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Abstract: - This work proposes a two-stage immune algorithm that embeds the compromise programming to 
perform multi-objective optimal compensator placement. A new problem formulation model that involves 
fuzzy sets to reflect the imprecise nature of objectives and incorporates multiple planning requirements is 
presented. The proposed approach finds a set of non-inferior (Pareto) solutions rather than any single 
aggregated optimal solution. Additionally, this developed approach eliminates the need for any user-defined 
weight factor to aggregate all objectives. Comparative studies are conducted on an actual system with 
encouraging results, demonstrating the effectiveness of the proposed approach. 
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1 Introduction 
Typical distribution systems operate in a radial 
configuration; they are supplied from substations 
and feed to distribution transformers the spatial 
density of the load is high in urban areas, where 
underground cables and large transformers are used, 
but lower in mixed and rural areas, where overhead 
lines and smaller transformer units are used. 
Numerous shunt capacitors are installed along 
distribution feeders to compensate for reactive 
power to regulate the voltage; reduce energy; 
correct the power factor, and release system 
capacity, for both urban and rural areas. The general 
capacitor placement problem is to locate and 
determine the sizes of capacitors to be installed at 
the nodes of a radial distribution system under 
various loading conditions. 
Various attempts from different perspectives have 
been made to solve the capacitor placement problem. 
For instance, the problem has been formulated as a 
mixed integer programming problem in which 

power flows and voltage constraints are applied 
[1].Heuristic approaches have also been presented to 
identify sensitive nodes from the strengths of the 
effects on system losses and, then, optimizing the 
net savings of system losses [2]. An equivalent 
circuit of a lateral branch has been used to simplify 
the distribution loss analysis. In so doing, capacitor 
operating strategies were elucidated according to the 
reactive load duration curve and the sensitivity 
index [3].Optimal capacitor planning has been 
implemented based on the fuzzy algorithm in 
practical distribution systems [4]. A solution 
technique based on simulated annealing (SA) has 
been developed; implemented in a software package, 
and tested on a real distribution system with 69 
buses [5,6]. The Tabu Search technique has been 
applied to determine the optimal capacitor planning 
in the distribution system used in [6], and the results 
of the TS compared with those of the SA. Genetic 
algorithms (GA) have been used to determine the 
optimal selection of capacitors [8,9].In [9], Gas 
were implemented to optimize the selection of 
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capacitors, but the objective function considered 
only the cost of the capacitors and the power losses, 
without imposing operation constraints. 

Notably, most of these approaches treat the 
capacitor placement problem as a single objective 
problem. However, in recent years, customers have 
made strong demands of electrical utility companies 
[10]. Various problems have multiple and 
conflicting objectives (such as simultaneously 
minimizing the cost of fabrication and maximizing 
the reliability of the system), which make the 
optimization problem interesting to solve. No single 
solution is an optimal solution to a problem with 
multiple conflicting objectives, so a multi-objective 
optimization problem has a number of trade-off 
optimal solutions. Classical optimization methods 
can at best find one solution in one simulation run, 
so such methods inconvenient when used to solve 
multi-objective optimization problems. 

In light of the above, this study formulates the 
capacitor placement problem as a multiple objective 
problem, including operational requirements the 
problem formulation presented herein considers four 
objectives-minimizing the cost of installing 
capacitors, real power loss and deviation of the bus 
voltage, and maximizing the capacity margin of the 
feeders and the transformer. The imprecise nature of 
each objective function is incorporated by modelling 
these objective functions using fuzzy sets. This 
work also presents a two-staged immune algorithm 
to solve the constrained multiple objective problem. 

The rest of this article is organized as follows. 
Section 2 describes a novel formulation of the 
capacitor placement problem. Section 3 introduces 
the immune algorithm for solving optimal problems. 
Section 4 briefly reviews multi-objective 
optimization, and develops the two-stage immune 
algorithm for multi-objective programming. Section 
5 describes how to apply the proposed method to the 
capacitor placement problem. Section 6 then 
demonstrates the effectiveness of the solution 
algorithm when applied to power distribution 
systems. Section 7 draws conclusions. 
 
