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Abstract: The decision-based models for maneuvering target tracking were studied in this paper. Focusing on 
the problem of dissatisfied with single model tracking and the optimal model-set is difficult to design of the 
multiple-model (MM) algorithm, we modified the “current” model, and proposed an adaptive single model 
(ASM) to track angular motion. The united velocity-acceleration estimation-based and direct measurement-
based decision algorithms for model-switching were provided and discussed. At the same time, we discussed 
the question of the thresholds setup, and gave a significance test method based on hypothesis testing theory. 
Simulation results show that the tracking performance of this new adaptive single model is stationary, and is 
improved much more than the “current” model, also better than the interacting multiple-model (IMM) for 
strong maneuvering target tracking. Furthermore the computational load of the new model can be less than that 
of IMM. 
 
Key-Words: adaptive single model, multiple-model, maneuvering target tracking, “current” model, decision-
based algorithm, model-switching 
 
1 Introduction 
The key to successful target tracking lies in the 
effective extraction of useful information about the 
target’s state from observations. A good model of 
the target will certainly facilitate this information 
extraction to a great extent. [1-6] gave a 
comprehensive and up-to-date survey of the 
techniques for tracking maneuvering target, 
especially of the tracking models. Interrelationships 
among models and insight to the pros and cons of 
models were provided by [1].  

In the history of the development of 
maneuvering target tracking (MTT) techniques, 
single model based adaptive Kalman filter free of 
decision came into existence first. As one single 
model can only match one motion mode best, and 
the performance of tracking time-varying or strong 
maneuvering target is dissatisfied, so the decision-
based algorithm was proposed, by [4], which 
belonged to the switching-model approach in a 
broad sense. The followed approaches of multiple-
model (MM) algorithms have become quite popular 
for MTT, among which the interacting multiple-
model (IMM) is more preferable [5-10]. 

The universal maneuvering target tracking 
techniques based on single model are adaptive 
Kalman filtering algorithms [11, 12, 13], which 

faced the difficulties to find a suitable bank of 
parameters to match the system motion mode 
precisely. The algorithms, which use statistical 
methods with multi-banks of parameters to describe 
the motion mode approximately, were called MM 
algorithms. To improve the tracking performance of 
MM will face to complex model-set designing and 
burdened calculating. It was shown that the system 
is optimal only when there is one model in the 
model-set and the model also must match the 
motion mode completely by [8]. Here we will study 
the decision-based algorithms and try to avoid the 
complex designing of the model-set and to find a 
more suitable single model for MTT. 

As surveyed by [4], for MTT, there are three 
main classes of decision-based techniques: 
equivalent noise, input detection and estimation, and 
switching model, which are based on decisions 
regarding to target maneuver. In a broad sense, 
algorithms in the equivalent noise or input detection 
and estimation approaches also belong to the 
switching model approach since following different 
decisions these algorithms taking different actions, 
which may be construed as filtering based on 
different models. The fundamental problem is the 
detection of maneuver onset and termination. Two 
popular choices for the detection term are the 
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measurement residual z�  and the input estimate u , 
others are based of them or of there combined 
functions. 

In the open literature available to us, one 
decision-based algorithm usually uses only one 
detection term, which can not be more adaptive to 
the time-varying maneuver generally. Moreover 
there are only two single models in essence which 
are switched each other, e.g., between CV (constant-
velocity) and CA (constant-acceleration) [14] or 
between CV and Singer (Singer Acceleration) 
Models [15], etc. The methods can generally be 
called as estimation-based methods where u  and z�  
or  (velocity) are all estimation-based. The 
precision of estimation is relative to the system 
noise (process noise and measurement noise) and 
model reliability. Generally the infection of noise 
can be decreased by model filtering. We can also 
take the direct measurement as detection term which 
will be simple. Furthermore the validity of model is 
irrelative to the decision, whereas the noise infection 
will be increased. In this paper we intend to propose 
a united velocity-acceleration estimation-based 
decision algorithm (EBDA) and a direct 
measurement-based decision algorithm (MBDA) 
with a new single united maneuvering and non-
maneuvering model. 

v

The rest of the paper is organized as follows. 
Section 2 presents a new adaptive model. The united 
velocity-acceleration estimation-based decision 
algorithm and thresholds setup are presented in 
Section 3 and 4. Section 5 gives the measurement-
based decision algorithm with the new model. 
Comparison of the new algorithms and IMM for 
simulated different trajectories is given in section 6. 
Concluding remarks are provided in Section 7. 
 
