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Abstract: - In this paper, a sequential design method is proposed for analyses and designs of 
multivariable feedback control systems. The overall compensator is implemented systematic- 
cally with a cascaded layer-wrapped structure and diagonal compensators. The method can take 
into consideration of stability, integrity, diagonal dominance and performance in a sequential 
manner. Roots of stability-equations are used to select parameters of compensators in the 
parameter plane. Three 2x2 and one 4x4 multivariable examples are given and comparisons with 
the methods in current literature are made. 
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1 Introduction 
There are many design techniques developed 
for multivariable feedback control systems 
[1-2]. Even for stable system, most modern 
control techniques based on various optimi-
zation techniques, such as ∞HH ,2 , 

11 / lL  norm 
based or μ  optimization based designs tend 
to give unstable controllers. The industrial 
processes using unstable controllers have 
been limited. Furthermore, integrities [3, 4] 
of controlled systems for coping with sensor 
failures cannot be guaranteed. 

The main purpose of this paper is to get stable 
compensators with integrity considerations for 
multivariable feedback control systems in a 
sequential manner. This implies that at each stage 
only one loop of a loop gain matrix is closed. The 
feedback loops can open or close for checking 
integrities. Sequential design methods have 
been used widely for design techniques in 
frequency domain of single-input single-
output (SISO) systems can be easily applied to 
multi-input multi-output systems[5-19]. In general, 
constant precompensating matrices have been 
widely used to achieve diagonal dominance 
[5-19]. The concept of the diagonal dominance 
plays a central role in the frequency domain design 
methods. However, diagonal dominance with 
precompensating matrix cannot cope with plant 
uncertainties. The commonly used methods based 
on this concept are Nyquist array method, 

inverse Nyquist array method [5-10], and 
sequential return difference method [11-15].  

The method used in this paper is to 
extend the stability-equation method [20-22] and 
to present a layer-wrapped precompensating matrix 
for the analysis and design of multivariable 
feedback control systems.  

In this paper, for an N×N multivariable 
feedback system the constant pre-compensating 
matrix is decomposed into N cascaded constant 
matrices with N parameters in each matrix. 
Corresponding to these N matrices, there are 
N steps for design. In each step, there are N 
parameters and one diagonal compensator to be 
determined. The proper values of parameters for 
each specified diagonal compensator can be chosen 
by inspecting the stability boundaries and the 
constant-ω  curves generated by the stability-
equation method. The stability boundaries can be 
used to show that the proper choice of 
parameters in the boundaries can keep the 
compensated system stable even when some of the 
transducers are failing. Meanwhile, the 
relative difference among the constant- ω  
curves will show the relative damping 
characteristics of the system [20-22]. 

Similar procedure has been developed by 
Maine[11-14]. Under his approach, a 
constant precompensating matrix is first 
selected to achieve the diagonal dominance, 
and then close the loops systematically with 
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diagonal-compensators in the diagonal 
elements. In comparison to Mayne's 
approach, the method proposed in this paper 
is to use different structure for the pre-
compensating matrix and to achieve high 
integrity against transducer failures [3, 4]. 
In addition, since the stability-equation 
method is highly capable of handling multi-
parameter problems, the overall 
compensator for achieving desirable system 
performance can be implemented easily. 

A brief review of the stability-equation 
method is given in Section 2, then the concept of 
the layer-wrapped structure is presented in Section 3, 
and finally the detail design procedure is 
illustrated by the numerical examples given 
in Section 4. 
 
 
2 The Basic Approach 
Assume that the system characteristic equation is 
F(S) which can be decomposed into two parts 
concerning even and odd terms of s; i.e., 

)()()( sFsFsF oe +=                               (1) 

Let ωjs = , then the stability-equations are 

)()( ωω jFf ee = )                                    (2) 
and 

ωωω jjFf oo /)()( =                               (3) 

From reference 20, one has the following stability 
criterion. 

Stability Criterion: If the roots eiω  and ojω  (i,j=1,2,.) 
of the stability-equations 0)( =ωef  and 0)( =ωof , 
respectively, are all real and alternating in 
sequence, then the system with characteristic 
polynomial F(s) is stable. 