 
2 Problem Formulation 
This study formulates the capacitor allocation 
problem to determine the locations and size of 
capacitors to be installed in the nodes of a radial 
distribution system under various loading conditions. 
The problem formulation considers four objective 
functions, to minimize the total cost of capacitors to 
be installed, the energy loss and the deviation of bus 
voltage, and to maximize the system security margin 
of transformer capacity. These objective functions 

are formulated as fuzzy sets to incorporate their 
imprecise nature. A fuzzy set is typically 
represented by a membership function ( )if xμ for 
the i-th objective function ( )if x . A higher 
membership function implies greater satisfaction 
with the solution. The membership function usually 
consists of lower and upper boundary values and is 
strictly monotonically decreasing and continuous. 
Without loss of generality, a membership function 
of a minimizing problem can be defined by 

( )

min

min max

max

1 1, , ( )

( ) ( ) , , ( )

0 0, , ( )

i i

fi i i i i i

i i

or if f x f

u x h f x if f f x f

or if f f x

⎧ → <
⎪

= ≤ ≤⎨
⎪ → <⎩            

  (1) 

The lower and upper bounds, min
if , max

if  on each 
objective function under given constraints are 
established to elicit a membership function ( )if xμ  
for each objective function, ( )if x . 

Then, a strictly monotonically decreasing and 
continuous function ( )( )i ih f x , which can be linear 
or non-linear, is determined. In the following, 
objective function with fuzzy models is introduced 
to formulate the capacitor placement problem. 
 
 
2.1 Minimizing Capacitor Construction 
Expenditure 
The cost of capacitors includes two terms The first 
term represents the purchase cost while the second 
represents the instalment and maintenance cost. 

i

1min [ ( ) ( )]
yc p m if k q k q a

∈Ψ

= +∑
 
                             (2) 

Where ia  is a 0-1 decision variable: ia =1 if i-th 
bus is selected for capacitor installation; otherwise 

ia =0; Ψ represents the set of candidate locations of 
buses to be considered for capacitor injection; y 
denotes the life time (year) of the capacitors; Kp 
represents the purchased cost of capacitors of 
capacitance q; Km denotes the fixed instalment and 
maintenance cost. Notably, the cost function fc is a 
non-differentiable step like function since the 
capacitors are grouped by the specific size. Figure 1 
plots the fuzzy membership function fc of the cost 
where fcmax represents the cost of the maximum 
allowable number of capacitors to be installed in the 
system of interest. 
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Fig. 1. Fuzzy membership function of the cost, fc 
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2.2 Minimizing Real Power Loss 
The total cost of the real power loss from line 
branches, is defined as, 

,
1

min
tn

e ej j loss j
j

f k t p
=

=∑
                                          

(3) 

where nt represents the total number of load levels; 
kej represents the cost of power under load j; tj 
represents the duration of the application of load j, 
and plossj is the total real power loss of the 
considered system under load j .Figure 2 displays 
the fuzzy membership function of power loss where 
femax represents the real power lost without capacitor 
compensation; fe0.2 , is 80% of the femax and femin is 
the expected real power loss in the considering 
system. 
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2.3 Minimizing Deviation of Bus Voltage  
   The bus voltage, an important index, characterizes 
the security and power quality of a distribution 
system. Accordingly, an index is defined that 
quantifies the deficiency in the system caused by the 
bus voltage. 
min max Rated

v i ii
f v v= − , i=1, 2, 3, …, nb                         (4) 

where nb is the total number of buses; vi and vi
Rated 

denote the real and rated voltages of bus I, 
respectively, and fv corresponds to a higher quality 
voltage profile and better system security. Figure 3 
plots the fuzzy membership function of the 
deviation of the bus voltage where fvmax is the 
maximum allowable deviation of bus voltage. 
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2.4 Maximizing the Security Margin of 
Feeders and Transformers 
A simple index to assess the system security is the 
capacity margin of feeders and transformers The 
security index is defined as follows  

min
2 2

21 min iRate iLoad
s i

iRate

I If
I
−

= − ,i =1, 2, 3,…, nh    (5) 

Where IiLoad and IiRetad are the current flow and the 
rate flow of branch i , respectively; nh; represents 
the total number of branches, and fs implies more 
secure system capacity. Figure 4 plots the fuzzy 
membership function of the feeders where fsmax 
denotes the rating of the considering feeders and 
fsmim is the maximum expected security margin. 
 