 
2 The New Adaptive Single Model 
2.1 The Singer Model and “Current” Model 
The CV model is more proper for non-maneuvering 
target, while the CA model is more suitable for the 
motion whose acceleration derivative (i.e., jerk)  
is an independent process (white noise) : 

.  

)(ta�
)(tw

)()( twta =�
The Singer model assumes that the target 

acceleration  is a zero-mean first-order 
stationary Markov process with autocorrelation 

. Such a process  
is the state process of a linear time-invariant system: 

)(ta

||2)]()([E)( τασττ −=+= etataRa )(ta

( ) ( ) ( )a t a t w tα= − +�  (1) 
where , is the acceleration;  is the 
“instantaneous variance” of the acceleration; 

xa ��= ])([E 22 ta=σ

τα /1=  is the reciprocal of the maneuver time 
constant τ  and thus depends on how long the 
maneuver lasts. For example for an aircraft, s60≈τ  
for a lazy turn and s2010 −−≈τ  for an evasive 
maneuver, for the missile τ  maybe a little longer 
[1];  is zero-mean white noise with constant 
power spectral density . As the maneuver 
time constant 

)t(w
22ασ=wS

τ  increases or decreases the Singer 
model corresponds to a motion in between of 
(nearly) CA and (nearly) CV. It should thus be clear 
that the Singer model has wider coverage than CV 
and CA models [1, 6]. 

Another acceleration model, called the “current” 
model by its authors, proposed by [16], is in essence 
a Singer model with an adaptive mean of 
acceleration that is mean-adaptive acceleration 
(MAA) model: 

( ) ( ) ( ) ( )a t a t a t w tα α= − + +�  (2) 

With state vector [ T      ]x x x=x � �� , where the 
superscript  denotes the transpose of matrix, the 
state-space representation of this model is: 

T
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( ) 0 0 1 ( ) 0 ( ) 0 ( )

0 0 1
t t a t
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x� tw  (3) 

excluding the time instants at which samples are 
taken since )t(a  is assumed piecewise constant. 
The discrete-time equivalent is:  
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(4) 
where  is the sampling interval. As T 1<<Tα , the 
covariance of the noise  is given by: kw

5 4 3

2 4 3 2

3 2
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T T T

ασ / 2

⎡ ⎤
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⎢ ⎥
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 (5) 

A key underlying assumption of the “current” 
model given by [16] (but not so stated explicitly) is 
that 1 |ˆk ka a+ k= , that is to use the last estimation as 
the current mean. This is questionable and can be 
actually avoided [1, 6]. Getting the expectation of 
the last item of (4), we have: 
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(6) 
where kz  is the measurement vector. 
 
 
2.2 Modification to the “Current” Model 
Application of the “current” model can be found in 
the literatures. A weighted “current” model adaptive 
Kalman filtering algorithm is suggested by [17], 
while an improved adaptive filtering algorithm of 
noise variances self-adaptation was given by [18] 
based on the “current” statistical model. Here we 
take into account the matching problem of the 
model. The process of target tracking is the servo 
system of radar driving antenna to point to the target 
with time-varying angular velocity and acceleration 
controlling instruction. By the sense of physics, it is 
viable to use mean-adaptive acceleration model to 
match the relative angular motion of the target. 
Actually, the angular velocity and acceleration are 
often time-varying for radar target tracking, 
especially for rectilineal motion with constant 
velocity the angular motion is not constant. 

As s10≥τ  and the sampling interval T  is small 
( , it’s possible), expand  of the current 
model (4) with Taylor series: 

s.50≤ Te α−

2 31 11 ( ) ( )
2! 3!

