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Abstract: - A new algorithm based on Modified Particle Swarm Optimization (MPSO) that follows is a local 
gradient of a chemical concentration within a plume and  follows the direction of the wind velocity is 
investigated.  Moreover, the niche characteristic is adopted to solve the multi-peak and multi-source problem. 
Simulations results demonstrate that the new approach is reliable for The Advection-Diffusion odor robotic 
model. Finally, the statistical analysis shows this new approach is technically sound. 
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1 INTRODUCTION 
Many obstacles have hindered odor source 
localization in the past.  One of the most common 
problems was the detection of chemicals with 
mobile robots. The experiments were setup in which 
the distance between the source and the sensor 
following an odor trail was minimized to limit the 
effect of turbulent transport [1-2].  Another problem 
was the basing system on the assumption of a strong, 
unidirectional air stream in the environment [3-6].  
Meanwhile, little attention is devoted to the issue of 
odor localization within a natural environment.  
The natural environment presents two major 
problems addressed in this paper.  The first is 
regarding the distribution of odor molecules which 
is usually dominated by turbulence, rather than 
diffusion.  Another one is the influence of the 
unstable winds either its force or direction.  Thus, 
when the odor distribution is very complex owing to 
turbulent flow and wind instability, current mobile 
robotic odor detection systems are not well 
performed [1-10].  
To overcome these natural phenomena, a new 
approach of exploiting Particle Swarm Optimization 
(PSO) is presented in the paper. The PSO algorithm 
here is modified to include chemotaxic and 
anemotaxic theory along with the development of an 
Advection-Diffusion odor model.   
The Modified Particle Swarm Optimization (MPSO) 
is applied by multiple mobile robots to localize an 
odor source in the natural environment where the 
odor distribution changes over time [11-13]. The 

results showed the MPSO was capable of solving 
single odor source location. However, facing multi-
odor source localization problem, this method failed. 
Then the niche characteristic will be adopted to deal 
with the multi-peak and multi-source problems. 
 
 
2 MODIFIED PARTICLE SWARM OPTI-

MIZATION FRAMEWORK 
Many complex real-world optimization problems 
are dynamic, and change stochastically over time.  
These problems require measurements that account 
for the uncertainty present in the real environment.  
Evolutionary algorithms (EAs), especially The 
Particle Swarm Optimization (PSO), have proven 
satisfactorily in a number of static applications as 
well as dynamic and stochastic optimization 
problems, due to the principle of Natural Evolution 
(EAs) which is a stochastic and dynamic process. 
The interaction of the robot with the PSO algorithm 
is described as follows:  Suppose that a population 
of robots is initialized with certain positions and 
velocities; let and denote the position and 
the velocity vector of the i-th robot at the iteration 
time t (t=1,2...).  In addition, let p

)(tix )(tiV

i and pg be defined 
as the best local and the best global position found 
in plume distribution being evaluated by the robot, 
at position . The position and the velocity are 
revised to improve the fitness function at each time 
step.  When a robot discovers a pattern that is better 
than any previous one, the positional coordinates are 

)(tix
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stored in the vector pi, the best position found by 
robot i so far.  The difference between pi and the 
current position is stochastically combined 
with the current velocity . This causes a 
change to the trajectory the robot would take at that 
position. The stochastically weighted difference 
between the population’s best position p

)(tix
)(tiV

g and the 
individual’s present position xi is also added to the 
velocity to adjust for the next time step.  This 
adjustment to the robot’s behavior directs the search 
around the two best positions. 
The value of pg (the best of global position of the 
gas concentration) is determined by comparing the 
best performances of all the population members.  
The performances are defined by indicing from each 
population member; and the best performer’s index 
is assigned as the variable g.  Thus, pg represents the 
best position found by all the members of the 
population.  
Each robot is equipped with an ad-hoc wireless 
network and global positioning system (GPS).  
Through the ad-hoc network, the robot transmits and 
collects the information about the gas concentration, 
while the position of the robot is determined by the 
GPS. 
The concept of the standard PSO is described in eq. 
(1) and (2). 
 

