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Abstract: Industrial motors are subject to various faults which, if unnoticed, can lead to motor failure. The 
necessity of incipient fault detection can be justified by safety and economical reasons. The technology of 
artificial neural networks has been successfully used to solve the motor fault detection problem. This paper 
develops inexpensive, reliable, and noninvasive NN based fault detection scheme for small and medium sized 
induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component 
Analysis for dimensionality reduction is proposed. Overall thirteen statistical parameters are used as feature 
space to achieve the desired classification. Generalized Feed Forward (GFFDNN) and Support Vector Machine 
(SVM) NN models are designed and verified for optimal performance in fault identification on experimental 
data set of custom designed 2 HP, three phase 50 Hz induction motor. 
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1 Introduction 

Induction machines play a crucial role in certain 
industries, such as manufacture, transportation, etc. 
They offer the core capabilities for industrial 
success and the maintenance of them is essential and 
profitable to most electrical industrial processes. A 
lack of coherent maintenance strategy may lead to  
the loss of individual items of a plant, and a heavy 
capitalized losses burden. As it is not economical to 
introduce redundant backup machines, online 
monitoring for induction machines is important for 
safe operation and production quality. In order to 
keep machines in good condition, techniques such 
as fault monitoring, detection, classification, and 
diagnosis have become increasingly essential [1]–
[3].There are invasive and noninvasive methods for 
machine fault detection [4], [5], [7] The noninvasive 
methods are more preferable than the invasive 
methods because they are based on easily accessible 
and inexpensive measurements to diagnose the 
machine conditions without disintegrating the 
machine structure. Recently, artificial intelligence 
(AI) techniques have been proposed for the 
noninvasive machine fault detection [4], [6], [8]. 

They have several advantages over the traditional 
model-based techniques [6], [9]. They require no 
detailed analysis of the different kinds of faults or 
modeling of the system. These AI-based techniques 
include expert systems, neural network, and fuzzy 
logic. An expert system is able to manage 
knowledge-based production rules that model the 
physical system [11], [12]. Neural network 
approaches can be considered as “black-box” 
methods as they do not provide heuristic reasoning 
about the fault detection process [4], [5] , [10]. 
Fuzzy logic systems can heuristically implement 
fault detection principles and heuristically interpret 
and analyze their results [13], [14], [15]. In this 
paper, neural network type approach is used because 
generalized feed forward neural network 
(GFFDNN) is able to provide an accurate fault 
diagnostic classification.  
2 Feature Extraction 

The main problems facing the use of ANN are the 
selection of the best inputs and how to choose the 
ANN parameters making the structure compact, and 
creating highly accurate networks. For the proposed 
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system, the feature selection is also an important 
process since there are many features after feature 
extraction. Many input features need significant 
computational efforts to calculate, and may result in 
a low success rate. In order to collect data at 
different conditions i.e. healthy condition, under 
inter turn fault, Eccentricity and both i.e .inter turn 
and Eccentricity specially designed 2 HP, 4 pole, 
415V, 50 Hz ,three phase induction motor is used. 
Three AC current probes were used to measure the 
stator current signals. From the time waveforms, as 
shown in Fig.1. no conspicuous difference  exists 
among the different conditions.  

 
Fig.1.Experimental waveform for current of phase A for 

various conditions 
There is a need to come up with a feature 

extraction method to classify faults. To classify the 
different faults the statistical parameters are used.  
To be precise, ‘sample’ statistics will be calculated 
for current data. Overall thirteen parameters are 
calculated as input feature space. Minimum set of 
statistic to be examined includes the root mean 
square (RMS) of the zero mean signal (which is the 
standard deviation), the maximum, and minimum 
values the skewness coefficient and kurtosis 
coefficient.Pearson's coefficient of skewness, 2g  
defined by:  
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Where x  denotes mean, %x  denotes median and xS  
denotes the sample standard deviation. The sample 
coefficient of variation xv  is defined by;  

    x
x

S
v

x
=     (2) 

The rth sample moment about the sample mean for a 
data set is given by;  
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m2 denotes to spread about the center, m3 refers to 
skewness about the center; m4 denotes to how much 
data is massed at the center. Second, third and 

fourth moments are used to define the sample 
coefficient of skewness, 3g  and the sample 

coefficient of kurtosis, 4g as follows.  
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The sample covariance between dimensions j and 
k is defined as;  
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The ordinary correlation coefficient for dimensions j 
and k , rjk is defined as;  
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3 Generalized Feed Forward NN 
Generalized feed forward network is a 

generalization of the MLP such that connections can 
jump over one or more layers. In this network it is 
allowed to cross the hidden layer, i.e. output layer 
will get the input from the hidden layer and directly 
from input layer also. 