Te T T Tα α α α− = − + − +""  (7) 

Substituting (7) into (4), ignoring the high order 
item, we can obtain nearly “current” model: 
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(8) 
It’s not difficult to find that the result of (6) is 

also correct for (8). 
As the new model should be universal and 

adaptive, we modified the model of (8) by importing 
the adaptive factor λ : 
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 (9) 
Denotes (9) as: 
1k k k k kF B a+ = + +x x kw  (10) 

where λ  only can be 0 or 1, α  is also a fixed value 
(in this paper we choose 0.1) or zero. Analyzing the 
model of (9), we can see that: 

1) When α  and ka  are not equal to zero, and 
1λ = , the system is nearly equivalent to MAA 

model;  
2) When 0α ≠  and 1=λ  but 0=ka , the system 

is nearly equivalent to Singer model;  
3) When 0=α  and 1=λ , the system is nearly 

equivalent to CA model but for random noise item; 
4) When 0=α  and 0=λ , the system is nearly 

equivalent to CV model but for random noise item. 
We call the universal model of (9) as improved 

adaptive single model (ASM). It’s not difficult to 
find that if the parameter α  and λ  varying in real 
time, this new model can match constant-velocity, 
constant-acceleration and time-varying acceleration 
motion, so it has strong adaptability. 
 
 
3 United Estimation-Based Decision 
Algorithm 
3.1 Adaptive Rules 
To match the target motion exactly, ASM should be 
switched in real time between MAA, CA and CV 
according to the measurements and states estimation. 
We will design the adaptive rules with united 
velocity-acceleration estimations by distinguishing 
three kinds of situations. 

The mean (average) and modified standard 
deviation (MSD) of acceleration and velocity in 
continuous  steps are: m

,
1

1 ˆ
m

a m k i k i
i

a
m

µ |− −
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= ∑  (11) 
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a m k i k i a m
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σ µ− −
=

= −
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,
1

1 ˆ
m

v m k i k i
i

v
m

µ |− −
=
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, |

1
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1

m

v m k i k i v m
i

v
m

σ − −
=

= −
− ∑ ,µ  (14) 

where  denotes current step of filtering and 
estimating. Here m  can not be too large because of 
maneuver will take place at any time, so we use the 
modified standard deviation instead of the standard 
deviation by statistical theory. The adaptive rules for 
model-switching are followed as: 

k

1)  If the system is under MAA model currently 
( 1=λ , 0≠α ) 

(a). Meeting the condition 1δσ <m,a , i.e., when 
the MSD of acceleration of the final m  steps is 
small enough, the model should be switched to CA 
model, which means 1=λ , 0=α . 
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(b). Meeting the condition 2δµ <m,a  and 

3δσ <m,v , i.e., when the MSD of velocity of the 
final  steps is small enough and the mean of 
acceleration is near to zero, the model should be 
switched to CV model, which means 

m

0=λ , 0=α . 
2)  If the system is under CA model currently 

( 1=λ , 0=α ) 
(a). The (b) of (1) is still applicable.  
(b). Meeting the condition 4δσ >m,a , i.e., when 

the MSD of acceleration of the final m  steps is 
large enough, the model should be switched to 
MAA model, which means 1=λ , 0≠α . 

3)  If the system is under CV model currently 
( 0=λ , 0=α ) 

Meeting the condition 5δσ >m,v , i.e., when the 
MSD of velocity of the final m  steps is large 
enough, the model should be switched to CA model, 
which means 1=λ , 0=α . 

If the conditions are not met, the model should 
be hold. 
 
 
3.2 State Estimation in Spherical 
Coordinate-System 

Many studies of target tracking are focused on 
describing the motion mode in inertial Cartesian 
coordinate-system (CS). But radar system can only 
provide the bearing (or azimuth) b  and elevation e  
measurements, and possibly some radar can also 
provide range r  or range rate (Doppler) r�   (in 
spherical CS). To study target motion in the 
Cartesian CS is the direct method, but the complex 
nonlinear model must be introduced because of no 
x ,  and y z  measurements in Cartesian CS. All 
kinds of approximation and transformation will 
bring on bias of angular controlling instruction. We 
consider that studying independently of radar 
tracking in spherical CS from state estimation in 
Cartesian CS is doable, because in spite of any way 
the radar and target moving, the essence of tracking 
is to ascertain the relative bearing and elevation 
angular motion of the target promptly and exactly. 
An angular error tracking filter and model was 
researched by Ekstrand B. in [19], where only the 
nearly constant-velocity (CV) model was used to 
estimate the inertial angular rate of the line-of-sight 
(LOS), whereas no optimal angle estimation directly. 
Here we will estimate the angle directly. 