( ))1()1(()(1)1()( −−−+−= titirandctiti xpVV χ     (1) 

) ))1()1(()(2 −−−+ titgRandc xp

 
)()1()( ttt iii Vxx +−=    (2) 

 
After finding the two best values, the particle 
velocity and position is updated by means of (1) and 
(2).  The functions Rand () and rand () which are 
random functions returning a value between (0, 1).  
Coefficient χ is constriction factor, which is less 
than 1. The coefficient c1 and c2 are learning 
parameters, where c1 = c2 = 2.  
The main problem with standard PSO application in 
dynamic optimization application is the PSO will 
eventually converge to an optimum and lose the 
diversity necessary for efficient exploration of the 
search space. 
Applying Coulomb’s law, a charged swarm robot is 
introduced in order to maintain diversity of the 
positional distribution of the robots and to prevent 
them from being trapped in a local maximum.  This 
enhances adaptability to the changes of the 
environment. Suppose that robot i can observe the 
present position of the other robots ( ) and 

has a constant charge Q i  in order to keep a mutual 
distance away and maintain its position.  Two types 
of swarm robots are defined: neutral and charged 
robots. For all neutral robots ; hence, no 
repulsive force is applied to them.  For charged 
robots, the mutual repulsive force between robots i 
and p is defined according to the relative 
distance,

ip xx ≠

Qi = 0

xi −x p  as follows; 
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where )( pi ≠ , rcore denotes the diameter inside 
which a constantly, strong repulsion force is applied 
and rperc denotes the recognition range of robot.  
Hence, if the mutual distance is beyond rperc, there is 
no repulsion force between the robots.  In the case 
of perccore rrr ≤≤ , the repulsion force is dependent 
on the mutual distance.  Then, taking the summation 
of the mutual repulsion force, robot i defines 
collective repulsion force by: 
 

∑
≠

=
N

ip
ipi t aa )(     (4) 

 
where N is the number of the robots included. The 
charged swarm robot is described in equations (5) 
and (6) 
 

( ))1()1(()()1()( 1 −−−+−= ttrandctt iiii xpVV χ    (5) 
) )())1()1(()(2 tttRandc iig axp +−−−+  

 
)()1()( ttt iii Vxx +−=    (6) 

 
Where the first part of eq.(5) is responsible for 
finding and convergence to the optimal solution, 
while the second part maintains diversity of the 
swarm distribution and prevents the robots from 
being trapped in a local maximum.  Also, if all 
robots are set to the neutral, the Charged PSO 
(CPSO) is reduced to the standard PSO, as 
described in eq. (1) and (2).   
In this section, the integration of chemotaxis and 
anemotaxis properties to the PSO is introduced.  
Again, chemotaxis causes the Modified PSO robots 
to follow a local gradient of the chemical 
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concentration, while an anemotaxis-driven PSO 
measures the direction of the fluid’s velocity and 
navigates “upstream” in the plume to find the odor 
source.  This methodology is well known as odor-
gated rheotaxis (OGR) since it is employed by 
animals to find food. 
 
 
2.1 Conceptual Idea 
Unless the position and velocity are updated in the 
PSO algorithm, there is no guarantee the robot 
direction will follow the plume upstream to the 
source.  To overcome this issue we use wind data. 
Assume the velocity from the basic PSO becomes 
an intermediate velocity ( ) from which the 
robots are able to detect the direction of the wind 
( (t)) at every time. The movement of the robot 
can be controlled by analyzing the angle (θ) 
between the intermediate velocity vector of the 
robot and the wind direction vector.  Note that the 
angle is a relative direction depending on the 
direction of the wind.  By this concept, the robot 
movement is not only to follow the gradient of the 
chemical concentration but also to follow the 
direction “upstream” of the wind.  As a more 
detailed explanation, the formulation  and 

(t) as vectors defined as the following: 

)(* tiV

W

)(* tiV
W
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The angle of the two vectors  and (t) in 
two-dimensional space becomes an inner product 
and is defined as: 
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For the implementation the controlling parameter 

θχ  is used to predict the velocity of the robot.  
After receiving the intermediate velocity of the 
robot, , the Wind Utilization (WU) algorithm 
will calculate the angle (θ) as given in Eq. 9. Then 
the controlling parameter,

)(* tiV

θχ , can be  calculated.  
The continuation function for the control parameter 

θχ  is obtained as follows: 
 

( ) ( )))(),((1
2
1))(),(( ** tttt ii VWVW −=θχ       (10) 

 
The modified PSO with Wind Utilization (WU) 
concept is described from eq. (11) to eq. (12): 
 

)()( * tt ii VV θχ=                (11) 
 

)()1()( ttt iii Vxx +−=               (12) 
 
 

 
 

Fig. 1 Demonstration of inability of MPSO solves 
multiple odor sources. 