Generalized feed forward Neural Network is 
proposed as fault classifier. Number of input 
Processing Elements (PE) must be equal to that of 
number of input statistical parameters so 13 input 
Processing Elements are used in input layer. Four 
Processing Elements are used in output layer for 
four conditions of motor namely Healthy, Inter turn 
fault, Eccentricity and Both faults. For data 
processing MATLAB7.1, Neuro Solution 5.0 and 
XLSTAT is used. General learning algorithm used 
is as follows: 
Initialization of Weights: 
Step 1: Initialize the weights to small random values 
Step 2: While stopping condition is false, do step 3-
10 
Step 3: For each training pair do steps 4-9 
Feed forward: 
Step 4: Each input unit receives the input signal xi 

and transmits this signals to all units in the hidden 
layer 
Step 5: Each hidden unit ( jz   ,j=1,…,p) sums its 
weighted input signals  
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Applying the activation function Zj = f(zinj) here the 
activation function is 
tanh( ) ( ) / ( )x x x xx e e e e− −= − +  and sends this 
signal to all units in output units. 
Step 6: Each output unit ( ky , k=1,…,m) sums its 
weighted input signals , 
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And applies its activation function to calculate the 

output signals ( )k inkY f y−=   here the activation 
function is 

tanh( ) ( ) / ( )x x x xx e e e e− −= − +      (10) 
Back Propagation Error: 
Step 7: Each output unit ( ky , k=1,…,m) receives a 
target pattern corresponding to an input pattern error 
information term is calculated as 

 ( ) ( )k k k inkt y f yδ −= −          (11) 

Step 8: Each hidden unit ( jz ,j=1,…,p) sums its 
delta inputs from units in the layer above 
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The error information term is calculated as 

  ( )j inj injf zδ δ− −=             (13) 

Updation of weight and Biases:  
Step 9: Each output unit (yk, k=1,…,m) updates its 
bias and weights (j=0,…,p) 
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Where α  is learning rate and µ  is momentum 
factor 
And each hidden unit ( jz , j=1,…,p) updates its bias 
and weights (i=0,…,n) 

( )1 ( ) ( ) ( 1)jk j i ij ijv t v t x v t v tαδ µ  + = + + − −  (15) 

Step 10: Test the stopping condition 
Selection of Error criterion:  

Supervised learning requires a metric, a measure 
of how the network is doing. Members of the Error 
Criteria family monitor the output of a network, 
compare it with some desired response and report 
any error to the appropriate learning procedure. In 
gradient descent learning, the metric is determined 
by calculating the sensitivity that a cost function has 

with respect to the network's output. This cost 
function, J, is normally positive, but should decay 
towards zero as the network approaches the desired 
response. The literature has presented several cost 
functions, in which p is to be define such as p=1, 2, 
3, 4… 8  criterion is L1, L2, L3, L4 …L8  

Components in the ErrorCriteria family are 
defined by a cost function of the form: 
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and error function: 
                 ( ) ( ( ) ( ) )i i ie t d t y t= −             (17) 
 Where d(t) and y(t) are the desired response and 
network's output, respectively. To select the correct 
error criterion various error criterion has been tested 
and results are shown in Fig. 2, Fig.3 and Fig. 4. 

 
Fig.2 Variation of Average Minimum MSE with Error Criterion 

 
Fig.3 Variation of Average Classification Accuracy with Error 

Criterion 
 

 
Y: Error Criterion  X: No. of Epochs 

Fig.4 Variation of Average MSE with Error Criterion 

For selection of hidden layer PEs randomize data is 
fed to the neural network and is retrained five times 
with different random weight initialization. It is 
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observed that network with single hidden layer and 
5 PEs in hidden layer gives the better results as 
shown in Fig.5(a) and Fig.5(b). 