For a system with two parameters ( 1m  and 

2m ), the stability-equations can be written as 
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where the coefficients sai '  and sbj '  are in the 
form of 

21 mCmBAa eieieii ++=                          (6) 
and  
    21 mCmBAb ojojojj ++=                           (7) 

where the A's, B's and C's are constants. By 
inserting Eqs.(6) and (7) into Eqs.(4) and (5), the 
result can be arranged as 
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for the even stability-equation, and for the odd 
stability-equation. From these two equations, the 
following two kinds of curves can be plotted: 

(1)The Stability-boundary Curve: By solving 
Eqs.(8) and (9) for sufficient number of suitable 
values of ω ,  the simultaneous solutions of 1m  
and 2m  can be used to sketch a number of curves 
in a  1m  vs. 2m  plane. Then the curve for ojei ωω =  
which constitutes the stability-boundary can be 
determined. 

(2)The Constant-ω  Curves: By assigning suffi-
cient number of values of ω  to Eqs. (8) and (9) 
the constant-ω  curves for even and odd stability-
equations can be plotted in the 1m  vs. 2m  plane. 

From references 20, 21 and 22, it has been shown 
that the differences among the magnitudes of the 
real roots( eiω and ojω ) can be used as indications 
of damping characteristics approximately; 
therefore, the proper values of the parameters 
( 1m  and 2m ) in a compensator can be chosen 
by inspecting the relative differences among 
the constant- ω  curves[20-22]. This is the 
main approach of this paper. 
 
 
3  Sequential Design using Cascaded 

Layer Wrapped Structure 
The typical structures of the multivariable 
feedback control systems considered in this 
paper are shown in Fig.1(a) and 1(b). For 
convenient, this kind of structures are called 
"layer-wrapped structures". 

The precompensating matrix for an N×N 
multivariable feedback control system is 
implemented by cascading the determined 
columns ),...,2,1( NiPik =  in each stage. In stage 
j, the precompensating matrix Pj is 
represented by 
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the parameters ),...,2,1( NiPij =  together with 
the diagonal compensators )(sKi  as shown in 
Figs.1(a) and 1(b) are determined to satisfy 
the performance and integrity against the 
failures of transducers. In other words, the 
selections of ijP  will maintain the stability of 
the system regardless whether the feedback 
loops denoted less than or equal to j  are 
closed or opened. 

 
Fig.1(a). Block diagram of a 2×2 multivariable 

feedback control system. 
 

 
Fig.1(b). Block diagram of a 3x3 multivariable 

feedback control system. 
The stability-equation method is used to 

analyze the layer-wrapped structure from 
stage 1 to stage N; the constant root loci and 
stability boundaries can be generated 
automatically by computer facilities. The 
types of diagonal compensators )(sK j  are 
defined by the engineer with experience, and the 
proper choice of the parameters can be obtained by 
inspecting the results provided in the parameter 
plane by use of the stability-equation method. 

Assume that a 2x2 multivariable feedback 
control system is considered. The transfer function 
matrix of the plant is 
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The pre-compensating matrix is in the form of 
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and the matrix consists of the diagonal compen-
sators is represented by 
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The steps for analysis and design are: 
(1).Close loop-1 and define the diagonal compen-

sator )(1 sK , then find the parameters 11P  and 21P  

for satisfying the desirable performance. 
(2).Close loop-2 and open loop-1 to define the 

diagonal compensator )(2 sK , then find the 
parameters 12P  and 22P  for satisfying the 
desirable performance. 

(3).Close both loop-1 and loop-2 to check whether 
)(2 sK , 12P  and 22P  found in step(2) are 

acceptable. If not, then go back to step(2) to 
select other values of  )(2 sK , 12P  and 22P  to 
satisfy desirable performance. 

For step 1, the transfer function matrix of this 
subsystem can be written as 
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For step 2, one has 
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Similarly, for step 3, the transfer function matrix of 
the overall system is 
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where the relations among )(sgij ) are defined by  
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which represents the compensated plant after step 1; 
and )(sDg  is the determinant of the compensated 
plant. 
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The characteristic equations of )(sTif′ , )(sTi ′′  and 

)(sTif′′  are, respectively 

{ } 0])()()[(1)()( 2112111111 =++= PsgPsgsKspsp oc   (18) 

{ } 0])()()[(1)()( 22221221212 =++= PsgPsgsKspsp oc  (19) 

and  
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PsgsKsgsKspsp

g

oc    (20) 

where )(spo  is the open loop characteristic 
equation of the plant G(s) with )(1 sK   only; and 

)(1 spo  is the open loop characteristic equation of 
the plant with )(2 sK  only. Similarly )(2 spo

represents 
the open loop characteristic equation of the plant 
with both )(1 sK and )(2 sK . Eqs.(18) to (20) can be 
decomposed into two stability equations, then the 
analyses in the 11P  vs. 21P   and 12P  and 22P  planes 
can be performed. 

