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Abstract: Industriadl motors are subject to various faults which, if unnoticed, can lead to motor failure. The

necessity of incipient fault detection can be justified by safety and economica reasons. The technology of
artificial neural networks has been successfully used to solve the motor fault detection problem. This paper

develops inexpensive, reliable, and noninvasive NN based fault detection scheme for small and medium sized

induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component

Analysis for dimensionality reduction is proposed. Overal thirteen statistical parameters are used as feature

space to achieve the desired classification. Generalized Feed Forward (GFFDNN) and Support Vector Machine

(SVM) NN models are designed and verified for optimal performance in fault identification on experimental

data set of custom designed 2 HP, three phase 50 Hz induction motor.
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1 Introduction

industries, such as manufacture, transportation, etc.
They offer the core capabilities for industria
success and the maintenance of them is essential and
profitable to most electrical industrial processes. A
lack of coherent maintenance strategy may lead to

capitalized losses burden. Asit is not economical to
introduce redundant backup machines, online
monitoring for induction machines is important for
safe operation and production quality. In order to
keep machines in good condition, techniques such
as fault monitoring, detection, classification, and
diagnosis have become increasingly essential [1]—

and inexpensve measurements to diagnose the
machine conditions without disintegrating the
machine structure. Recently, artificia intelligence
(Al) technigues have been proposed for the

They have several_ advantages over the trao_litional
Induction machines play acrucial role in certain modekbased techniques [6], [9]. They require no
detailed analysis of the different kinds of faults or
modeling of the system. These Al-based techniques
include expert systems, neura network, and fuzzy

knowledge-based production rules that model the
the loss of individual items of a plant, and a heavy physical system [11], [12]. Neura network
approaches can be considered as *“black-box”
methods as they do not provide heuristic reasoning
about the fault detection process [4], [5], [10].
Fuzzy logic systems can heuristically implement
fault detection principles and heuristically interpret
and analyze their results [13], [14], [19]. In this
paper, neura network type approach is used because

[3].There are invasive and noninvasive methods for generalized feed forward neura  network
machine fault detection [4], [5], [7] The noninvasive (GFFDNN) is able to provide an accurate fault
methods are more preferable than the invasive diagnostic classification.

methods because they are based on easily accessible 2 FeatureExtraction

The main problems facing the use of ANN are the
selection of the best inputs and how to choose the
ANN parameters making the structure compact, and
creating highly accurate networks. For the proposed

noninvasive machine fault detection [4], [6], [8].
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system, the feature selection is also an important
process since there are many features after feature
extraction. Many input features need significant
computational efforts to calculate, and may result in
a low success rate. In order to collect data at
different conditions i.e. heathy condition, under
inter turn fault, Eccentricity and both i.e .inter turn
and Eccentricity specially designed 2 HP, 4 pole,
415V, 50 Hz three phase induction motor is used.
Three AC current probes were used to measure the
stator current signals. From the time waveforms, as
shown in Fig.l. no conspicuous difference exists
among the different conditions.
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Fg.1.Experimental waveform for current of phase A for
various conditions

There is a need to come up with a feature
extraction method to classify faults. To classify the
different faults the statistical parameters are used.
To be precise, ‘sample’ statistics will be calculated
for current data. Overal thirteen parameters are
caculated as input feature space. Minimum set of
datistic to be examined includes the root mean
square (RMYS) of the zero mean signal (which isthe
standard deviation), the maximum, and minimum
vaues the skewness coefficient and kurtosis

coefficient.Pearson’'s coefficient of skewness, g,
defined by:
3(x- x)

9; = S,
Where X denotes mean, X denotes median and S,
denotes the sample standard deviation. The sample

coefficient of variation v, isdefined by;
v = @

X
The r™ sample moment about the sample mean for a
data set is given by;

D

& (x-x)
m, == ©)
n
m, denotes to spread about the center, mg refersto

skewness about the center; m, denotes to how much
data is massed at the center. Second, third and
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fourth moments are used to define the sample
coefficient of skewness, g, and the sample

coefficient of kurtosis, g, asfollows.

- @
9s 3
()

g, = —= ©)

()

The sample covariance between dimensions j and
k isdefined as;

iy — —

a(x-%)(x- %)

=42 6

x (n-1) ©

The ordinary correlation coefficient for dimensionsj
andk, rj is defined as;

O
I
LY

C

Fy =" @
S-S
3 Generalized Feed Forward NN
Generdlized feed forward network is a

generalization of the MLP such that connections can
jump over one or more layers. In this network it is
alowed to cross the hidden layer, i.e. output layer
will get the input from the hidden layer and directly
from input layer aso.