 
3 Immune Algorithm 
The immune system is a natural, fast and effective 
defense mechanism for a host against infection. It 
includes a complex set of cells and molecules that 
protect our bodies against infection. Our bodies are 
under constant attack by antigens that can stimulate 
the adaptive immune system. Antigens might be 
foreign, such as surface molecules present on 
pathogens, or self-antigens, which are composed of 
cells or molecules of our own bodies [11,12]. 

The immune system has a fundamental ability to 
produce new types of antibody or find the best-
fitting antibody to attack an invading antigen. The 
immune system produces very many antibodies 
against innumerable, unknown antigen, by trial and 
error. The diversity of the immune system can be 
mathematically formulated as a multi-objective 
function optimization problem, with multiple 
solutions rather than single solution, to elucidate the 
diversity of antibodies that is essential to 
adaptability against foreign viruses and bacteria in 
the environment. The presented algorithm uses 
parallel search vectors to find multiple solutions. 
The index of diversity is introduced and multiple 
solution vectors maintained as a memory cell 
mechanism in the immune system. The antigen can 
be regarded as a problem to be solved and the 
antibody a solution vector that best fits to solve the 
problem. The immune system in a higher mammal 
eliminates antigens by the genetic evolution of a 
lymphocyte population that can produce antibodies. 
Genes produce numerous types of antibody bf trial 
and error because the type of antigen is not known a 
priori. The best antibody among numerous 
candidates is selected to destroy the antigen by bio-
chemical pattern matching between the antigen and 

the antibody. Accordingly, the immune system can 
be regarded as a combinatorial optimization process, 
which is to select the type of antibody (solution 
vector) from among a great many solution 
candidates, that best fits the antigen. 

A measure of diversity of antibodies produced 
from a lymphocyte population is required and must 
be defined. Lymphocytes recognize an invading 
antigen and produce the antibodies to eliminate the 
antigen. Notably, the antigen and antibody in the 
immune algorithm are represented as objective and 
the feasible solution, respectively, in the 
optimization problem. Figure 5 depicts a model of a 
lymphocyte population consisting of antibodies, 
where j is the candidate solution. For the N antigens 
(antibodies ) with L genes in the pool, according to 
information theory, the entropy Ej(N) of the jth gene 
is defined as [11,12] 

, ,
1

( ) log
i j i j

N

j
i

H N p p
=

= −∑
                                     

(6) 

Where 
,i j

p  represents the probability that locus j is 

allele i. If all alleles at the jth gene are the same, 
then the entropy of the jth gene equals zero. The 
mean of the informative entropy in a lymphocyte 
population is represented by 

1

1( ) ( )
L

j
j

H N H N
L =

= ∑
                                        

(7) 

Where H (N) denotes the mean of the informative 
entropy for all antibodies and L is the size of the 
genes in an antibody. This entropy specifies the 
diversity of the lymphocyte population. Two 
expressions for affinity are considered in the 
presented approach. ( )b vw

A  is used to determine the 
diversity between two antibody v and w and can be 
represented as,  

( ) 1
1 (2)b vw

A
H

=
+                                          

(8) 

Where H(2) quantifies the diversity between two 
antibodies, according to Eq .(7)for N =2.For H(2)=0, 
the genes of the two antibodies are identical. The 
other affinity ( )g i

A  is that between antigen Ag and 

antibody Ab and is defined by 

( ) ( ) ( )
1

1,2, ,
c

i j

N

g f bi g bi oi
j

A A A i Nμ μ
=

= − =∑
       

(9) 

where ( )
if biAμ  is the value of the membership 

function for antibody Abi on objective l; ( )
1

c

j

N

g bi
j

Aμ
=
∑

 
are the values of the membership function with all 
applied constraints for antibody Abi and Nc and N0 
are the numbers of constraints and objectives, 
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respectively. The antibody is perfectly matched with 
the antigen when the affinity ( )g i

A  equals one. 