Other objects for the design of multivariable 
feedback systems, such as low-interaction at low 
frequency and low-interaction at high frequency, 
can also be achieved systematically by use of the 
proposed method. For example, in Eq.(14) proper 
values of parameters 11P  and 21P  can be chosen 
to satisfy requirement of diagonal dominance 
for all frequencies; i.e., 

|)()(|    |)()(| 2122112121121111 PjgPjgPjgPjg ωωωω +>>+  (21) 

Similarly, by use of Eq.(15) proper values of 
parameters 12P  and 22P  can be chosen to 
satisfy 

|)()(|  | )()(| 2212121122221221 PjgPjgPjgPjg ωωωω +>>+   (22) 

Finally, by use of Eq.(16), the requirement of 
column dominance [7,8] can be achieved by 
making the coefficients of the off-diagonal 
terms as small as possible. From Eqs.(14) to 
(17), it can be seen that the off-diagonal 
terms th)1,2(  and th)2,1(  elements of )(sTif′′  are 

the off-diagonal term th)1,2(  of )(sTif′  and the 

off-diagonal term th)2,1( of )(sTi ′′ ,  respectively. 
Therefore, if )(sTif′  and )(sTi ′′  are diagonal 
dominant (as defined by Eqs.(21) and (22) ) 
then the overall system transfer function 
matrix )(sTif′′ is also diagonal dominant. 

The design procedure and the application 
of the stability-equation method in each step 

are explained in the following three 2x2 
examples and extended to a 4x4 example. 
 
 
4 Numerical Examples 
Example 1: Assume that the transfer function 
matrix of the 2x2 multivariable feedback control 
system shown in Fig.1(a) is[23]: 
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For compensation, two first order lead/lag diagonal 
compensators )(1 sK  and )(2 sK  are used. 

In step 1, one of the diagonal-compensator )(1 sK  
is defined as 

100
)1(100)(1 +

+
=

s
ssK  

The transfer function matrix of this subsystem is 

2111
23

2111
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0)2(600)1(250
0)2(1001000

)('
PsPsss

PsPs
PsP

sTif +−+++
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where 11P  and 21P  are two adjustable parameters. 
The negative summation of the characteristic roots 
is increased from 2 to 102 with the aid of )(1 sK . The 
characteristic equation is 

0)2(1001000200102 2111
23 =+−+++ PsPsss    (25) 

which can be decomposed into the following two 
stability-equations 

02001000102 2111
2 =−+− PPω                 (26) 

and 

0100200 21
2 =−+− Pω                         (27) 

Then the stability boundary and the 
constant- ω  curves can be plotted as shown 
in Fig.2(a). In order to have fine damping 
characteristics and to satisfy the diagonal 
dominance as defined in Eq.(21) suitable 
values of 11P  and 21P  are selected at 90 and -
52.5, respectively; i.e., point 1Q  in Fig.2(a). 
By this selection, the roots 1eω  and 1oω  of 
the stability equations are approximately at 
31 and 74, respectively. The characteristic 
roots of this subsystem are found at 

-30.891, -25.554±j44.601. 
This result justifies the description of the stability-
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equation method given in references 1 and 2; i.e., 
larger differences among 1eω  and 1oω  will give 
better damping characteristics of the compensated 
subsystem. In addition, from Eq.(24) it can be seen 
that the ratio of 350/6005.2/90/ 2111 −=−=PP  will 
make the coefficients of off-diagonal term much 
smaller than that of the diagonal term; i.e., low-
interaction is achieved because the coefficient of the 
term s1 of the off-diagonal element is zero. In short, 
the rules for selecting proper values of 11P  and 21P  
are (1) selecting the ratio of 2111 / PP  to achieve 
low-interaction and (2) selecting the values of 11P  

and 21P  to obtain desirable performance. 

 
Fig.2. Parameter analyses in (a)Step 1; (b) Step 2; 
(c)Step 3; and (d)Time Responses of Example 1. 