Generalized feed forward Neural Network is
proposed as fault classifier. Number of input
Processing Elements (PE) must be equa to that of
number of input statistical parameters so 13 input
Processing Elements are used in input layer. Four
Processing Elements are used in output layer for
four conditions of motor namely Healthy, Inter turn
fault, Eccentricity and Both faults. For data
processing MATLAB7.1, Neuro Solution 5.0 and
XLSTAT is used. Generd learning agorithm used
isasfollows:

Initialization of Weights:

Step 1: Initialize the weights to small random values
Step 2: While stopping condition is false, do step 3
10

Step 3: For each training pair do steps 4-9

Feed forward:

Step 4: Each input unit receives the input signa  X;
and transmits this signals to al units in the hidden
layer

Step 5: Each hidden unit (z,
weighted input signals

J=1,...,p) sums its
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o]
Zy =V +i6_11 XV ®

Applying the activation function Z; = f(z,;) here the
activation function is
tanh(x) =(e*- € *)/ (e +€*) and sends this
signa to al unitsin output units.

Step 6: Each output unit (Y, k=1,...,m sums its
weighted input signals,

_ & d
Yoink = Wo ql ZW + ql XV ©)
And applies its activaiion functi(])n to caculate the
output signasY, = f (y.,,) here the activation
function is
tanh(x) =(e*- € )/ (e* +€7)
Back Propagation Error:

Step 7: Each output unit (Y, k=1,...,m) receives a

target pattern corresponding to an input pattern error
information term is calculated as

dy :(tk - Yk) f (y-ink) 1y
Step 8: Each hidden unit ( z; j=1,...,p) sums its
deltainputs from unitsin the layer above

(10)

J
d_inj = ka:ldiwjk (12)
The error information term is calculated as
d, =d ;f(z.) (13)

Updation of weight and Biases:
Step 9: Each output unit (i, k=1,...,m) updates its
bias and weights (j=0,...,p)

w, (t+1) =w, () +ad,z, +
m@w, (t)- w (t- g

is learning rate and m is momentum

14

Where a
factor
And each hidden unit ( z; , j=1,...,p) updates its bias
and weights (i=0,...,n)

V, (t+1)=v(t) +ad,x +mgy, (t) - v, (t - D g(15)
Step 10: Test the stopping condition

Selection of Error criterion:

Supervised learning requires a metric, a measure
of how the network is doing. Members of the Error
Criteria family monitor the output of a network,
compare it with some desired response and report
any error to the appropriate learning procedure. In

gradient descent learning, the metric is determined
by calculating the sensitivity that a cost function has
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with respect to the network's output. This cost
function, J, is normally positive, but should decay
towards zero as the network approaches the desired
response. The literature has presented several cost
functions, in which p isto be define such as p=1, 2,
3,4... 8 criterionis Ly, Lo, L3, L4 ...Lg

Components in the ErrorCriteria family are
defined by a cost function of the form:

=28 @Oy @
and error function:
e(®)=(d®)- y.(®) (17)

Where d(t) and y(t) are the desired response and
network's output, respectively. To select the correct
error criterion various error criterion has been tested

and results are shown in Fig. 2, Fig.3and Fig. 4.
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For selection of hidden layer PEs randomize data is
fed to the neural network and is retrained five times
with different random weight initiaization. It is

Issue 5, Volume 8, May 2009



WSEAS TRANSACTIONS on SYSTEMS

observed that network with single hidden layer and
5 PEs in hidden layer gives the better results as
shown in Fig.5(a) and Fig.5(b).
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Various transfer functions and learning rules namely

Momentum (MOM), Conjugate-Gradient (CG),
Quick Propagation (QP), Delta Bar Delta (DBD),
LevenbergMarquardt (LM) and Step (STP) are
verified for training and testing the network.
Average minimum MSE on training and CV data
and classification accuracy on testing, CV and
training data is compared in Table 1 and Table 2
(Appendix)

The parameters of the hidden layer and output
layer i.e. step size and momentum are slected by
comparing average minimum MSE. In Hidden layer
optimum value of Step size is 0.13 and momentum
is 0.6 and for output layer Step size is 0.05 and
momentum is 0.08. Performance is shown in Fig.6,
Fig. 7and
Fig.8.
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Fig.8 Variation of Average Minimum M SE with Step size and
Momentum rate in output Layer
From above experimentation, selected parameters
for GFFD-NN are given below.
GFFD- NN (13-5-4), Number of epochs = 5000,
Exemplars for training = 70%,
Exemplarsfor cross validation = 15%,
Exemplars for Testing = 15%
Number of Hidden Layers. 01

