
 

 
Abstract—This paper presents a sliding fuzzy control (SFC) to adapt the exponent of robust algorithm to a 
signal with a variable frequency in a power system. With the aid of SFC, the robust algorithm can more 
improve the performance of extended complex Kalman filter (ECKF) at the severe variation of frequency. The 
proposed method is involved in ECKF’s algorithm without changing any form; besides, it can enhance the 
estimation accuracy and reduce the computation time. Results of comparative studies of the technique proposed 
with the ECKF with robust algorithm (RECKF) and RECKF-SFC are presented in the paper. 
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1 Introduction 
Frequency estimation plays an important role in a 
power system since the variation in system frequency 
is generally used to indicate the system operation 
state. For example, if the frequency is beyond the 
limitation, a mismatch between generation and load 
may occur. Furthermore, the frequency can be used 
as a base for estimating other parameters including 
the amplitude and phase of voltage signals. Thus, 
reliable frequency estimation is necessary for many 
applications in a power system such as effective 
power control, setting of protective relays for load 
shedding and restoration, power quality monitoring, 
and generation protection. 

Traditionally, the frequency is estimated by the 
time between two zero crossings as well as the 
calculation of the number of cycles [1], [2]. However, 
this method is relatively sensitive for distorted 
signals. To improve this drawback, many methods 
had been proposed such as discrete Fourier 
transforms [3], transforming discrete Fourier 
transforms [4], Prony’s estimation [5]. Nevertheless, 
these algorithms suffer from inaccuracies due to 
more violent fluctuations in the measured signal. 

Moreover, the high-order terms in the Taylor’s 
expansion for methods including least square error 
technique [6], [7], Kalman filtering [8]-[10], adaptive 
notch filters, multiple frequency tracker [11], 
recursive Newton-type algorithm [12], [13], 
orthogonal components filtered algorithm [14], [15], 
and a new variant of the extended Kalman filter [16] 
were neglected to optimize estimations due to the 
presence of nonlinear functions in the formulation of 
measurements. However, frequency estimation of 
distorted signals using these methods may occur 
incorrectly or take longer time to converge and even 
diverge. 

Recently, [17]-[20] have shown the extended 
Kalman filter for frequency estimation of polluted 
signals with higher noise to make the measurement 
function as the likelihood of linear formulation in 
order to reduce the influence of high-order terms. 
However, it still cannot accurately track the 
frequency in the presence of abnormal values of 
measurements due to harmonics and disturbances. 
Generally, the extended Kalman filter (EKF) applied 
to estimate frequency of signals may have 
undesirable properties which are described as follows: 
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(1) It requires good knowledge of state equation and 
measurement equation to obtain a proper 
estimation, especially for both equations 
containing zero-mean white noise. If the 
theoretical behavior of the EKF and its actual 
behavior do not agree, divergence problems will 
occur. 

(2) It exists the model uncertainties which cannot be 
expressed by the linear state-space model since 
an actual system is nonlinear. Thus, using the 
linear state-space model to represent an actual 
system may increase modeling errors. 

(3) It can accurately estimate the amplitude variation 
when the fundamental frequency is fixed. 
However, it cannot automatically return itself to 
the new incoming frequency in which the 
frequency changing. 

(4) It often suffers from divergence problems for 
harmonic state estimation caused by the dropping 
off effect. 

(5) The nonlinearity has often caused the EKF to 
diverge in some poorly initial conditions when 
the EKF is applied to the problem of estimating 
the parameters of a multiharmonic signal in white 
noise, where the system dynamics is linear, but 
the observation of the state is nonlinear. 

Since the main drawback of the EKF is its 
computational expense, the extended comlex Kalman 
filter (ECKF) has further been proposed with the aid 
of the hysteresis band to speed up the convergence. 
Nevertheless, the ECKF has to handle two problems 
as it is applied on an actual practical signal. One is it 
cannot properly track the variations if the signal 
varies drastically. This is because the choice of 
hysteresis band only considers the noise. The other is 
the band choice is depended upon the expert’s 
experience which is inconvenient for applying to 
different power systems. Although [21] and [22] had 
used self-tuning to update the covariance of the 
ECKF for better performances, they need more 
executing time in iterations of updating which is not 
suitable for a practical system. 