 

 
 

Fig. 2 Demonstration of inability of MPSO solves 
multiple odor sources. 
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2.2 Dealing with Multiple Source 
The limitation of PSO is a premature convergence to 
a local solution or one solution. This situation is also 
found in multiple odor source localization problems 
as shown in Fig. 1 and Fig. 2. To cope with this kind 
of existence, niche method with deflection 
procedure is adopted [14, 15]. The deflection 
approach operates in multiple odor density function, 
adapting it to remove or close when the one source 
is found.  
 
3 IMPLEMENTATION FRAMEWORK 
The odor source localization problem in the 
dynamic environments is related to several issues 
from biology, physical chemistry, engineering and 
robotics.  This paper proposes a comprehensive 
approach to offer a sound technical basis for odor 
source localization in a dynamic environment. 
 
3.1 Environment 
In this paper, we adopted the extended Advection-
Diffusion odor model by Farrell et al. [16] because 
of its efficiency.  It represents time-averaged results 
for measurement of the actual plume, including the 
chemical diffusion and advective transportation.  In 
addition, the Advection-Diffusion odor model has a 
key factor approximating the meandering nature of 
the plume, as the model is sinuous 
The Advection-Diffusion model is composed of a 
large number of advected and dispersed filaments.  
Given a number of filaments, the overall 
instantaneous concentration at  is the sum 
of the concentrations at that location contributed by 
each filament:  

),( yxo =x
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where C is the concentration of the plume 
(molecules/cm3), to is the number of iterations, and 
M is the number of filaments currently being 
simulated. 
The Advection-Diffusion gas concentration at the 
location due to the i-th filaments is expressed by: ox
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Where q is the amount of odor released, Ri is the 
parameter controlling the size of the i-th filament; 
and Pi is changing positions of the i-th filament.  
(For further explanation on this model, see [16], 
section two and three.) 
This model generates plumes that meander; in 
addition, the meander is coherent with the flow 
fields in the sense that downwind odor distribution 
from the source is the result of advection by the 
flow. 
 
 
3.2  Robot Behavior 
The gas source localization algorithm used in this 
work can be divided into three subtasks: plume 
finding, plume traversal and source declaration.  
Random search is employed until one robot 
encounters the plume.  After finding the plume, the 
second task of the plume traversal proceeds.  The 
particle swarm concept will be applied to follow the 
cues determined by the sensed gas distribution.  The 
last task is the source declaration based on the 
certainty that the gas source has been found.  If a 
robot senses the gas density which is beyond a 
certain threshold value, it means that the gas source 
location is specified; and hence, the searching 
behavior is terminated.  Moreover, the search is 
terminated if the swarm robots fail to localize the 
odor source by the maximum iteration time step. 
Then the parameters of sensor noise and threshold 
value are added to model sensor responses.  Assume 
that iteration time t of the robot in eq. (1) to (6) and 
iteration time to in eq. (13) to (15) is different time 
step resolution.  Time correlation between time step 
t and time step to is explained as follow: The time 
scale of t has higher resolution than that of time step 
to and count up is represented as: 
 

ttt oo Δ+=+1                (16) 
 
△t is the interval time step to in terms of time step t. 
Hence; to is represented with t by:  
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where [X] is the Gauss’s symbol. The sensor 
response is defined by:  
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is the sensor’s response, C is the gas concentration, 
e is the random sensor as referred to [12, 17]. 
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4 EXPERIMENTAL EXAMPLE 
The main idea of PSO niching is to eliminate 
solutions described in [14,15].  Where multiple odor 
sources localization are a problem the best way is to 
eliminate these sources and to close them off 
preventing plume from spreading. Thereby it allows 
the search devices to locate other odor sources.  
The Robot as the principle search device is assumed 
to have some means to close off extraneous odor 
sources which is effective within a given range and 
is closed off within that range. Otherwise, they will 
continue searching odor source until it can be found 
and closed. 
The closing method itself will not be explained in 
this paper. We only assumed the robot as searching 
agents has this capability. For example, if odor 
source is a fire point that produces plumes, robot 
will squirt water to stop the fire. The water itself can 
be squirted as far as certain range, and if the fire 
point is in its range, the fire point will be closed as 
shown in Fig. 3. and Fig 4. While the logic diagram 
of odor source closing method is showed in Figure 5. 
 