In step 2, the remaining diagonal-compensator 
)(2 sK  is defined as 

      
50

)1(50)(2 +
+

=
s

ssK  

Since loop-1 is open and loop-2 is closed, the 
transfer function matrix )(sTi ′′  is 
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where 12P  and 22P   are two adjustable parameters. 
The characteristic equation is 

0)600300(1575010052 2212
23 =++−++ PsPsss   (29)  

and the stability equations are 

   0600)15750(52 2212
2 =+−+− PPω                    (30) 

and 

0300100 22
2 =++− Pω                                 (31) 

Constant-ω  curves are shown in Fig.2(b). Proper 
values of 12P  and 22P  are selected at 0.3 and 15.75, 
respectively; i.e., point 2Q  in Fig.2(b). The roots of 
the stability equations can be read out approximately; 
i.e., 101 =eω  and 701 =oω . The roots of the 
c h a r a c t e r i s t i c  equation are found at 

-0.9896, -25.5052±j64.2184 

From F i g . 2 ( b )  and E q . ( 2 8 ) ,  i t  can be seen 
that the r a t i o  2625/5075.15/3.0/ 2212 ==PP  w i l l  
make the c o e f f i c i e n t  of the term s1 to be 
zero. 

In step 3, a f t e r  loop-1 is closed the 
parameter analysis is performed in the 12P  vs. 

22P  plane. The transfer function matrix of 
the o v e r a l l  system )(sTif′′  is represented by 
E q . ( 1 6 ) .  Since 11P  and 21P  are selected at 90 
and -52.5, r e s p e c t i v e l y ,  the characteristic 
equation is 
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The s t a b i l i t y  equations are 
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P
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ω
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Constant-ω  curves are shown in F i g . 2 ( c ) .  
Note that the s t a b i l i t y  boundaries are 
derived from the analyses of the sub-system 
considered in step-2, for which loop-1 is 
open and loop-2 is c l o s e .  This implies that 
the choices of 12P  and 22P  are constrained by 
the boundaries for achieving the i n t e g r i t y  
against transducer f a i l u r e  in loop-1 which 
may cause loop-1 to open. 

It can be seen that the choice of point 2Q  in 
Fig.2(b) is corresponding to point 3Q  in Fig.2(c), 
and that the choice of 3Q  is satisfactory for the 
overall system. The roots of the stability equations 
are approximately at 

.113,70,5.48,24 2211 ==== oeoe ωωωω  
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The overall compensator is 
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The transfer function matrix of the final 
compensated system is 
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where 

45005662503030375085022515275152)( 2345 +++++=Δ ssssss
The characteristic roots are found at 

-29.0899, -35.8683±j43.8834, 
 -25.5867±j64.5103 

The step responses of the overall system are shown 
in Fig.2(d), which indicate that the designed system 
has nice damping characteristics as predicted. 

Note that all the constant- ω  curves are 
straight-lines; therefore locations of characteristics 
roots(i.e., damping characteristics) can be predicted 
approximately and easily by inspecting the 
differences among eiω  and ojω .. 

Example 2: Consider the 30-plate distillation 
column in the UMIST pilot plant [5,7]. The transfer 
function matrix of the plant is 
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where 
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103879.1105949.1262721)(
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×+×++=Δ . 

Following the same design procedure and 
discussions stated in Example 1, the constant-ω  
curves of two subsystems with transfer matrices 

)(sTif′  and )(sTi ′′  and the overall system with 
transfer function matrix )(sTif′′  are shown in Figs. 

3(a) to 3(c). The diagonal compensators )(1 sK  and 
)(2 sK  are defined as 
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in step 2, where 1T  and 2T  are selected at 
33.33 and 125 seconds, respectively. The 
parameters )2,1,( =jiPij  are chosen at  

   26,38 2111 =−= PP ,          point 4Q  in Fig.3(a), 

20,35.0 2212 =−= PP , point 5Q  in Fig.3(b) and 
point 6Q  in Fig.3(c) 

The overall compensator is 
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The characteristic roots of the final 
compensated system are found at 

-0.0664, -0.0651, -0.013, -0.005222, -0.09415,  

-0.001438, -0.0005406, -0.0991, 

 -0.003081 ± j0.006183, -0.006369 ± j0.008972 

 
Fig.3. Parameter analyses in (a)Step 1; (b) Step 2; 
(c)Step 3; and (d)Time Responses of Example 2. 