 
Y: Number of PEs in Hidden Layer X: No. of Epochs 

Fig.5 (a) Variation of Average MSE with Number of PEs in 
Hidden Layer 

 
Fig.5 (b) Variation of Average Minimum MSE with Number of 

PEs in Hidden Layer 
Various transfer functions and learning rules namely 
Momentum (MOM), Conjugate-Gradient (CG), 
Quick Propagation (QP), Delta Bar Delta (DBD), 
Levenberg-Marquardt (LM) and Step (STP) are 
verified for training and testing the network. 
Average minimum MSE on training and CV data 
and classification accuracy on testing, CV and 
training data is compared in Table 1 and Table 2 
(Appendix)  

The parameters of the hidden layer and output 
layer i.e. step size and momentum are selected by 
comparing average minimum MSE. In Hidden layer 
optimum value of Step size is 0.13 and momentum 
is 0.6 and for output layer Step size is 0.05 and 
momentum is 0.08. Performance is shown in Fig.6,  
Fig. 7 and 
Fig.8.

 
Fig.6  Variation of Average Minimum MSE with Step size in 

Hidden Layer 

 
Fig.7  Variation of Average Minimum MSE with Momentum 

rate  in Hidden Layer 

 
Fig.8 Variation of Average Minimum MSE with Step size and 

Momentum rate in output Layer 
From above experimentation, selected parameters 
for GFFD-NN are given below. 
GFFD- NN (13-5-4), Number of epochs = 5000, 
Exemplars for training = 70%, 
Exemplars for cross validation = 15%,  
Exemplars for Testing = 15% 
Number of Hidden Layers:  01 

T.F.: Tanh      Learning Rule: Momentum 
Step size: 0.13   Momentum: 0.6  

Output Layer:  
T.F.: Tanh      Learning Rule: Momentum 
Step size: 0.05   Momentum: 0.08  

Number of connection weights: 146 
Time Elapsed per epoch per exemplar: 1.001 msec. 

Different datasets are formed using variable split 
ratios and leave-N-out cross validation technique. 
Proposed NN is trained and tested five times on 
various datasets and later validated carefully so as to 
ensure that its performance does not depend on 
specific data partitioning scheme. The performance 
of the NN should be consistently optimal over all 
the datasets with respect to MSE and classification 
accuracy. To check the learning ability and 
classification accuracy the total data is divided in 
four groups. First two groups (50% data) are tagged 
as Training data and third and forth group (each 
25%) is tagged for Cross Validation and Testing 
(1234:1,2-TR, 3-CV, 4-Test). Similar 18 
combinations are prepared and network is train and 
test for each group. Results are shown in Fig.9 to 
Fig.12.  
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Fig. 9 Variation of average Minimum MSE with Test on 
Testing and Training dataset and percent data tagged for 

training 

 
Fig.10 Variation of average Classification Accuracy with testing 

on Testing and Training dataset and percent data tagged for 
training 

 
Fig. 11  Variation of average MSE with Test on Testing, CV 

and Training dataset with CV rows shifted (n) 

 
Fig. 12 Variation of average Minimum MSE with Training and 

CV with group of Dataset 

4 Support Vector Machine 
The support vector machine (SVM) in is a new 

kind of classifier that is motivated by two concepts. 
First, transforming data into a high-dimensional 
space can transform complex problems (with 
complex decision surfaces) into simpler problems 
that can use linear discriminant functions. Second, 
SVMs are motivated by the concept of training and 
using only those inputs that are near the decision 

surface since they provide the most information 
about the classification.  

It is a kind of learning machine based on 
statistical learning theory. The basic idea of 
applying SVM to pattern classification can be stated 
as follows: first map the input vectors into one 
features space, possible in higher space, either 
linearly or nonlinearly, which is relevant with the 
kernel function. Then, within the feature space from 
the first step, seek an optimized linear division, that 
is, construct a hyperplane which separates two 
classes. It can be extended to multi-class. SVMs 
training always seek a global optimized solution and 
avoid over fitting, so it has ability to deal with a 
large number of feature.  
Kernel Adatron algorithm:  

For N dimensional space data ( 1... )=ix i N  this 
algorithm can be easily extended to network by 
substituting the inner product of patterns in the input 
space by the kernel function, leading to the 
following quadratic optimization problem: 