T.F.: Tanh Learning Rule: Momentum
Step size: 0.13 Momentum: 0.6

Output Layer:
T.F.: Tanh Learning Rule: Momentum
Step size: 0.05 Momentum: 0.08

Number of connection weights: 146
Time Elapsed per epoch per exemplar: 1.001 msec.
Different datasets are formed using variable split
ratios and leave-N-out cross validation technique.
Proposed NN is trained and tested five times on
various datasets and later validated carefully so asto
ensure that its performance does not depend on
specific data partitioning scheme. The performance
of the NN should be consistently optimal over all
the datasets with respect to MSE and classification
accuracy. To check the learning ability and
classfication accuracy the total data is divided in
four groups. First two groups (50% data) are tagged
as Training data and third and forth group (each
25%) is tagged for Cross Vdidation and Testing
(1234:1,2TR, 3-CV, 4Test). Similar 18
combinations are prepared and network is train and
test for each group. Results are shown in Fig.9 to
Fig.12.
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4 Support Vector Machine

The support vector machine (SVM) in is a new
kind of classifier that is notivated by two concepts.
Firgt, transforming data into a high-dimensional
gpace can transform complex problems (with
complex decision surfaces) into simpler problems
that can use linear discriminant functions. Second,
SVMs are motivated by the concept of training and
using only those inputs that are near the decision
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surface since they provide the most information
about the classification.

It is a kind of learning machine based on
statistical learning theory. The basic idea of
applying SVM to pattern classification can be stated
as follows: first map the input vectors into one
features space, possible in higher space, either
linearly or nonlinearly, which is relevant with the
kernel function. Then, within the feature space from
the first step, seek an optimized linear division, that
is, construct a hyperplane which separates two
classes. It can be extended to multi-class. SVMs
training always seek a global optimized solution and
avoid over fitting, so it has ability to dea with a
large number of feature.

Kernel Adatron agorithm:

For N dimensional space data x (i =1...N) this
algorithm can be easily extended to network by
substituting the inner product of patterns in the input
space by the kerne function, leading to the
following quadratic optimization problem:

N

J@)=8 a- 18 Aaaddc-x.22) 16

i=1 i=1 j=1
Subject to

& -

a diai =0 a; 3 O," il {1,N} (17)

i=1
where G(x, %) represents a Gaussian function, N is
the number of samples, a; are a set of multipliers
(one for each sample),

P
J(x)=di(@ dja;G(x - x;,2%) +b)  (18)
i=1
and
M =min g(x) (19)
and choose a common starting multiplier a,,
learning rate ?, and a small threshold. Then, while
M > t, we choose a pattern x and calculate an
update Da; =h(1- g(x)) and perform the update
Ifa,(n)+Da;, >0
a;(n+1) =a, (n)+ Da, ()

b(n+1) =b(n) +d Da, (20)
Andif a;(n) +Da, £0

a;(n+1)=a;(n)

b(n+1) =b(n) (22)

After adaptation only some of the a, are different
from zero (called the support vectors). They
correspond to the samples that are closest to the
boundary between classes. This agorithm can be
considered the "on-line" version of the quadratic
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optimization approach utilized for SYMs, and it can
find the same solutions as Vapnik's origina
algorithm for SVMs. It is easy to implement the
kernel Adatron algorithm since g(x)can be
computed locally to each multiplier, provided that
the desired response is available in the input file. In
fact, the expresson for g(x)resembles the
multiplication of an error with an activation, so it
can be included in the framework of neural network
learning. The Adatron agorithm essentially prunes
the RBF network so that its output for testing is

given by,
f)=son( & daG(x-x,5°%)-b) (2

il \qg:étort
And cost function in error criterion is
1
IH=5a [@O- tanh(y©)° ()

i=1
For sdlection of step size randomize dataisfed to
the neural network and is retrained five times with
different random weight initialization. It is observed
that 0.8 step size gives the optimal result.
Number of connection weights: 472
Time Elapsed per epoch per exemplar: 0.934 ms
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Using the similar datasets SVM classifier is tested
retaining five times and results are shown in Hg.15

to Fig.18
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5 Dimensionality Reduction Using

Principal Component Analysis

One problem appears after the feature extraction.
There are too many input features that would require
a significant computationa efforts to calculate, and
may result in low accuracy of the monitoring and
fault diagnosis. The potential improvements which
can be achieved by first mapping the data into a
space of lower dimensiondlity. Reduction in
dimensiondlity of the input space and hence the
network can be achieved by Principa Component
Analysis (PCA). PCA is performed by Pearson rule.
The Fig.12 is related to a mathematica object, the
eigenvalues, which reflect the quality of the
projection from the 13-dimensiona to a lower
number of dimensions.
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Fig.19 Principal Component, Eigenvalues and percent
variability.