Because the range r , bearing b  and elevation e  
in spherical coordinate-system of the radar system 
can be considered as independently, and the state 
and measurement equations of the three channels 
are the same, so we can filter and estimate the three 

channels independently with the same algorithm. 
The state equation of the system is just like (9), 
whereas the measurement equation is: 

     [1   0   0]
k k k

k k

H= +

= +

z x v
x v

 (15) 

where kz  denotes the measurement and  is the 
measurement noise, the covariance of  is . We 
can see that the model is linear, despite it is time-
varying, so the optimal Kalman filter can be used 
here.  

kv

kv kR

To take the bearing b  channel for example, 

denotes T
     b b b⎡ ⎤= ⎣ ⎦x � �� , than the EBDA for state 

estimation mainly consists of two steps: value , 
 by the adaptive rules and estimate the state with 

Kalman filter. The complete steps for the state 
estimation algorithm are concluded as in Table 1. 

kF

kB

We proposed the new model based on angular 
motion of radar target tracking, which can match the 
uniform motion and variable motion together. It is 
suitable for range channel at the same time too, 
which is just the exhibition of the strong adaptability 
of the new model algorithm. 

Table 1  The EBDA of ASM for State 
Estimation  

1. value  and  by the adaptive rules kF kB
2. model-conditioned filtering (if switching filter from 

mk − ) 
Predicted state:              1| |ˆ ˆk k k k k k kF B a+ = +x x  

Predicted measurement:  1| 1|ˆˆk k k kH+ +=z x

Predicted covariance:    T
1| |k k k k k k kP F P F Q+ = +  

Measurement residual:   1 1 1ˆk k k+ + += −z z z� |k

1k+

1

Residual covariance:     T
1 1|k k k kS HP H R+ += +

Filter gain:                   T 1
1 1|k k k kK P H S−+ += +

z

 

Updated state:               1| 1 1| 1 1ˆ ˆk k k k k kK+ + + + += +x x �

Updated covariance:    1| 1 1| 1 1|k k k k k k kP P K HP+ + + + += −

 
 
4 Thresholds Setup 
The key to successful performance improving of 
ASM tracking lies in the exact setup of the 
thresholds 1δ , 2δ , 3δ , 4δ  and 5δ . Besides 
experiment and experience, we will analyze in view 
of probability and statistics theory. 
 
 
4.1 Thresholds of Variable Motion 
Take the statistic of acceleration for example. If the 
system moves with constant acceleration, we can 

WSEAS TRANSACTIONS on SYSTEMS Jiahong Chen, Zhonghua Zhang, Zhendong Xi, Yongxing Mao

ISSN: 1109-2777 1024 Issue 8, Volume 8, August 2009



assume the acceleration has Gaussian distribution 
. The first moment (mean) ),(N aa

2σµ aµ  varies by 
the setup, whereas the second moment (covariance) 

 is relatively fixed, and depends on the 
performance of the system, such as sampling 
interval, measurement precision, etc.. We also can 
say that  is determined by the system, and can be 
obtained approximately by experiment sampling. If 

2
aσ

2
aσ

am,a σσ ≤  obviously under MAA model, we can 
consider the acceleration is nearly constant 
reasonably; on the other hand, if am,a σσ >  
obviously under CA model, modify the model to 
MAA is also believable.  

Definition 1: assume  is the distillation 
function of random variable Y ,  is a real 
number, , if: 

)(yF
p

10 ≤≤ p
{ } ( )p pP Y y F y p≤ = =  (16) 

where  stands for probability. We call  the 
 percentile of the distribution. 

}{•P py

p
To ascertain 1δ  and 4δ  is a problem of 

hypothesis testing.  
1)  Inferior (lower) limit 1δ  
We establish the original hypothesis H0: 

 against the alternative hypothesis H22
am,a σσ ≥ 1: 

. 22
am,a σσ <

Definition 2: Type Ⅰ error is the error made 
when rejecting H0 while H0 is true. Type Ⅱ error is 
the error made when accepting H0 while H1 is true. 

To control the risk of mistaking  when 
 actually, i.e., the TypeⅠ error is less than 

22
am,a σσ <

22
am,a σσ ≥

β  (significance level).  
According to the Gaussian distribution of a , the 

random variable 2
| ,2

1

1 ˆ( )
m

k i k i a m
ia

a µ
σ

− −
=

−∑  is chi-

square distributed ( ), so the rejection region 
W

2
)1( −mχ

1 (rejecting H0 and accepting H1) is: 
2

1| 1 | | ,2
1

2
, 2

( 1)2

1ˆ ˆ ˆ{ ( , , ) : ( )  

( 1)
       }
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k k k m k m k i k i a m
ia
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m
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µ
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σ
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− − − − − −
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−

−

−
= ≤

∑……

 

 (17) 
2

)1( −mβχ  is the β  percentile of  distribution. 
If 

2
)1( −mχ

β  is small, rejecting H0 and accepting H1 is 
credible by “event with small probability should not 
take place in one experiment”. 