Antibodies that have high affinities toward an 
antigen are selected to proliferate, while antibodies 
with low concentrations are suppressed. The 
concentration Cv of each antibody can be defined as 

,
1

1 oN

v v w
wo

c ac
N =

= ∑
                                                

(10) 

with 
( )

,

1
0 otherwise

i
v w

Ag
ac

ε≥⎧
= ⎨
⎩                                        

 (11) 

where ε is a preset threshold. If Cv (v=1,2,…,N0) is 
greater than a given threshold δc, then this antibody 
becomes a memory antibody, else, it is suppressed. 
The goal of this step is to eliminate surplus solution 
candidates. 

From the schema of the natural immune system, 
the mathematical optimization framework can be 
modeled as an algorithm, realized by the following 
steps. 

 
Step 1: Identify the optimization problem; 
Step 2: Generate random antibodies (candidate 
solutions); 
Step 3: Calculate the affinity ( )g i

A  between the 

antibody and antigen according to Eq (9); 
Step 4: Determine the concentration Cv of each 
antibody in the repertoire according to Eq (10): 
Step 5 : If Cv exceeds a given threshold δc , then 
proceed to the next step, else, proceed to step 8. 

 
Fig. 5. Informative entropy of antigens. 

Step 6: Calculate the affinity ( )b vw
A  using Eq.(8) 

for each antibody v =1,2,…,N0 to the antibody w , 
which has the highest concentration; 
Step 7 : If all affinities ( )b vw

A  exceed a threshold δa, 
then this antibody becomes a memory antibody then, 
proceed to step 10, else, proceed to step 8. 
Step 8: Suppress (eliminate) antibodies with low 
concentration (affinity).  
Step 9: Generate new antibodies using genetic 
variation operators, such as crossover and mutation, 

to replace the antibodies eliminated in the previous 
steps. 
Step 10: Repeat steps 3 to 9 until a certain stopping 
criterion is fulfilled. 

Notably, in the above immune algorithm, the 
number of generated antibodies and the number of 
iterations can be experimentally determined. The 
rate of the crossover and mutation are also 
determined on a trial basis. 
 
 
3 Multi-Objective Optimization 
A multiple objective problem can be considered to 
have the following form. 
Min fi (x) i=1,2,…,N0                                                                      (12) 
subject to  
gj(x) = 0, j=1,2,…,Ncg                                            (13) 
hk(x)<0,k=1,2,…,Nch                                                                        (14) 
Where f(x) are N0 distinct objective functions of the 
decision vector x, and g(x)=0 and h(x)<0 are 
constraints. In most cases, the objective functions of 
the multi-objective optimization problem are in 
conflict with one another, so no objective function 
can be improved upon without worsening at least 
one of the other objective functions. This concept is 
well known as Pareto optimality, or non-inferior 
solutions [13, 14]. 
 
3.1 Definition 
The feasible region, Ω, in the decision vector space 
X is the set of all decision vectors x that satisfy the 
constraints, such that  
Ω =｛x︳g(x) = 0, h(x) < 0｝                               (15) 

The feasible region, Λ, in the objective function 
space F is the mage of f in the feasible region Ω in 
the decision vector space: 
Λ= ｛f︳f = f(x), x∈Ω｝                                     (16) 

 
Fig.6. Global non-inferior solutions of two-

objective optimization problem. 
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    A point  x̂∈Ω  is a local non-inferior point if and 
only if for some neighbourhood of x̂  , there does 
not exist Δx such that  ( )x̂ x+ Δ ∈Ω  
( ) ( )ˆ , 1,2, ,i i of x x f x i N+ Δ ≤ =                           (17) 

( ) ( ) { }ˆ , 1,2, ,i i of x x f x for some j N+ Δ < ∈      (18) 
A point  x̂∈Ω  is a local non-inferior point if 

there no other point x ∈Ω exists such that  
( ) ( )ˆ , 1,2, ,i i of x f x i N≤ =                                  (19) 