In [23], [24], a robust algorithm incorporated in 
ECKF is presented for frequency estimation of 
distorted signals in a power system. It formulates the 
absolute residual vector as the weighting function 
such that the abnormal condition can take it into 
account. If the absolute residual vector is increased, 
it can then be inversed to suppress the influence in 
order to obtain better estimations. Conversely, if it is 
considerably small, it will, at most, be equal to one. 
Thus, this weighting function will not affect 
estimations. However, this weighting function only 
senses abnormal measurement due to harmonic and 
bad measurement, but it can’t know the power 

signal’s severe variation like sudden load change. In 
[25] a sliding fuzzy controller embedded into the 
ECKF to compensate the prediction results. The 
concept of the sliding mode control combines the 
residual and the change-in-residual as an integrated 
input variable. Hence, the number of fuzzy rules can 
be largely reduced to facilitate the computation 
performance. In this paper, the sliding fuzzy 
controller is taken as the estimator to estimate a 
tuningable term for increasing the performance of 
weighting function at signal’s severe variation. 

 
 

2   The Proposed Approach 
Fig.1 shows a block diagram of the proposed 

method in this paper. As seen from Fig.1, a sliding 
fuzzy controller (SFC) is added to adjust the 
exponent of robust algorithm to enhance the 
performance of ECKF at signal’s severe variation. 

 
Fig.1  Block diagram of the proposed method 

 
 

2.1   Signal Model 
In a power system, an observed signal yk at time 

point k is a sum of zk of M sinusoids with white noise 
vk as written to be 

 

)R,0(N~v
N ..., 1,k       vzy

kk

kkk =+=
 (1) 

where 

... 1,2,3,M         ),tsin(az nkn
M

1n
nk =φ+ω∑=

=
 

nn f2π=ω  
sk kTt = , sT  is the sampling time. (2) 

In (2), parameters an and fn are the amplitude with 
initial phase nφ  and the frequency of the nth sinusoid, 
respectively. The observation noise vk is a Gaussian 
white noise with zero-mean and variance 2

vσ . The 
measurement error covariance is ]vv[ ER T

kkk
∗= , where 

* means the complex conjugate and T is the transpose. 
For notice of the fundamental frequency, let us 

consider a single sinusoid zk with angular frequency 
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1ω  in the presence of white noise under the 
assumption that the number M of sinusoids is known 
(M = 1). For this reason, the signal in (2) can be 
simplified to be 

 
)Tksin(az 1s11k φ+ω=  (3) 

 
where 

1ω  fundamental of angular frequency 
1φ  fundamental of phase angle 
1a  fundamental amplitude of the signal 

Note that the amplitude a1 and the variance 2
vσ  are 

unknown [17]. 
Next, let us describe complex types of state 

variables used in this paper. Using a complex type to 
represent the state variable xk of a time-varying 
single sinusoid signal is defined as follows: 

 
S1 Tj

)1(k ex ω=  (4) 
)Tk(j

1)2(k
1S1eax φ+ω=  (5) 

)Tk(j
1)3(k

1S1eax φ+ω−=  (6) 
 

The measured value of the signal can then be written 
to be 

State equation )x(fx 1kk −=   (7) 
Measurement equation kk vHx +=k  y  (8) 
 

where 
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Measurement matrix H = [ ]i5.0i5.00 −  (11) 
 
 

2.2   ECKF for Frequency Estimation 
The ECKF is an optimal dynamic estimator and is 

suitable for describing state variables in a power 
system. The ECKF process is divided into state 
prediction and state filter as shown in Fig.1. The 
former performs prediction processing with reference 
to the history data and the latter is to find the optimal 
estimate considering all available measurements and 
predicted states. The recursion process of the ECKF 
through linearization for estimating the signal 
parameters of sinusoid waves is described as below: 

 
State prediction: 

)x̂(fx~ 1kk −=  (12) 
 

and the predicted error covariance kM  is 
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In (12), the symbols ~ and ˆ stand for the predicted 
and estimated values, respectively. 