2

1 1 1

1
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where G(x, s²) represents a Gaussian function, N is 
the number of samples, ai are a set of multipliers 
(one for each sample), 

          2
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and  
min ( )= i

i
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and choose a common starting multiplier iα , 
learning rate ?, and a small threshold. Then, while 
M > t, we choose a pattern ix  and calculate an 
update (1 ( ))∆ = −i ig xα η  and perform the update 
If ( ) 0+ ∆ >i inα α  

( 1) ( ) ( )+ = + ∆i i in n nα α α   
( 1) ( )+ = + ∆i ib n b n d α            (20) 

And if ( ) 0+ ∆ ≤i inα α  
( 1) ( )+ =i in nα α   

( 1) ( )+ =b n b n              (21) 
After adaptation only some of the iα are different 
from zero (called the support vectors). They 
correspond to the samples that are closest to the 
boundary between classes. This algorithm can be 
considered the "on-line" version of the quadratic 
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optimization approach utilized for SVMs, and it can 
find the same solutions as Vapnik's original 
algorithm for SVMs.  It is easy to implement the 
kernel Adatron algorithm since ( )ig x can be 
computed locally to each multiplier, provided that 
the desired response is available in the input file. In 
fact, the expression for ( )ig x resembles the 
multiplication of an error with an activation, so it 
can be included in the framework of neural network 
learning. The Adatron algorithm essentially prunes 
the RBF network so that its output for testing is 
given by, 

     2( ) sgn( ( ,2 ) )
∈

= − −∑
N

i i i i
i spport

vectors

f x d G x x bα σ      (22) 

And cost function in error criterion is  

2

1

1
( ) ( ( ) (tanh( ( )))

2 i i
i

J t d t y t
=

= −∑            (23) 

For selection of step size randomize data is fed to 
the neural network and is retrained five times with 
different random weight initialization. It is observed 
that 0.8 step size gives the optimal result. 
Number of connection weights: 472 
Time Elapsed per epoch per exemplar: 0.934 ms 

 
Fig.13 Variation of Average Minimum MSE with Step size 

 
Y: Step Size  X: No. of Epochs 
Fig.14 Variation of Average MSE with Step size 

Using the similar datasets SVM classifier is tested 
retaining five times and results are shown in Fig.15 
to Fig.18 

 
Fig. 15 Variation of average Minimum MSE with Test on 
Testing and Training dataset and percent data tagged for 

training 

 
Fig.16 Variation of average Classification Accuracy with testing 

on Testing and Training dataset and percent data tagged for 
training 

 
Fig. 17 Variation of average MSE with Test on Testing, CV and 

Training dataset with CV rows shifted (n) 

 
Fig. 18 Variation of average Minimum MSE with Training and 

CV with group of Dataset  
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5 Dimensionality Reduction Using 
Principal Component Analysis 

One problem appears after the feature extraction. 
There are too many input features that would require 
a significant computational efforts to calculate, and 
may result in low accuracy of the monitoring and 
fault diagnosis. The potential improvements which 
can be achieved by first mapping the data into a 
space of lower dimensionality. Reduction in 
dimensionality of the input space and hence the 
network can be achieved by Principal Component 
Analysis (PCA). PCA is performed by Pearson rule. 
The Fig.12 is related to a mathematical object, the 
eigenvalues, which reflect the quality of the 
projection from the 13-dimensional to a lower 
number of dimensions. 

 
Fig.19 Principal Component, Eigenvalues and percent 

variability. 
Using the results of Princ ipal Component 

Analysis, dimensions of GFFD-NN can be reduced. 
Number of inputs are reduced to five. By similar 
experimentations, the optimum GFFD-NN classifier 
is designed with the following changes; 
Number of Inputs = 5, Number of PEs in Hidden 
Layer = 5, Number of epochs = 5000, Exemplars for 
training = 70%,  
Exemplars for cross validation = 15%,  
Exemplars for Testing = 15%,  
Number of Hidden Layers:  01 
 T.F.: Tanh     Learning Rule: Momentum 

Step size: 0.09   Momentum: 0.6  
Output Layer:  

T.F.: Tanh     Learning Rule: Momentum 
Step size: 0.05   Momentum: 0.08  

Number of connection weights: 74 
Time Elapsed per epoch per exemplar: 0.786 ms 
Training and testing results for new model is as 
shown in Fig.20 to Fig.25 

 
Y: No. of PCs  X: No. of Epochs 

Fig. 20  Variation of Average MSE of training and CV on 
number of PCs as inputs 

 
Fig. 21  Variation of Average minimum MSE of training and 

CV on number of PCs as inputs. 