( ) ( ) { }ˆ , 1,2, ,i i of x f x for some j N< ∈              (20) 
Restated, x̂  is a local non-inferior point in a 

neighbourhood ( )ˆ,N x ε , such   that for any other 

point ( )ˆ ˆ,x N x ε∈  at least one component to f 

exceeds its value at ( ) ( )ˆi if x f x= , i=1,2,…N0. A 
global non-inferior solution of the multi-objective 
problem is one for which any improvement of one 
for which any improvement of one objective 
function can be achieved only at the expense of at 
least one of the other objectives. In multi-objective 
optimization, as opposed to single-objective 
optimization, an unambiguous optimal solution may 
not exist. Characteristic of multi-objective 
optimization problem is a very large set of 
acceptable solutions that are superior to the tested 
solutions in search space when all objectives are 
considered. They are simultaneously not optimal 
with respect to any single objective. These solutions 
are known as the non-inferior solutions. The rest of 
the solutions are referred to as inferior solutions. 
Figure 6 plots the global non-inferior solutions for a 
two-objective optimization problem. None of the 
solutions in a non-inferior set is absolutely better 
than any other, so any one of them is acceptable. 
The choice of one particular solution depends on the 
features of the problem and a number of related 
factors.  

The notion of non-inferiority is only the first 
step toward solving a multi-objective problem. 
Compromise programming is also necessary to find 
non-inferior alternatives. Compromise programming 
has been described elsewhere [11, 15]. This study 
presents a two-stage immune algorithm embedded 
the compromise program to solve multi-objective 
problems. 

 
Fig. 7.  Decision region on a  two-objective space. 

 
Stage 1: Build decision region 

Firstly, the multi-objective optimization 
problem is transformed to a single objective 
optimization problem by selecting the kth objective 
as the primary objective function in turns 
k=1,2,…N0 and converting the other objectives to 
constraints with individual maximum allowable 
values îf  where i = 1,2,…,N0 and i≠k. Then, the 
resulting single-objective optimization problem is 
solved as follows. 
Min fi (x)                                                               (21) 
Such that 
( ) ˆ , 1, 2, ,i i of x f i N and i k≤ = ≠                  (22) 

x ∈Ω                                                                     (23) 
g (x) =0                                                                  (24) 
h (x)≦0                                                                 (25) 
In solving the above single objective optimization 
problem by turns k =1,2,…,N0,                        

kf  = )(xfk , k = 1,2,…, No                                                        (26)  
where kf  represents the ideal value of the single 
objective k and if  denotes the worst value of the 
objective i .For illustration, Fig. 7 explains the 
decision region in a two-objective space. The 
decision region is bounded by the ideal and worst 
values of each objective. Fig. 7 demonstrates that no 
optimal solution exists in areas 1 and 2. Areas 3 and 
4 have worse solutions. Area 5 is the only decision 
region in which non-inferior solutions can be found 
in the second stage. In general, for multi-objective 
problems, a solution x̂  such that f = )ˆ(xfk  does not 
exist for all k∈ 1,2,…,N0｝ . Restated, the ideal 
values (unattainable best solutions) are used to 
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determine the search direction for solving a multi-
objective problem, and the hypothetical worst 
values are treated as the bottom boundary of the 
solution space. Notably, the decision region is not 
bound by constraints but has reasonable limits. 
Stage 2: Search for the set of the non-dominant 
solutions. 

In this stage, the non-inferior set for all 
objectives is obtained by compromise programming. 
Compromise programming finds the best 
compromise with respect to all the objectives by 
computing a normalized Euclidean distance measure.  

∑
−
−

=
=

oN

i ii

ii
ff

fxf
D

1

)(

                                                
(27) 

This normalized Euclidean distance is used to 
evaluate how close the computed non-inferior 
solution is to the Pareto front. A smaller D indicates 
the current computed non-inferior solution is closer 
to the Pareto front. For a multi-objective problem, 
the ideal value of each objective   (from stage 1) and 
the maximum allowable value of each individual 
objective kf  where i and k = 1,2,…,N0, can be used 
to express the overall multi-objective minimizing 
objective minimizing objective function, as follows. 