 
State filter: 

)x~Hy(Kx~x̂ kkkkk −+=  (15) 
 

The Kalman gain Kk is calculated to be 
 

[ ] 1
k

T
k

T
kk RHHMHMK

−∗∗ +=  (16) 
 

and the parameter Rk in (16) is generally set to be 
equal to one. Moreover, the filtered error covariance 
Pk for updating the estimation is written to be 
 

kkkk HMKMP −=  (17) 
 

where 
kx̂   state variable after estimation 
kx~   state variable after prediction 
kK  Kalman gain 

kk x~Hy −  innovation vector 
 

In conclusion, the state prediction is used to 
calculate the value at time point k+1 based on the 
estimated value at time point k. If signals have been 
changed greatly at time point k, the estimator will not 
be able to follow this situation and to provide proper 
weighting. As a result, it will not be able to predict a 
value which is close to the real value at time point k 
+ 1. Nevertheless, if a normal operation algorithm is 
still used for predicting a value, the innovation vector 
will change unusually and the gain will amplify the 
unusual change that reduces filter results. Moreover, 
the initial values of the state variable 0x̂ , covariance 
P0, and error covariance R0 are related to the speed of 
convergence. Those values are generally set to be 
equal to one. Based on the recursive process to reset 
the covariance, the algorithm of the Kalman filter can 
be used to track the change of parameters of voltage 
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signals. The parameters of frequency ( )kf̂ , amplitude 

)k(â , and phase angle )k(φ̂  at time point k can then be 
optimally estimated by applying the state variables to 
the ECKF as expressed to be 
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where the abbreviation Im stands for the imaginary 
part of a quantity. 
 
 
2.3   RECKF for Frequency Estimation 

Under normal operating conditions, the ECKF is 
an optimal dynamic estimator which is suitable for 
describing state variables in power systems. However, 
the accuracy of frequency estimation using the 
ECKF may be affected by power system 
disturbances. Thus, a robust ECKF (RECKF) is 
proposed by applying the exponential function to 
limit the variation of the innovation vector, to 
restrain the unusual measured value, and to enhance 
the estimated accuracy. The detail of this algorithm is 
described as follows. 

The measurement error covariance Rk is the 
inverse of the weighting Wk as written to be 

 
1

kk WR −=  (21) 
)x~Hyexp(WW kk1kk −−= −  (22) 

 
where the exponential term )x~Hyexp( kk −−  is the 
absolute residual vector. Moreover, the variable Rk is 
used to substitute into (16) and to control the Kalman 
gain of the ECKF as well as restrain inaccurately 
measured values or unusual changes of parameters. 
When some measured values occur unusually, the 
measured value of time-varying signals yk will 
change a lot. However, the prediction of state 
variables x~  does not yet detect the unusual measured 
value at this point. As a result, the computation of 

kx~H  is still in a normal state that can add the 
absolute value of the innovation vector. In other 
words, when the measured value is distorted, the 
absolute value of the innovation vector will increase, 
and the value of the robust exponential function will 
then decrease. Consequently, it can assist in reducing 
the weighting and mitigating the error. In addition, 

since the RECKF can adjust the weighting of the 
Kalman gain Kk at each estimated time step 
according to the change of signals, it is therefore 
more efficient. On the other hand, the ECKF cannot 
distinguish the great change from the measured value 
because the weightings are all the same throughout 
the estimated process. This means the ECKF will 
take more time to converge. Thus, estimation using 
the ECKF will be less effective than the RECKF. 
 
 
2.4    Sliding Fuzzy Controller 

Basically, the sliding surface-enhanced fuzzy 
adaptive controller uses the residual and change-in-
residual as inputs and computes a criterion with 
fuzzy rules to adapt the signal’s variation. Due to 
including the residual and change-in-residual, the 
decision of the proposed method can handle more the 
severe variation. Furthermore, the proposed method 
produces a criterion automatically so it can be 
convenient to use in different power systems. As a 
result, the proposed method is adequate to apply to 
real signal of power systems. To speed up computing 
in fuzzy rules for real-time and on-line operation, 
two inputs of this sliding fuzzy controller are 
combined into one to reduce the number of fuzzy 
rules; that is, only one variable is used in the 
antecedents of the fuzzy rules for participating in 
decision making process. The computation steps of 
the fuzzy adaptive controller are described as follows. 

 
Step 1. Choice of Input and Output Variables: 

As the residual rk and change-in-residual kr&  are 
combined into an integrated input variable of the 
fuzzy control system, an output variable can then be 
obtained by the fuzzy controller. In this study, the 
input variable g is similar to the expression of the 
sliding surface in a second-order system [26] and is 
defined by 

 
kk rrg &+λ=  (23) 

 
where λ is the positive constant and the residual rk is 
computed as below 
 

kkk x~Hyr −=  (24) 
 

where yk and kx~H  individually indicates the 
measured and predicted value at time point k. The 
change-in-residual kr&  at time point k can be also 
expressed to be 
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Similarly, for the output variable represented by the 
symbol, crispα , this fuzzy controller can be developed. 
Note that in this fuzzy adaptive controller, the 
variable g is assumed to be element of input vector G, 
and crispα  is assumed that of output vector U. As for 
the region of the universe of discourse of g and crispα , 
the interval of g is assigned to be [-1.5, 1.5] and the 
interval of crispα  is assigned to be [0.2, 0.6]. These 
values have considered feasible based on the 
discussions with utility (i.e., Taiwan Power 
Company, TPC) engineers. 
 