 
Fig.22 Variation of average classification accuracy of Test, CV 

and TR data on number of PCs as inputs 

 
Y: Number of PEs in Hidden Layer X: No. of Epochs 
Fig.23 Variation of Average MSE with Number of PEs in 

Hidden Layer 

 
Fig. 24  Variation of average MSE with Test on Testing, CV 

and Training dataset with CV rows shifted (n) 
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Fig. 25  Variation of average Minimum MSE with Training and 

CV with group of Dataset 

Using the results of PCA, dimensions of the 
support vector machine classifier are also reduced. It 
is found that number of inputs, reduced to five and 
step size of 0.7 gives the optimal results.  
Number of connection weights: 264 
Time Elapsed per epoch per exemplar: 0.693 ms 

  Variation of average minimum MSE and 
average classification accuracy with number of PCs 
as input is shown in Fig. 26 and Fig.27. and training 
and testing results are shown in Fig.28 and Fig.29. 

 
Y: No. of PCs  X: No. of Epochs 

Fig. 26  Variation of Average MSE of training and CV on 
number of PCs as inputs 

 
Fig. 27  Variation of average Minimum MSE and average 

classification accuracy with number of PCAs as input 

 
Fig. 28  Variation of average MSE with Test on Testing, CV 

and Training dataset with CV rows shifted (n) 

 
Fig. 29  Variation of average Minimum MSE with Training and 

CV with group of Dataset 

6 Robustness of Classifier to Noise 

Since the proposed classifier is to be used in 
real time, where measurement noise is 
anticipated, it is necessary to check the 
robustness of classifier to noise. To check the 
robustness Uniform and Gaussian noise with 
mean value zero and variance varies from 1 to 
20 % is introduced in input and output and 
average classification accuracy on testing data 
i.e. unseen data is checked. It is observed that in 
GFFDNN, average classification accuracy is 
not affected by both noise in input and output 
and in SVM classification accuracy is 
consistent with noise of variance up to 15%.  
Comparative results are shown in Table 3. 
7 Results and Discussion 

In this paper, the authors evaluated the 
performance of the developed GFFD NN and 
Support Vector Machine (SVM) based classifier for 
detection of four conditions of three phase induction 
motor and examined the results. After completion of 
the training, the learned network is able to detect 
different types of faults. For GFFDNN various 
learning rules and transfer functions are investigated 
for different number of hidden layers and processing 
elements in hidden layer. It is observed that 
Momentum learning rule and Tanh transfer function 
gives the optimal results in hidden and output layer. 
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By varying the step size optimum results are 
obtained in SVM classifier.  By performing 
Principal Component Analysis, number of inputs are 
reduced from 13 to 5 and thus significant reduction 
in dimension is achieved. From the analysis, it is 
seen that dimensionally reduced  support vector 
machine( SVM-DR) based classifier works as an 
elegant classifier for fault diagnosis of three phase 
induction motor, in the sense that, average MSE on 
testing and cross validation samples is consistently 
observed as reasonably low such as 0.0591 and 
0.0619, respectively. In addition, average 
classification accuracy on testing as well as cross 
validation instances is obtained as 99.61% and 
98.72%, respectively indicating a reasonable 
classification. Also proposed classifier is enough 
robust to the noise, in the sense that classifier gives 
consistent results for Uniform and Gaussian noise 
with 12% variance in input and with 20% variance 
in output. Comparative results are shown in Table 4. 
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APPENDIX 