Min ∑
−
−

=
=

oN

i ii

ii
ff

fxf
D

1

)(

                                        
(28) 

 
 
4 Solution Algorithm for Optimal 
Placement Of Capacitor 

This section presents an efficient two-staged 
algorithm to achieve the best compromise among 
these conflicting objectives and thus solve the multi-
objective capacitor placement problem. The first 
stage of the solution algorithm to find the decision 
region that is bounded by the ideal and worst 
solutions of the individual objective function. The 
second stage utilizes the compromise programming 
embedded in the immune algorithm to search for the 
trade-off solutions (non-inferior solutions). The 
pseudo code of the two-staged immune algorithm is 
described below. 
 
4.1 Stage 1  

1. Input system data and control parameters. 
2. Let the number of antigens be the number of 

objectives (such that each antigen corresponds to an 
individual objective). 

For objective=1,2,…,N0, do step 3-12, 
otherwise, proceed to step 13. 

3. Randomly generate the initial antibodies  

4. Call late the affinity ( )g i
A  between the 

antigen and the antibody using Eq. (9). 
/ * herein, only the affinity between the antigen 

and its corresponding antibodies is calculated. * / 
5. Determine the concentration cv of each 

antibody in the repertoire, according to Eq. (10) 
6. If cv exceeds a threshold δc, then this antibody 

becomes a memory antibody, proceed to the next 
step, else, proceed to step 10. 

7. Select the best antibody with the maximum 
affinity for each antigen. 

8. Calculate the affinity ( )b vw
A  between 

antibody v and the best antibody w using Eq. (8). 
9. If these affinities ( )b vw

A  are greater than a 

preset value δa , then record the optimal if  of the 
current generation and then proceed to step 12, 
otherwise proceed to the next step. 

10. Suppress the antibodies with low 
concentrations (affinity). 

11. Reproduce the antibodies by applying 
Abi,new =(x kmax - x kmin) × d + x kmin                          (29) 
Where xkmax and xkmin are the maximum and 
minimum value of the antibody respectively, and d 
is a random value between 0 and 1. 

12. If a given number of generations is reached, 
then go to the next step; otherwise, proceed to step4. 

13. Output the optimal solution if  of the 
individual objective for i = 1, 2,--N0. 

/ * Outputs from the first stage include the 
unattainable best solutions of the individual 
objective if  and the hypothetical worst solution kf  
of the individual objective k 
(and k≠i), where theses outputs serve as the 
boundaries of the decision region, which is searched 
to find the global set of non-inferior solutions in the 
next stage.*/ 
 
4.2 Stage 2 

If the stop criterion is not met, perform steps 14 
and 15; otherwise, proceed to step 16 

14. Apply immune algorithm (as in stage 1, so a 
detailed description is not presented again here) to 
minimum the Euclidean distance, as described in Eq.   

15. Check stop criterion: If over five 
consecutive generations, the sampled mean cost 
function does not change noticeably, or the number 
of generations reaches a preset value, and then stop 
the compromise programming. 

16. Output the optimal non-inferior solutions. 
 
2.1 Subsection 
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When including a subsection you must use, for its 
heading, small letters, 12pt, left justified, bold, 
Times New Roman as here.  
 
2.1.1 Sub-subsection  
When including a sub-subsection you must use, for 
its heading, small letters, 11pt, left justified, bold, 
Times New Roman as here. 
 
 
5 Simulation Results 
The presented solution algorithm was implemented 
and tested using Matlab [17]. The testing system 
includes seven branches and 69 buses, as presented 
in [6]. Table 1 lists the parameters of the objective 
functions, used to calculate the cost of the capacitors 
and the power loss. The unit of one capacitor bank 
is 300 Kvar at a cost of NT$61,900/bank. The 
presented method outputs five non-inferior solutions 
(options) with different features, one of which is to 
be selected by the decision-makers. Tables 2,3 and 4 
compare the results with those in [6] and[18], in 
terms of the capacitor to be installed. 