Here we take 10.=β  and , query the  
distribution table, , so when 

, (17) comes into existence. That is to 
say we can set 

5=m 2χ

06412
410 .)(. =χ

am,a . σσ 5160≤

21 /aσδ = .  
2)  Superior (upper) limit 4δ  
Here we should control the risk of mistaking 

 when  actually, so we establish 
the original hypothesis H

22
am,a σσ > 22

am,a σσ ≤

0:  against the 
alternative hypothesis H

22
, ama σσ ≤

1: . The rejection 
region W

22
, ama σσ >

1 of the random variable 
2

| ,2
1

1 ˆ( )
m

k i k i a m
ia

a µ
σ

− −
=

−∑  is: 

2
1| 1 | | ,2

1
2
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1 ( 1)2

1ˆ ˆ ˆ{ ( , , ) : ( )  

( 1)
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m

k k k m k m k i k i a m
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a m
m

a

a a a

m
β
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χ

σ

− − − − − −
=

− −

−

−
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 (18) 
If 1.0=β , then , so when 

, (18) comes into existence. That is to 
say we can set 

779.72
)4(9.0 =χ

ama σσ 395.1, >

aσδ 395.14 = . If we set aσδ 24 = , 
then 005.0<β , so the reliability of H1:  is 
very high ( ). 

22
, ama σσ >

995.0>
In brief, we can set 1δ  near to 2/aσ  and 4δ  near 

to aσ2  from the above analysis. In fact the setup of 
1δ  and 4δ  should also accord with the experiment 

results. Two questions must be paid attention to. 
The first is that 2/aσ  and aσ2  are only reference 
values because m  can not be too large by the real-
time requirement. The deterministic value must be 
experienced typical experiments. Second, ma,σ  is 
relative to the sampling interval, also same with aσ , 
so when T  is varied the thresholds should be varied 
accordingly. 
 
 
4.2 Thresholds of Uniform Motion 
The methods of setup of 3δ  and 5δ  resemble to the 
above 1δ  and 4δ . Assuming the system is under CV 
model, and the distribution of velocity is , 
so 

),(N vv
2σµ

3δ  can be near to 2/vσ , and 5δ  can be near to 
vσ2 .  
The matching performance of CV model is 

inferior to that of CA and MAA model except that 
the system is actually moving with constant velocity. 
Switching the CA and MAA model to CV model 
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should be cautious, so we appended the constraint of 
acceleration mean: 2δµ <m,a . The physical meaning 
of this condition is obvious. 

If the acceleration noise is , we 
establish the original hypothesis H

),0( 2
aN σ

0:  
against the alternative hypothesis H

0=m,aµ

1: .  0≠m,aµ

The random variable 
a

m,am
σ

µ 0−
 is standard 

Gaussian distribution , so the confidence 
interval W

)1,0(N

0 should meet: 
,

1 /2
a m

a
m u β

µ

σ −<  (19) 

where  is the percentile of Gaussian 
distribution, 

21 /u β−

10.=β  as the above tests, so we have: 
1 /2 0.95

,
1.645

1.365 5
a

a m a a a
u u

m
β σ

µ σ σ σ−< = = =  (20) 

2δ  is near to 361./aσ . Different from the above 
tests, accepting H0 should be credible here. Here we 
should also control the Type Ⅱ error, i.e., control 
the risk of mistaking  when  
actually. As m  can not be too large, according to 
the hypothesis testing theory we can increase 

0=m,aµ 0≠m,aµ

β . In 
order to be more credible of H0: , 0=m,aµ 2δ  can be 

set between aσ)
10
1~

2
1(  conservatively by 

experiment. 
By the way, the short sampling interval and 

suitably large m  can improve the stability of 
statistical data, and is of advantage to match motion 
mode in real-time. 
 