Step responses of the compensated system 
are shown in Fig.3(d). The same system has 
been considered by Stojic[7] utilizing the 
inverse Nyquist array method[5-10]. In his 
approach, a precompensating matrix is first 
selected to achieve diagonal dominance and 
then find coefficients of the PI controllers in 
the diagonal elements by use of the inverse 
Nyquist array method. In comparison to 
Stojic's approach, the advantages of the 
method proposed in this paper are that the 
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selections of the parameters sPij '  are more 
straightforward and that the dominance is 
achieved in each step. 

Example 3: Consider an aircraft gas turbine engine 
with plant transfer function matrix [8,15] 
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 (39) 

where 4322.11323.13577.35022525)( sssss ++++=Δ . For 
convenient, the plant is first multiplied by a scaling 
matrix 

⎥
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⎤
⎢
⎣

⎡
=

001.00
01

0P                                                          (40) 

The diagonal-compensators )2,1)(( =isKi  are 
selected to be 

2.0
4)(1 +

+
=

s
ssK  

in step 1; and 

0.5
5.2)(2 +

+
=

s
ssK  

in step 2. Similar to Example 1, the constant-ω  
curves of two subsystems and the overall system 
are shown in Figs.4(a) to 4(c). Proper values of 

sPij '  are selected as 

5.19,4 2111 =−= PP ,       point 7Q  in Fig.4(a), 
40,5.1 2212 == PP , point 8Q  in Fig.4(b) and 

point 9Q  in Fig.4 (c) . 

The overall compensator is 
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The characteristic roots of the compensated system 
are found at 

-1.3371,-1.8823,-2.4907,-4.8665,-9.9989, 

-9.06867±j15.30685, -46.4665±j24.4423 

Step responses of the compensated system are 
shown in Fig.4(d). Similar results have been 
obtained by Chuang [15] utilizing the sequential 
return difference method[10-15]. However, the 
method proposed in this paper is much simpler. 

Example 4: consider the 4x4 boiler furnace control 
system with transfer function matrix [22] 
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Combing diagonal controllers and re-compensating 
matrices with lead/lag sub-compensators, the 
overall compensator is in the form of 
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Fig.4. Parameter analyses in (a)Step 1; (b) Step 2; 
(c)Step 3; and (d)Time Responses of Example 3. 
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where )4,3,2,1,(,, =jipbd ijijj  are adjustable 
parameters. Four steps are used for analyses and 
designs of this 4x4 multivariable system to find 

)4,3,2,1)(( =jsPj  systematically. Note that diagonal 
compensator and precompensating matrix are 
merged together in each step.  
Step 1: In step 1, the transfer function matrix is in 
the form of  

⎥⎦

⎤
⎢⎣

⎡ +++

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

+

=

∑

∑

∑

∑

∑

=

=

=

=

=

4

1
11110

4

1
1410

4

1
1310

4

1
1210

4

1
1110

)1(

)()()()(

000)()()(

000)()()(

000)()()(

000)()()(

)(

i
iii

i
iii

i
iii

i
iii

i
iii

psgbsdssp

psgbssp

psgbssp

psgbssp

psgbssp

sT
      (44) 

where 05.045.0)( 2
0 ++= sssp . There are nine 

parameters to be found and can be reduced to three 
adjustable parameters by diagonal dominance 
manipulation. One approach is to make coefficients 
of the highest order and lowest exponents of off-
diagonal terms of Eq.(44) approach zero. The ratio 
of )4,3,2,1(1 =ipi  is found as 
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where )4.3.2.1(111 == ipkp ii
) . The ratio )4,3,2,1(1 =ibi  

is found as 
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where )4.3.2.1(ˆ
121 == ibkb ii . Then the characteristic 

equation of )()1( sT  can be written as 
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where 1k  and 21kk  are considered as two 
adjustable parameters to be analyzed for a 
specified value of 1d . Then, design procedures for 
2x2 multivariable feedback control systems can be 
applied to this 4x4 multivariable feedback control 
system. The parameter analyses are shown in 
Fig.5(a) for 11 =d . The constant-X curves 
represent the negative sum of the characteristic 

roots. In general. the larger the value of X, the 
better damping characteristics of the system will be. 
A suitable choice is made at )6.1,8.0(10Q  in 
Fig.5(a), for which the roots of the stability- 
equations are at 

            498.01 =eω  and 0833.31 =oω . 