Step 2. Fuzzy Rule Definition: Let g  and α to 
be the linguistic variables for g and crispα , 
respectively. Then, the universe of discourse is ready 
to partition in this step. Table 1 lists the input and 
output universes of discourses as well as the related 
fuzzy rules. 

 

TABLE 1 
FUZZY SETS AND FUZZY RULES 

Term set of 
linguistic variable 

Label of fuzzy set 

ζ( g ) A1 A2 A3 A4 A5 

ζ( α ) C1 C2 C3 C4 C5 

Fuzzy rules：IF g  is  Ai THEN α  is Cj  
where i=1,…,5, similarly for j. 

 

Step 3. Fuzzification: In this step, the input 
variables in the fuzzy controller are mapped into a 
set of membership functions. The isosceles triangle is 
selected as the shape of the membership function. 
Moreover, the process of converting a crisp input 
value to a fuzzy value is based on a collection of 
logic rules in the form of IF-THEN statements. 

 
Step 4. Fuzzy Inference: In this process, the 

max-min inference method is adapted [27]. If an 
input variable g with a linguistic value Ai defined by 
the universe of discourse G is given, its associated 
membership function is named as anteμ . The grade of 
membership of the antecedent anteμ  is then 
formulated as below 

 
 )g()s(

iAante μ=μ  (26) 

 
In (26), the variable s represents the number of 
linguistic terms in all of the antecedent terms. Note 
that there are a total of five fuzzy rules in the system 
as shown in Table 1 and no more than two rules will 
be used at the same time. Therefore, the inference 
result )(s αμ  obtained from the grade of membership 
of the consequent can be obtained to be 

 
)](),s([Min)(

jCantes αμμ=αμ  (27) 

 
Step 5. Defuzzification: In this process, the 

inference result for each input variable must be 
converted to a output valueα . Based on the center 
average defuzzification, the crisp output value can be 
computed to be  

 

∑ αμ

αμ∑
=α

)(
)(b

s

ss  (28) 

 
where bs denotes the center of the membership 
function of the consequent of rule s. 
 

Step 6: Adjustment of exponent of robust 
algorithm: The robust algorithm can be 

)x~Hyexp( kk −α− .However, once the system 
encounters large load changes, for example, the 
exponent will be adjust to adapt the severe variation. 

Fig.2 shows the flowchart of the proposed 
approach. As seen from Fig.2, the weighting Wk and 
the sliding fuzzy controller are used to adjust the 
Kalman gain between state prediction and state filter. 
When the estimated system is operated in normal 
conditions, the value of the weighting Wk is close to 
1, which means it does not need to tune its exponent. 
Meanwhile, the fuzzy adaptive controller will not 
reset the covariance. However, once the estimated 
system encounters abnormal conditions such as 
measurement errors or large load changes which 
result in a significant increment of the residual, the 
weighting Wk is then used to help on tuning the 
exponent. In addition, the sliding fuzzy adaptive 
controller can be used to help on tuning the Kalman 
gain. The aim of regulating the Kalman gain is to 
ensure the adaptability of the proposed approach on 
different conditions. 

 

WSEAS TRANSACTIONS on SYSTEMS Kuo-Nan Yu, Cheng-Ming Lee

ISSN: 1109-2777 1201 Issue 11, Volume 8, November 2009



 

0P0x̂

Yes

1kk +←

No

Calculate g

Inference of fuzzy rule

Calculate    α

Stop

k≥N

Calculate   Fk, Mk, Kk

Calculate  Wk = Rk
-1

)x~Hyexp(WW kkkk −α−=

State Prediction
)x̂(fx~ 1kk −=

 Pk

State Filter   
)x~Hy(Kx~x̂ kkkkk −+=

2. Update
1.
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Fig.2  Flowchart of the proposed approach 

 

 

3    Simulation Results 
The proposed approach is verified with three 

cases and the obtained results are compared with 
those of the ECKF method. The initial values in the 
start point for state estimation were assumed as 
follows [18], [22]: For convenience, the initial state 
variables x0 were chosen to be 1.0, the filtered error 
covariance matrix P0 was selected to be diagonal 
with the value of 10 p.u.2. This means that one does 
not trust the initial state variables. The measurement 
error covariance matrix R0 was selected to be 1.0 
p.u.2 to represent an inaccurate measurement, and 
the model error covariance matrix Q0 is fixed to be 
0.01 p.u.2 in order to be realistic. Note that the 
covariance matrixes P0 and R0 will be updated 
during the estimation process of the proposed 
method. 