 
 

Fig. 3 Demonstration of inability of MPSO with 
closing method solves multiple odor sources. 

 
After odor source being closed, robots will be able 
to find other odor sources. Unfortunately, if the 
latest odor source position is far enough from odor 
stream, robot cannot find other sources. It is shown 
in Fig. 4 where still three sources remain To make 
robots can find all odor sources; again, we need to 
modify MPSO.  
 

 
 

Fig. 4 Screen shoot of demonstration of ability of 
MPSO with closing method solves multiple odor 

sources. 
 
Facing this problem, we need to make robots move 
so divergent that they could cover all search space. 
It would not happen as long as robots move toward 
their global best. We could reset global best to make 
robot movement is more divergent. But it is useless; 
in fact that reset global best could not guarantee 
robots to cover all search space. To solve this 
shortcoming, then the robot spreading method will 
be adopted. 
 

 

 
Fig. 5 Logic diagram of closing method. 

 
The robot spreading method is originally come from 
detect and response PSO (DR PSO) used in previous 
research [11-13]. Detect and response mechanism 
was adopted to make robots be adaptable to the 
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dynamic environment. When environment change, 
robots can detect changes and response to this new 
condition so that robots can find their solution. The 
logic diagram of spreading method is shown in Fig. 
6 while the conceptual idea of spread method is 
shown in Fig. 7. 
Spreading method is used when robots cannot detect 
any other plume stream. So, spreading method is a 
response to this unfavorable condition. Spreading 
method will be used until robots can find plume 
stream. When spreading method is used, robots 
enter spread phase. Vice versa, when MPSO 
algorithm is used, robots enter PSO phase. In the 
spread phase, the robots will be spreading to all 
direction. The procedure will be the following: 
1. Find center point from all robots’ position. 
2. Robot will move to opposite direction from 

center point to its position. 
3. Robot will move straight until it collide another 

robot or collides area’s boundary. 
The detail of MPSO with closing-spread method 
solves multiple odor sources is shown in Fig. 8. 
 

 

 
Fig. 6 Logic diagram of spread phase. 

 

 
 

Fig. 7 Robots are spreading using center point of 
neutral robots only. 

To make searching time faster, we are using parallel 
PSO niching. Robots are grouped, either in number 
or member as well. For example we can determine 
three neutral robots and three charged robots for 
each group. If we determine two groups, then there 
is total twelve robot used for multiple odor source 
localization. 
Each group runs by itself. There is no connection 
between groups. Members of each group can only 
send and take information among their group. Each 
group has its global best information which is 
different and not connected to others. Detect and 
response mechanism is also run separately among 
each group. When one group is running in spread 
phase, other may run in PSO phase. 
 

 
 

Fig. 8 Screen shoot of demonstration of ability of 
MPSO with closing-spread method solves multiple 

odor sources. 
 
Conceptual idea of parallel search is shown in Fig 9. 
Parallel search logically makes searching time faster. 
Several groups of robot run and find odor sources 
separately. The comparison between single sub 
group and parallel are shown in Fig 10.  
 
5 PERFORMANCE ANALYSIS  
Solving odor source localization problems in 
dynamic environments requires hardware and 
software platforms [11-13, 17,18]. During the initial 
design stages, software evaluation is preferred 
because it allows easy comparison of different 
localization strategies for various environmental 
scenarios. This paper presents a simulation 
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implementation that addresses tradeoffs between 
computational efficiency and inclusion of realistic 
hardware parameters. 
From previous result [11-13], the number of the 
robots and the width of the area with respect of the 
iterations step to find the odor source is important. 
Therefore sample of performance measurement is 
shown in Fig. 10.  
 