 
5 Direct Measurement-Based Decision 
Algorithm and Discussion 
5.1 Adaptive Rules 
The first-order difference of position ( ) is 
relative to the target velocity. The second-order 
difference of position ( ) is relative to the target 
acceleration, and the third-order difference of 
position ( ) is relative to the target acceleration 
derivative. Denote: 

1,kz

2,kz

3,kz

1, 1k k+= −z z zk

k

k

 (21) 

2, 1, 1 1,k k+= −z z z  (22) 

3, 2, 1 2,k k+= −z z z  (23) 
Regarding of the randomicity of measurement, 

the average (mean) of the th-order difference in  
steps is used here (denote as 

n m
1,kz , 2,kz and 3,kz ). We 

give the thresholds of velocity  and , and of 
acceleration  and . 

1η 2η

3η 4η
1)  If the system is under MAA model currently 

( 1=λ , 0≠α ) 
(a). Meeting the condition 3, 3k <z η  and 2, 1k <z η , 

i.e., when the acceleration and its derivative of the 
final  steps are small enough simultaneously, the 
model should be switched to CV model, which 
means 

m

0=λ , 0=α . 
(b). Meeting the only condition 3, 3k <z η , i.e., 

when the acceleration derivative of the final m  
steps is small enough, the model should be switched 
to CA model, which means 1=λ , 0=α . 

2)  If the system is under CA model currently 
( 1=λ , 0=α ) 

(a). Meeting the condition 3, 4k >z η , i.e., when 
the acceleration derivative of the final m  steps is 
large enough, the model should be switched to 
MAA model, which means 1=λ , 0≠α . 

(b). Meeting the condition 3, 3k <z η  and 2, 1k <z η , 
i.e., when the acceleration and its derivative of the 
final  steps are small enough simultaneously, the 
model should be switched to CV model, which 
means 

m

0=λ , 0=α . 
3)  If the system is under CV model currently 

( 0=λ , 0=α ) 
(a). Meeting the condition 2, 2k >z η  and 3, 4k >z η , 

i.e., when the acceleration and its derivative of the 
final  steps are large enough simultaneously, the 
model should be switched to MAA model, which 
means 

m

1=λ , 0≠α . 
(b). Meeting the only condition 2, 2k >z η , i.e., 

when the acceleration of the final m  steps is large 
enough, the model should be switched to CA model, 
which means 1=λ , 0=α . 

The estimation steps and thresholds setup of this 
MBDA are similar to that of EBDA in Table 1.  

 
 

5.2 Discussion  
The new algorithms of ASM can switch to the 

better matching model based on the analysis of the 
state estimation or the direct measurements. If the 
real target trajectory is taken as an unknown 
complex curve, than the new ASM will fit the mode 
comprehensively with first degree, quadratic and 
cubic curves. It is more adaptive than the traditional 
single models or switching-model approaches only 
with first degree and quadratic curves. If the 
matching model of ASM is appropriate, than the 
tracking performance will be improved especially 
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for the strong maneuvering targets. The simulation 
results have shown this well. 

We give a decision-based switching-model 
approach for MTT, which is different from the 
traditional switching-model approaches. First, the 
nearly th-order ( ) models were used to fit 
the motion mode, the fitting performance of the new 
algorithm should be better. Second, the switched 
models have a uniform expression, model- 
switching are realized by revaluing the parameters. 
Third, the union of velocity, acceleration and jerk is 
taken as the detection item rather than that only one 
of them is used in the traditional switching-model 
approaches. Forth, the physical sense of the 
detection term and the thresholds are obvious and 
understandable. One important assumption is that if 
the system moves with constant acceleration (or 
constant velocity), the acceleration (or velocity) has 
Gaussian distribution. 

n 321 ,,n =

In the new algorithms, if the mode variation was 
detected at time k , the model should be switched 
from . When mT  is small enough (<mk − τ ), 
switching from k  or mk −  has no obvious 
difference. Switching from k  can lighten the 
computational load. On the other hand if τ  is 
smaller, the maneuver acceleration can be 
considered as noise. 

For EBDA, considering the statistical reliability 
of the detection terms, the step m  can not be too 
small. With the acceleration to be estimated, . 
In view of real-time computation,  can not be too 
large. Generally when , the computational 
load is nearly approximate to the IMM algorithm. 
For the computational system with high 
performance, if T  is very small, than m  can be 
larger. 