 
Case 1: single change: 

A signal with two cases is tested to verify the 
proposed method. Two conditions include the signal 
frequency and amplitude drops suddenly. The test 
signal consists of the fundamental frequency with 
white noise as follows: 

 
 Test signal = Vmsin(kωTs+ φ ) + white noise. 
 

Note that the amplitudes of test signals are set to 
be 1.0 p.u. and the sampling frequency is selected to 
be 10 kHz. Moreover, they contain Gaussian white 
noise with zero-mean and a standard deviation of 
0.01 p.u. Generally, the frequency change in the 
system of TPC is limited to be ±0.5 Hz. Thus, the 
measured frequency by the estimated filter will not 
be allowed beyond the band of 59.5 ~ 60.5 Hz. 

 
Condition 1: Frequency Drops Suddenly: In this 

case, the frequency of the test signal is assumed to 
suddenly drop from 60 to 59.5 Hz at 0.1 seconds as 
the amplitude and phase angle are unchanged. The 
results of frequency and amplitude estimations using 
the ECKF and RECKF-SFC methods for the test 
signal are shown in Figs. 3 and 4, respectively. In 
those figures, the large variation is due to initial 
tracking so it doesn’t need to care the performance of 
estimation. In the Fig.3, the estimated frequencies 
using the ECKF and RECKF-SFC have 
overshootings of 130.8 Hz and 88.9 Hz due to the 
variation of frequency, respectively. However, the 
proposed method (RECKF-SFC) has a less 
overshooting of 41.9 Hz. As seen from Figs. 4(a) and 
4(b), the overshooting in the amplitude for the ECKF 
is 1.66 p.u, and the overshooting for the RECKF-
SFC is 1.18 p.u. From those results, it can be found 
that the overshooting of the estimated frequency and 
amplitude is largely depressed by the RECKF-SFC. 
Thus, the proposed method is surely effective than 
the ECKF in the frequency and amplitude 
estimations. 
 

 
 (a) (b) 

Fig.3  Frequency estimation (a) The ECKF method (b) 
The proposed method 

 
 (a) (b) 
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Fig.4  Amplitude estimation (a) The ECKF method 
(b) The proposed method 

 
Condition 2: Amplitude Drops Suddenly: In this 

condition, the amplitude drops from 1.0 to 0.8 p.u. at 
0.1 seconds, and the frequency and phase angle are 
unchanged. The results of frequency and amplitude 
estimations using the ECKF and RECKF-SFC for the 
first test signal are shown in Fig.5 and Fig.6. As seen 
from Fig.5, frequency and amplitude estimations 
using the RECKF-SFC have better results than the 
ECKF. In estimation of amplitude, the overshooting 
for ECKF is 0.78 p.u., and the ECKF-SFC can be 
0.78. In estimation of frequency, the overshooting 
for ECKF is 82.82, and the result of proposed 
method is less 3.4 Hz due to SFC. 

 
 (a) (b) 

Fig.5  Amplitude estimation (a) The ECKF method 
(b) The proposed method 

 
 (a) (b) 

Fig.6  Frequency estimation (a) The ECKF method 
(b) The proposed method 
 

Condition 3: Frequency and Amplitude 
Simultaneously Change: In this condition, the 
frequency and amplitude of test signals as shown in 
Fig.7 is assumed to simultaneously change from 60 
to 59.5 Hz and from 1.0 to 0.8 p.u. at 0.2 s, 
respectively. The results of frequency and amplitude 
estimations using the ECKF and the proposed 
method for the test signal are shown in Figs. 8 and 9. 
As seen from Fig.8, frequency estimation using the 
proposed method has better result than those of the 
ECKF method.  

Similarly, as seen from Fig 9, amplitude 
estimation using the proposed method also has better 
result than those of the ECKF method.  
 