Multi-objective optimization is of increasing 
importance in various fields, and has a diverse range 
of applications. Highly effective and efficient multi-
objective algorithms can promote the real power 
loss with and without compensation, and the cost of 
construction and power loss. The total costs of 
options 1,2 and4 are lower than those in [6] and [18], 
and the costs of options 3and5 are similar to those of 
[6] and [18]. Table 5 displays the maximum and 
minimum bus voltage before and after the capacitors 
are installed. Table 6 compares the results with 
those in [6] and [18], in terms of loading margin 
under various loads. Tables 5 and 6 demonstrate that 
the deviations of bus voltage and loading margin are 
similar. 
 
 
6 Conclusion 
 

In summary, the non-inferior solutions obtained 
using the presented method, in terms of voltage 
deviation, power loss, cost and loading margin, are 
better than (or similar to ) those obtained using the 
methods of [6] and [18]. The simulation results 
reveal that the capacitor placement algorithm 
presented herein has the following merits. 

(1) Allows the decision maker to obtain a set of 
optimal non-inferior solutions (multiple options) 
rather than single solution. 

(2) Identifies plans for multi-object problems. 

(3) Can be applied to large-scale distribution 
systems. 

(4) Considers a more realistic problem 
formulation. 

This work proposes the two-stage immune 
algorithm, embedding compromise programming, 
for solving the multi-objective capacitor placement 
problem. The concept of the non-inferior set is 
applied herein to obtain the set of optimal 
compromise solutions from which the decision 
maker can choose one. The simulation results 
indicate that the advantage of using the proposed 
technique is that it can find the best compromised 
solutions in a single run. 
 
Please, follow our instructions faithfully, otherwise 
you have to resubmit your full paper. This will 
enable us to maintain uniformity in the journal. 
Thank you for your cooperation and contribution.  
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Table.1 
Energy Cost under Various Loads. 

Load levels Time interval 
(Hours) 

Cost 
(NT$/kvar) 

Peak-load(1.0) 
Medium-load(0.8) 

Light-load(0.5) 

1000 
6760 
1000 

0.68 
1.80 
2.85 

 
Table 2 

Capacitors (Kvar) To Be Installed 
 Methods 

NO.of BUS The proposed method Hung Chiang 
19 300 1200 300 600 300 600 300 
50 300 900 600 900 300 300 1200 
53 1200 600 600 600 600 300 0 

Total_kvar 1800 2700 1500 2100 1200 1200 1500 
 

Table 3 
The Result of the Real Power Loss (Kw) With And 

Without Installing Capacitors 
Load 
level 

Without 
Compensation 

With compensation 
The proposed method Huang Chiang 

Light 538 393 457 347 401 337 347 345 
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Medium 1,715 1,019 995 1,042 994 1,116 1,186 1,040 
Peak 3,190 1,865 1,752 1,965 1,806 2,134 2,276 1,964 

Total_loss 5,443 3,204 3,204 3,354 3,201 3,587 3,809 3,349 
 

Table 4 
Cost of Real Power Loss and Capacitors 

Voltage 
(pu) 

With 
compensation 

With compensation 
The proposed method Huang Chiang 

Power 
loss 

24,577,362 14,782,935 14,598,169 15,000,331 14,459,379 15997,953 16,972,622 14,977,768

Capacitor 0 371,400 557,100 309,500 433,300 247,600 247,600 309,500 
Total_cost 24,577,362 15,154,335 15,309,831 15,309,831 14,892,679 16,245,553 17,220,222 15,287,268

Table 5 
Maximum and Minimum Voltages of the Testing System Before and After Capacitors Are Installed 

Voltage 
(pu) 

With 
compensation 

With compensation 
The proposed method Huang Chiang

Maximum 1 1 1 1 1 1 1 1 
Minimum 0.9092 0.937 0.9388 0.9317 0.9371 0.9271 0.9224 0.9298 

 
Table 6 

Comparison of Load Margins with and Without Installed Capacitors 
Load 

margin 
(pu) 

With 
compensation 

With compensation 
The proposed method Huang Chiang 

light 0.0992 0.2044 0.224 0.0673 0.0964 0.0673 0.0677 0.1568 
medium 0.2689 0.201 0.2295 0.173 0.1752 0.2018 0.2034 0.2123 

Peak 0.4378 0.3364 0.2732 0.2923 0.2742 0.3427 0.3455 0.2948 
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