Table 1 
VARIATION OF AVERAGE MINIMUM MSE AND AVERAGE CLASSIFICATION 

ACCURACY WITH TRANSFER FUNCTIONS 

TF 

Average Minimum MSE on 
Average 

Classification 
Accuracy 

Training CV 
Test CV TR 

Max. Min. Avg. SD Max. Min. Avg. SD 

Tanh 0.0024 0.0016 0.0021 0.0003 0.1997 0.1148 0.1708 0.0345 100 100 100 

L-Tanh 0.0645 0.0035 0.0158 0.0273 0.2742 0.0304 0.1506 0.0877 75 100 75 

L-sig 0.3731 0.3548 0.3668 0.0084 0.3734 0.352 0.3626 0.0084 75 66.7 65.6 

Sig  0.3569 0.3557 0.3564 0.0005 0.3659 0.3609 0.3645 0.0021 50 66.7 52.2 
Lin  0.405 0.3897 0.3979 0.0059 0.4103 0.3946 0.403 0.0057 50 0 45.5 

BAX 0.2985 0.2985 0.2985 0 0.3035 0.3035 0.3035 0 21.88 50 21.9 
AX 0.1248 0.1222 0.1233 0.001 0.4304 0.2804 0.3524 0.0649 50 83.3 46.4 
Soft 0.0184 0.0144 0.0158 0.0017 0.0484 0.0429 0.0449 0.0021 100 83.3 86.2 

Tanh : hyperbolic tan   L-Tanh : Linear hyperbolic tan  L-sig : Linear Sigmoid  Lin : Linear 

Sig: Sigmoid   BAX : Biased Axon  AX : Axon  Soft: Softmax.  

 

Table 2 
VARIATION OF AVERAGE MINIMUM MSE AND AVERAGE CLASSIFICATION 

ACCURACY WITH TRANSFER FUNCTIONS 

TF 

Average Minimum MSE on 
Average 

Classification 
Accuracy 

Training CV 
Test CV TR 

Max. Min. Avg. SD Max. Min. Avg. SD 

Moment 0.0024 0.0016 0.0021 0.0003 0.1997 0.1148 0.1708 0.0345 100 100 100 

DBD 0.016 0.0109 0.0132 0.0019 0.0128 0.0028 0.0057 0.0041 50 100 64.3 

QP 0.0026 0.0025 0.0026 8E-05 0.2124 0.1536 0.1828 0.0216 100 83.3 100 

CG 0.0294 0.0025 0.0086 0.0116 0.3015 0.1246 0.1666 0.0756 100 83.3 100 

Step 0.0037 0.0026 0.0029 0.0004 0.1657 0.1356 0.15 0.011 100 83.3 100 

LM 0.0085 0.006 0.0075 0.001 0.1827 0.129 0.1571 0.0224 75 100 75 

DBD: Delta Bar Delta     QP: Quick Propagation 

CG: Conjugate-Gradient   LM: Levenberg-Marquardt 
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Table 3 
EFFECT OF NOISE ON AVERAGE CLASSIFICATION ACCURACY WHEN CLASSIFIER 

TESTED ON TESTING DATA 

NN-Model GFFDNN GFFDNN-DR SVM  SVM-DR 

Noise in  Input Output Input Output Input Output Input Output 

Type of Noise G U G U G U G U G U G U G U G U 

% Variance Average Classification Accuracy on Testing on Testing Data i.e. unseen Data 

1 75 100 100 50 100 100 100 100 100 100 100 100 100 100 100 100 

2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 66.7 100 

4 100 100 100 75 100 100 100 100 100 100 100 100 66.7 100 100 100 

5 100 100 50 100 100 75 100 100 100 100 100 100 66.7 66.7 100 100 

6 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 

7 100 100 100 100 100 100 100 100 100 100 100 66.7 100 100 100 100 

8 100 75 100 75 100 100 100 100 100 100 100 100 100 100 100 100 

9 100 87.5 100 75 75 100 100 100 100 100 100 100 100 100 100 100 

10 100 75 100 100 100 75 100 100 100 100 100 100 100 66.7 100 100 

11 100 100 100 75 100 87.5 100 100 100 100 100 100 100 100 100 100 

12 100 100 100 100 100 75 100 100 100 100 100 100 100 100 100 100 

13 100 100 100 100 100 100 100 100 66.7 100 100 100 66.7 66.7 100 100 

14 100 100 75 100 100 100 100 100 66.7 100 100 100 100 100 100 100 

15 100 100 100 100 100 100 100 87.5 66.7 66.7 66.7 100 66.7 66.7 100 100 

16 100 100 100 100 87.5 75 100 100 66.7 66.7 33.3 100 66.7 66.7 100 100 

17 100 100 100 100 75 100 100 87.5 66.7 66.7 66.7 100 66.7 66.7 100 66.7 

18 100 100 75 75 100 100 100 100 66.7 100 100 66.7 33.3 33.3 100 100 

19 100 100 75 75 100 100 62.5 87.5 66.7 66.7 100 66.7 100 100 100 66.7 

20 100 87.5 75 100 100 100 100 100 66.7 66.7 100 66.7 33.3 33.3 100 100 
 

U: Uniform Noise  

G: Gaussian Noise 
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Table 4 
COMPARATIVE RESULTS 

