i Ppe =—1:-1.172:119.377 : —66.851
=P Py Pag i Pag

A suitable choice is made at Q,,(0.175,-0.3);i.e.,
(k;, k,k,) =(0.175,-0.3) in Fig.5(c) for roots of the
stability equations are selected at

@, =0.251,0,, =1.98 and w,, = 0.8287,m,, = 4.9639 .

1302

| @o=, Stability boundary

LA LI L UL L

@o=0, Stability boundary

Stability boundary Do=il,

Fig.5.Parameter analyses in (a)Step 1;(b)Step 2;
(c)Step 3;(d)Step 4.

The results of this step are given as follows: the
found P,(s) is in the form of

Lo _o1rsStLTH
s+1.75
0 1 -020535*1778 (52)
0- i
0 0 208013F% 0
s+1.75
0 -0 -11.699573192 4
i s+175 |

and characteristic roots of the T (s) are at
-0.1701,-1,-1.273,—2.9126 + j0.9739.

Step 4: In this step, only loop 4 with P,(s), P,(s)

and P,(s) is closed; i.e., G®(s) = G(s)P,(s)P,(s)P;(s) -
The same design procedure is extended. The details
of this step are omitted. The parameter analyses are
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shown in Fig.5(c) for d, = 2.75 and ratios of
b,(i=1234) and p,,(i=12,34) are
b,:b, b, b, =-1:-1.619:-1.3691:-1.2677

614 : bz4 : t334 : t;44

and
Dis: Pos: Pas © Pus =1:1.8918:3.5261:112.214

= Pig - Pos - Paz @ Pys

A suitable choice is made at Q,,(0.15,-0.33) in

Fig.5(d) for roots of stability equations are selected
at
@, =0.231, @,, = 1.496, w,; = 1.493 and

,, =0.6983, w,, = 0.6983.

The results of this step are given as follows: the
found P, (s) is in the form of

L 0 -0 _oq5S+2338
s+2.75
01 0 -o02845+2711 (53)
- iR
00 1 -05203*"
s+3.195
00 0 1683257298
i s+275 |

and characteristic roots of the T (s) are at

-0.1737,-1.005,-1.2495,-3.375 1+ j0.6531.

Step responses of the closed loop system with
found compensator C(s) = P,(s)P,(s)P,(s)P,(s) are
shown in Fig.6. It can be seen that results are

satisfactory for

the

considered

system and

interactions among all loops are very small.

&)
1k a4 ¥ i "
= 5
. (%%, °I; Y
1 2 1 2
" t(s) X 1(s)
1= “ . . i @ e ——— %
g i
s / x _/I
i'{ /
1 S % ; A ;
0| -2
z 1 lft) 2 x_ 1 l'(#j

Fig.6.Time responses of Example 4.
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5. Conclusions

A sequential design technique using stability-
equation method has been extended and applied to
the analysis and design of multivariable feedback
control systems. By use of the proposed layer-
wrapped structure together with the stability-
equation method to design the overall compensator,
it can be seen that the system characteristics, such as
stability, integrity and damping characteristics can
be considered systematically easily; thus it is a
useful tool for analysis and design of multivariable
feedback control systems.
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