0.40.20.0
Time(sec)

2

1

0

-1

-2
0.5

(p.u.) Sudden change

f=60Hz
Vm=1p.u.

f=59.5Hz
Vm=1p.u.

 
Fig.7  Test signals with condition 3 

  
(a) (b) 

Fig.8  Frequency estimations for the test signal with 
condition 3 (a) The ECKF method (b) The proposed 
method 

 

 
Fig.9  Amplitude estimations for the test signal with 
condition 3 (a) The ECKF method (b) The proposed 
method 
 
Case 2: Slow Change of Frequency: In this 
simulation, the test signal of a sinusoidal wave has 
white noise with zero mean and a standard deviation 
of 0.01 p.u. The signal frequency decays from 60 Hz 
with a rate of 20 Hz/s to 59.5 Hz in the estimated 
period from 0.200 to 0.225 s, the variable 
formulation is as follows and its signal waveform is 
shown in Fig.10: 

 

⎪
⎩

⎪
⎨

⎧

≥
≤≤−
≤≤

=
0.225sec         t          ,Hz    5.59

0.225sectsec 0.2           Hz,    t2064
0.2sectsec 0            ,Hz       60

f  (29) 
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The results of frequency and amplitude 
estimations using the ECKF and the proposed 
method for testing a slow change of frequency are 
shown in Figs. 11 and 12, respectively. As seen from 
Fig.11, the proposed method only takes 0.030 s to 
track the variation as frequency changes from 0.200 
to 0.225 s, which is quicker than the ECKF method. 
In addition, the ECKF cannot track the varying 
signal as shown from Fig.12 after the 0.2 s. However, 
the proposed method can be used to track the varying 
signal and has less overshooting during variation of 
frequency. This means that the proposed method is 
still effective for a slow varying frequency of a 
signal. 
 
 

 
Fig.10  Sinusoidal signal with a slow change of 
frequency 
 
 

 
 (a) (b) 
Fig.11  Frequency estimation of the signal as shown 
in Fig.10 (a) The ECKF method (b) The proposed 
method 

 

 
 (a) (b) 
Fig.12  Amplitude estimation of the signal as shown 
in Fig.10 (a) The ECKF method (b) The proposed 

method 

 
Case 3: Signals Recorded from an Arc Furnace: 

A signal recorded from an arc furnace as shown in 
Fig.13 in a steel manufacturer factory is used in this 
case to check the feasibility of the proposed 
technique. As seen from Fig.14, the measured point 
is at the secondary of the main transformer 69/22.8 
kV. The sampling frequency is 7.68 kHz and the 
recorded period is 25 s. For simplicity, Fig.13 only 
shows the voltage of phase c from 6.85 to 7.24 s with 
the arc furnace at the start of the melting process at 
time 7.00 s. The results of frequency estimation 
using the ECKF and the proposed methods as shown 
in Fig.15(a) are 1034 and 253 Hz at around 7.00 sec, 
respectively. Nevertheless, the results obtained from 
the ECKF method has little oscillations in the 
estimation. Similarly, the results of amplitude 
estimation using those methods are shown in 
Fig.15(b). As shown in Fig.15(b), oscillations have 
also occurred in the results of amplitude estimation 
using the ECKF method. However, the proposed 
method does not occur the phenomenon of 
oscillations in frequency and amplitude estimations. 
This means the proposed method is effective for a 
signal which is changed rapidly. 
 
 

 
Fig.13 Voltage waveform of the phase c recorded 
from an arc furnace 
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Fig.14  Single-line diagram for measuring an actual 
signal at a plant 
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Fig.15 Frequency and amplitude estimations for the 
signal as shown in Fig.14 (a) Frequency estimations 
(b) Amplitude estimation 
 
4 Conclusion 

This paper presents a method consisted of a 
robust extended complex Kalman filter and a sliding 
fuzzy controller (RECKF-SFC) for frequency and 
amplitude estimations of distorted signals in a power 
system. The proposed approach is based on applying 
the slide fuzzy controller to adjust the robust 
algorithm. A robust scheme is embedded into the 
ECKF algorithm to restrain the unusual measured 
value and enhance the estimated accuracy. As 
mentioned before, the results of frequency and 
amplitude estimations of distorted signals using the 
RECKF-SFC algorithm are better than the ECKF 
method. The RECKF-SFC not only can react to the 
change condition in real time for parameters tracking 
in a power system, but can also accurately estimate 
their values.  
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