 
 

Fig. 9 Screen shoot of demonstration of ability of 
parallel MPSO with closing-spread method solves 

multiple odor sources. 
 
For more detail analysis, the ANNOVA software, 
which based on Least Significant Difference (LSD)  
is used. The purpose of using LSD measurement is 
to know the significance of the amount of the 
resource comparing the result or performance the 
system to search or localize the sources. For 
example, if we compare using thirty robots and 
twenty robots in the same scenario, but the 
performance of thirty robots is not more than LSD 
performance of twenty robots. Hence, we can decide 
of using twenty robots is more preferable. 
And also the number of group is analyzed by LSD 
method. The detail of the result using LSD method 
is shown in Table 1. For example in width area 5 x 5 
m2 to find 5 sources, the best combination of 
resource is using twenty robots with three of sub 
groups (parallel). The experiment shows that using 
thirty and forty robots the performance is not 
significant in term of LSD measurement method. 
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Fig. 10 Comparison of performance according to the 
number of the robot, across 25 runs. (Width area is 5 
x 5 m2). Error bars indicate standard deviation and 
lower values indicate better performance. 
 

 
6 CONCLUSIONS  
The variant of Niche MPSO was implemented for 
solving multiple odor source localization problems. 
The proposed simulator based on MPSO approaches 
can solve such dynamic environment problems. On 
the other hand the measurement of the measurement 
done through the LSD statistical theory.  
However in practical, for real natural environment, 
the robot will find various situations related with 
multi study from biology, physical chemistry, 
engineering and robotic. Unresolved problem still 
find in implementation phase. Most of those could 
be grouped into one of the following categories: 
Environments, Performance Analysis, Algorithm 
Optimization and Real Hardware Implementation. 
We also try to analyze the feasibility conjectures 
referred to above, in future work. 
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Corrected Model 64804116.958(a
) 191 339288.570 100.521 1.00 .000 

Intercept 161867221.542 1 161867221.54
2 47956.378 3.84 .000 

Area 21350598.277 3 7116866.092 2108.513 2.60 .000 
Source 24577352.973 5 4915470.595 1456.306 2.21 .000 
Robot (R) 2346056.539 2 1173028.269 347.533 3.00 .000 
Niche (N) 6782592.603 2 3391296.302 1004.739 3.00 .000 
Area * Source 4987334.722 15 332488.981 98.506 1.67 .000 
Area* Robot 508385.225 6 84730.871 25.103 2.10 .000 
Source * Robot 817757.164 8 102219.645 30.285 1.94 .000 
Area * Source * Robot 795158.328 24 33131.597 9.816 1.52 .000 
Area * Niche 931027.584 6 155171.264 45.973 2.10 .000 
Source * Niche 1365569.769 10 136556.977 40.458 1.83 .000 
Area * Source * Niche 705616.653 30 23520.555 6.968 1.46 .000 
Robot * Niche 17432.426 4 4358.106 1.291 2.37 .271 
Area * Robot * Niche 312197.735 12 26016.478 7.708 1.75 .000 
Source * Robot * Niche 297325.213 16 18582.826 5.506 1.65 .000 
Area* Source * Robot * 
Niche 709315.470 48 14777.406 4.378 1.37 .000 

Error 5832520.500 1728 3375.301    
Total 232503859.000 1920     
Corrected Total 70636637.458 1919     

              a R Squared = .917 (Adjusted R Squared = .908) 
 

 
Table 2 Analysis for searching best combination using LSD method (performance vs cost) 

 
Range of Searching Area Sources 5 x 5 m2 7 x 7 m2 10 x 10 m2 12 x 12 m2

5 G3R20 (62,6) G3R20 (129,7) G3R30 (67,9) G3R30(116,4) 
10 G3R20 (98 ) G3R30 (130,2) G3R30 (171,2) G2R30 (215) 
15 G3R20 (139,6 ) G3R20  (201,7) G3R30 (227) G3R30 (312) 
20 G3R20 (165,8 ) G3R30 (212,4) G2R30 (412,1) G3R40 (282,1) 
25 G3R40 (121,8) G3R40 (207,8) G3R30 (345,2) G3R40 (380,2) 
30 G3R30 (210,7) G3R30 (222,6) G3R40 (358,9) G3R40 (434,5) 
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