Corresponding to ratios 1îb  and )4,3,2,1(ˆ 1 =ipi  
found above and the choice of )6.1,8.0(),( 211 =kkk , 
the )(1 sP  is in the form of 
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The transfer function matrix is 
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where 4725.14884.99386.5)( 23
1 +++= ssssFc .The 

characteristic roots of )()1( sT  are found at 

       -0.1735, 4235.08825.2 j±− . 

Using the found )(1 sP , the open-loop transfer 
function of the plant is in the form of  
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Step 2: Now, the transfer function matrix )()2( sT  
of this step is in the form of 
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where 05.050.045.1)( 23
01 +++= ssssp . Similar to 

analyzed and designed procedures in step1. The 
ratios of )4,3,2,1(2 =ibi  and )4,3,2,1(2 =ipi  are  
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respectively. The characteristic equation in this 
step is in the form of 
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(50) 
The parameter plane analyses are shown in Fig.5(b) 
for 25.12 =d . A suitable choice is made at 

)375.0,5.0(11 −Q  in Fig.5(b), for which the roots of 
the stability-equations are at 

893.3,3123.0 21 == ee ωω  an 2738.11 =oω  

Corresponding to ratios 1îb  and )4,3,2,1(ˆ 1 =ipi  
found above and the choice of )6.1,8.0(),( 211 =kkk , 
the found )(2 sP  is in the form of 
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The characteristic equation is in the form of 

4782.11173.112532.158522.6)( 234
2 ++++= sssssFc  

 in this step. The characteristic roots are found at  

           4659.08.2,0829,1,1694.0 j±−−− . 

Step 3: In this step, only loop 3 with )(1 sP  and 
)(2 sP  are closed; i.e.,  )()()()( 21

)2( sPsPsGsG = . 
The same design procedures in steps 1 and 2 are 
extended. The details of this step are omitted. The 
parameter analyses are shown in Fig.5(c) for 

75.13 =d  and ratios of )4,3,2,1(3 =ibi  and 
)4,3,2,1(3 =ipi  are  
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A suitable choice is made at )3.0,175.0(12 −Q ;i.e., 
)3.0,175.0(),( 211 −=kkk  in Fig.5(c) for roots of the 

stability equations are selected at  

98.1,251.0 21 == ee ωω  and 9639.4,8287.0 21 == oo ωω . 

 
Fig.5.Parameter analyses in (a)Step 1;(b)Step 2; 

(c)Step 3;(d)Step 4. 
 
The results of this step are given as follows: the 
found )(3 sP  is in the form of 
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and characteristic roots of the )()3( sT  are at  

-0.1701,-1,-1.273, 9739.09126.2 j±− . 

Step 4: In this step, only loop 4 with )(1 sP , )(2 sP  
and )(3 sP  is closed; i.e., )()()()()( 321

)3( sPsPsPsGsG = . 
The same design procedure is extended. The details 
of this step are omitted. The parameter analyses are 
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shown in Fig.5(c) for 75.24 =d  and ratios of 
)4,3,2,1(4 =ibi  and )4,3,2,1(4 =ipi  are  
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A suitable choice is made at )33.0,15.0(13 −Q  in 
Fig.5(d) for roots of stability equations are selected 
at  

493.1,496.1,231.0 321 === eee ωωω  and 
6983.0,6983.0 21 == oo ωω . 

The results of this step are given as follows: the 
found )(4 sP  is in the form of 
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and characteristic roots of the )()4( sT  are at  

     -0.1737,-1.005,-1.2495,-3.375± j0.6531. 

Step responses of the closed loop system with 
found compensator )()()()()( 4321 sPsPsPsPsC =  are 
shown in Fig.6. It can be seen that results are 
satisfactory for the considered system and 
interactions among all loops are very small. 
 

 
Fig.6.Time responses of Example 4. 

 

5. Conclusions 
A sequential design technique using  stability-
equation method has been extended and applied to 
the analysis and design of multivariable feedback 
control systems. By use of the proposed layer-
wrapped structure together with the stability-
equation method to design the overall compensator, 
it can be seen that the system characteristics, such as 
stability, integrity and damping characteristics can 
be considered systematically easily; thus it is a 
useful tool for analysis and design of multivariable 
feedback control systems. 
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