3>m
m

10<=m

For MBDA, the third-order difference should be 
calculated, then to compute the average. The 
covariance of the n th-order difference is in (direct) 
proportion to  (it can be proved about ,  
is the variance of measurement 

n2 22 z
nσ 2

zσ
z ).  should be 

large enough to reduce the infection of noise, 
generally. Same as the EBDA m  also can not 

be too large (

m

5>m
τ<mT ). The complexity of the two 

algorithms corresponds to each other. From the 
simulation results we can see that the tracking 
performance of MBDA+ASM is also satisfied, 
which shows the strong adaptability of ASM. 
 
 
6 Simulation 
In this section, we compared the performance of 
ASM with EBDA to the classic MAA and IMM 

algorithms by simulation. MBDA based of ASM is 
also simulated. 

 
 

6.1 Design of Simulation 
With the origin  at the radar center of the three 

axis (range, bearing, elevation), we assume the 
target moves in a plane with fixed m. The 
state vector is 

O

10000=z
[ ]T      yyxx ��  in Cartesian CS, whereas 

[ ]T      rrr ��� , [ ]T      bbb ���  and  in spherical CS. 
Simulation time is 0~100s.  

[ T      eee ��� ]

The model-set of IMM has one CV model and 
two CT (Constant-Turn) models. There is always 
one model in the model-set which is matched to the 
system motion mode completely. In this point, the 
result of IMM algorithm in this simulation is 
preferable to the adaptive IMM algorithm. The 
transition probability matrix is:  

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

ijp
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

and the model initialized probability is: 
[ T

0 0.5 0.3 0.2µ = ]  (25) 
The design of MAA and ASM simulation is a 

little more complex. To compare the performance 
exactly, we use the measurements which were 
created in Cartesian CS containing process noise 
and measurement noise, after Cartesian-to-Spherical 
transformation, and obtain the measurements in 
Spherical CS. When finished the simulation, we 
transform the estimating result in Spherical CS to 
Cartesian CS, and then compare to the true 
trajectory. In this simulation , 050.T = 5=m  for 
EBDA, 10=m  for MBDA. Pay attention that the 
filtering noise matrix in Spherical CS is relative to 
the noise in Cartesian CS but not equal to. The 
performance of MAA and ASM simulation is very 
conservative and will be better in practice 
engineering in this point. 

We give the index of root mean square ( ), 
normalized position error ( ) and computational 
load ( ). The CL  of the algorithm is the mean 
value which is evaluated in terms of calculating time 
with respect to Monte Carlo runs. The formulas of 
calculating  and  are:  

RMS
NPE

CL

RMS NPE

2
1

1

]))(~)(~[1(),( jxjx
M

kxRMS k

M

j
k∑

=

=  (26) 

∑
=

=
N

k

x,kRMS
N

xRMS
1

)(1)(  (27) 
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1

1 ( )
M

j
NPE NPE j

M =
= ∑  (29) 

where 1,2, ,j M= "  is the Monte Carlo runs, 
;  is the simulation steps, 
; 

100M = N,,,k "21=

2000N = )(~ jxk , )(~ jyk , and  are respectively 
the estimation position error of k  time and the th 
simulation in Cartesian CS; , , and 

 are respectively the true position; , 

, and  are respectively the 
measurements of three directions. 

)(~ jzk

j

)(xk j )( jyk

)( jzk )(, jz kx

)(, jz ky )(, jz kz

Four different trajectories (Fig. 1) of the target 
are tracked in the simulation. 

5000 10000  15000 20000  
-0.5

0

0.5

1

1.5

2

2.5
x 10

4

x

y

Trajectory 1
Trajectory 2
Trajectory 3
Trajectory 4

 
Fig.1  The target trajectories (m) 

Trajectory 1: , 
constantly turns with . 

T
0 [6000   200   1000   200]=x

s/)t( D5=ω

Trajectory 2: , 
20~40s constantly turns with  (turn left ),  
55~75s constantly turns with  (turn 
right), other time moves in straight line with 
constant velocity (uniform motion). 

T
0 [6000   200   6000   250]=x

s/)t( D5=ω

s/)t( D7−=ω

Trajectory 3: , 
25~45s constantly turns with  (turn 
right ), 60~75s constantly turns with  
(turn left), other time moves in straight line with 
constant velocity. 

T
0 [1000   200   1000   400]=x

s/)t( D9−=ω

s/)t( D7=ω

Trajectory 4: , 
0~25s constantly turns with  (turn 
right ),  40~55s and 60~85s constantly turns with 

 (turn left), other time moves in straight 
line with constant velocity. This is a trajectory like 
the figure “8”. 