N
-N

 
M

od
el

 

Performanc
e 

Testing on Test Data Testing on CV Data 

T W % W 
Max. 

Observed 
Min. 

Observed 
Average SD 

Max. 
Observed 

Min. 
Observed 

Average SD 

G
FF

D
N

N
 

13
-5

-4
 MSE 0.2435 0.00135 0.05273 0.072 0.16856 0.00133 0.03480 0.048 

1.011 146 

49.3 

Percent 
Correctness 

100 75 94.79 9.216 100 83.33 95.42 7.251 

G
FF

D
N

N
 

5-
5-

4 

MSE 0.28437 0.00022 0.05653 0.077 0.21960 0.00020 0.04624 0.062 

0.786 74 Percent 
Correctness 

100 75 98.5 5.997 100 80 95.04 7.701 

SV
M

 MSE 0.84364 0.00529 0.04527 0.120 0.28433 0.01047 0.06055 0.068 
0.937 472 

44.06 

Percent 
Correctness 

100 83.33 97.41 5.249 100 66.67 97.56 6.842 

SV
M

 
D

R
 MSE 0.09926 0.05086 0.05915 0.011 0.094134 0.05454 0.06192 0.007 

0.693 264 Percent 
Correctness 

100 88.88 99.611 1.944 100 88.88 98.722 3.514 

T - Time Elapsed per epoch per exemplar for training in ms. 

W  – Number of weight connections.  

%W  – Percent number of weight connections reduced. 
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Table 5 
SAMPLE RESULTS OF NETWORK FOR EACH FAULT 

N
-N

 
M

od
el

 

Performance HLTY BOTH INT ECE Overall 
G

FF
D

N
N

 
(1

3-
5-

4)
 MSE 0.0072 0.0023 0.0160 0.0109 0.0091 

Percent 
Correctness 

100 100 100 100 100 

G
FF

D
N

N
 

D
R 

(5
-5

-4
) MSE 0.0009 0.0719 0.0024 0.0243 0.0249 

Percent 
Correctness 100 100 100 100 100 

SV
M

 
 

MSE 0.0001 0.0003 0.0002 0.0006 0.0003 

Percent 
Correctness 

100 100 100 100 100 

SV
M

 
D

R 

MSE 0.0036 0.0353 0.0025 0.0294 0.0177 

Percent 
Correctness 

100 100 100 100 100 

 
Table 6 

SAMPLE DESIRED AND ACTUAL OUTPUT OF NETWORK 
Desired Output of Network 

H B I E H B I E 
0 0 0 1 -0.00278 0.009998 -0.01879 1.004026 
0 0 0 1 0.000783 -0.01557 0.00963 0.996425 
0 0 1 0 0.00024 0.00018 1.000255 -0.00071 
0 1 0 0 0.000357 0.999824 0.000434 -0.00062 
0 0 1 0 0.000312 -0.00019 0.999955 -3.1E-05 
0 0 1 0 0.000707 -0.00025 1.000305 -1.2E-05 
0 0 0 1 -0.00139 -0.00034 -0.00027 0.999077 
1 0 0 0 1.009613 0.002908 -0.00255 -0.01547 
0 0 1 0 0.000247 0.001613 0.998812 0.000775 
0 0 1 0 0.000193 -0.00113 1.000305 -0.00061 
0 1 0 0 2.95E-08 0.999843 -5.6E-05 -0.00083 
0 0 0 1 0.001683 -0.00029 -0.00053 1.001546 
0 1 0 0 0.000937 0.997332 0.001464 0.002719 
0 0 1 0 0.000384 -0.00099 1.000301 0.000357 
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