T
0 [10000   200   10000   250]=x

s/)t( D9−=ω

s/)t( D7=ω

 
 

6.2 Simulation Results 
Simulation results are given by Table 2 to Table 

5. Table 2 and Table 3 gave the RMS of x  and  
directions respectively with ASM, IMM and MAA. 
Table 4 gave the NEP and Table 5 gave the CL. 

y

Table 2  Root Mean Square of x  Coordinate (m) 

)x(RMS  EBDA IMM MAA 
Trajectory 1 29.7742 26.1995 45.7578 
Trajectory 2 28.6938 27.3768 46.8494 
Trajectory 3 29.4929 29.9152 44.0302 
Trajectory 4 27.8469 34.4717 38.2877 

Table 3  Root Mean Square of  Coordinate (m) y

)y(RMS  EBDA IMM MAA 
Trajectory 1 28.1050 22.7559 47.8447 
Trajectory 2 26.1246 32.4014 36.7867 
Trajectory 3 30.0558 29.6224 49.4845 
Trajectory 4 29.6671 34.7230 50.2352 

Table 4  Normalized Position Error (m) 

NPE  EBDA MBDA IMM MAA
Trajectory 1 0.2694 0.3326 0.2404 0.4587
Trajectory 2 0.2692 0.3064 0.2659 0.4226
Trajectory 3 0.2976 0.3211 0.2981 0.4548
Trajectory 4 0.2844 0.3167 0.3438 0.4461

Table 5  Computational Load (s) 
CL  EBDA MBDA IMM MAA

Trajectory 1 4.526 4.878 4.976 1.552 
Trajectory 2 4.486 5.346 5.045 1.503 
Trajectory 3 4.236 4.948 5.107 1.513 
Trajectory 4 4.446 5.003 5.318 1.518 

 
The filtering parameters of ASM and MAA are 

identical and invariant in this simulation. The 
maneuverability (in Cartesian CS) is stronger and 
stronger from trajectory 1 to 4. From Table 2, Table 
3 and Table 4, the tracking performance of EBDA 
and MBDA based of ASM is improved obviously to 
MAA, although from “Table 5” we can see that the 
computational load of EBDA and MBDA is larger 
than that of MAA. Here we have 2000 steps of one 
Monte Carlo simulation, the time of one cycle of 
ASM is less than 3ms (which is relative to the 
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computer performance), and to 50ms sampling 
interval the resource is well enough. 

For the tracking performance of EBDA, to 
trajectory 1, IMM is a little better than EBDA, to 
trajectory 2 and 3 the performances of the two 
algorithms are near to each other, whereas to 
trajectory 4 EBDA is better than IMM. EBDA is 
also better than MBDA. From Table 2, Table 3 and 
Table 4 we can conclude that when the 
maneuverability is weak or the motion mode varies 
little, IMM is a little better, but when the 
maneuverability is strong or the motion mode varies 
much, ASM is better. Furthermore to say relatively, 
the tracking performance of ASM is more stationary, 
and that of IMM varies more obviously.  

In the ASM algorithm the adaptability of α  is 
not considered. We can see from (8) that if the 
acceleration  is approximately constant then the 
coefficient 

a
α  has less effect. In fact, to trajectory 1, 

the maneuver time of the relative angular motion 
should be longer, that is α  could be smaller. We 
take 010.=α  for another simulation. The results 
show that the performance of ASM ( 0.2614=NPE  
by EBDA) is nearer to IMM but not so apparent. 
 
 
5 Conclusion 
This paper studied and proposed a new improved 
adaptive single model and two algorithms for 
maneuvering target tracking based on the relative 
angular motion of aerocrafts and radar, which is also 
suitable for range tracking. To say relatively, the 
tracking performance of ASM is more stationary, 
and that of IMM varies more obviously according to 
the maneuverability and the design of model-set.  

The united velocity-acceleration estimation-
based decision algorithm and direct measurement-
based decision algorithm based of ASM seem to be 
valid for MTT. The physical concept of these new 
model algorithms is clear, and they are simple and 
valuable for practical engineering, especially for 
radar tracking. Here we emphasized particularly on 
steadily tracking and exactly estimating of the state 
in spherical CS, which about the estimation of the 
state in Cartesian CS is not the goal of this paper, 
we will study in another one. 
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