Using the results of Principa Component
Anayss, dimensions of GFFD-NN can be reduced.
Number of inputs are reduced to five. By similar
experimentations, the optimum GFFD-NN classifier
is designed with the following changes,

Number of Inputs = 5, Number of PEsin Hidden
Layer = 5, Number of epochs = 5000, Exemplars for
training = 70%,
Exemplars for cross validation = 15%,
Exemplarsfor Testing = 15%,
Number of Hidden Layers. 01
T.F.: Tanh Learning Rule: Momentum
Step size: 0.09 Momentum: 0.6
Output Layer:
T.F.: Tanh Learning Rule: Momentum
Step size: 0.05 Momentum: 0.08
Number of connection weights: 74
Time Elapsed per epoch per exemplar: 0.786 ms
Training and testing results for new moded is as
shown in Fig.20 to Fig.25
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Using the results of PCA, dimensions of the
support vector machine classifier are also reduced. It
is found that number of inputs, reduced to five and
step size of 0.7 gives the optimal results.

Number of connection weights: 264

Time Elapsed per epoch per exemplar: 0.693 ms
Variation of average minimum MSE and

average classification accuracy with number of PCs

asinput is shown in Fig. 26 and Fig.27. and training

and testing results are shown in Fig.28 and Fig.29.

R

ge ;»:TSE

cra

ooz .-

A

(=)

[}

foed
]

40

Y: No. of PCs X: No. of Epochs
Fig. 26 Variation of Average MSE of training and CV on
number of PCs asinputs

ks Tost Data

—&— TestMSE
100 —

b C'V Data

-=6--CVMSE

bsd TR Data

=
=
=1

(=]
=
=

=1 (=
=] =3
b L=

SN LI LIS 88 RIo sty

=

Averages Classification Accuracy

j 6 7 g9 10
Numtber of PCs as Input
Fig. 27 Variation of average Minimum MSE and average
classification accuracy with number of PCAs as input

ISSN: 1109-2777

598

V. N. Ghate, S. V. Dudul

0.07
7 Ts 5}1}14 o 0V Dat
Z 006 -

- o
5 A ]'esyli.leg on Tlest(Data
003 ~ I
E Testina TR Data
=0.04
2003

1 3 3 7 9 1113131719 2123252712931

MNumber of Fows Shifted for Cross Validation (n)
Fig. 28 Variation of average MSE with Test on Testing, CV
and Training dataset with CV rows shifted (n)

%03

<025 - &

Z 02 ol | o MSEonCU »®me®d #%q Te

= 02 & LY Ll - N 7

Bt - Lol M ¥ a’ N "

015 . L4

= 01 [ s

= 0.

R MSE on Te

SD.D_ . = 1 I

- 1

= 0
= T NN T M T = M~ N = N N —
T I B o B S T~ . T N T R T . B o B L o B I |
N N T S =~ = o T S ST S e~ o~
—————— 04 04 09 M ot tn o o < o

Group

Fig. 29 Variation of average Minimum M SE with Training and
CV with group of Dataset

6 Robustness of Classifier to Noise

Since the proposed classifier s to be used in
real time, where measurement noise s
anticipated, it is necessary to check the
robustness of classifier to noise. To check the
robustness Uniform and Gaussian noise with
mean value zero and variance varies from 1 to
20 % is introduced in input and output and
average classification accuracy on testing data
i.e. unseen data is checked. It is observed that in
GFFDNN, average classification accuracy is
not affected by both noise in input and output
and in SVM classfication accuracy is
consistent with noise of variance up to 15%.
Comparative results are shown in Table 3.
7 Resultsand Discussion

In this paper, the authors evauated the
performance of the developed GFFD NN and
Support Vector Machine (SVM) based classifier for
detection of four conditions of three phase induction
motor and examined the results. After completion of
the training, the learned network is able to detect
different types of faults. For GFFDNN various
learning rules and transfer functions are investigated
for different number of hidden layers and processing
elements in hidden layer. It is observed that

Momentum learning rule and Tanh transfer function
gives the optimal results in hidden and output layer.
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By varying the step size optimum results are
obtained in SVM classifier. By performing
Principa Component Anaysis, number of inputs are
reduced from 13 to 5 and thus significant reduction
in dimension is achieved. From the anadysis, it is
seen that dimensiondly reduced support vector
machineg( SVM-DR) based classifier works as an
elegant classifier for fault diagnosis of three phase
induction motor, in the sense that, average MSE on
testing and cross validation samples is consistently
observed as reasonably low such as 0.0591 and
0.0619, respectively. In addition, average
classification accuracy on testing as well as cross
validation instances is obtained as 99.61% and
98.72%, respectively indicating a reasonable
classfication. Also proposed classifier is enough
robust to the noise, in the sense that classifier gives
consistent results for Uniform and Gaussian noise
with 12% variance in input and with 20% variance
in output. Comparative results are shown in Table 4.
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APPENDIX

Table1
VARIATION OF AVERAGE MINIMUM MSE AND AVERAGE CLASSIFICATION
ACCURACY WITH TRANSFER FUNCTIONS

Average
Average Minimum M SE on Classification
TE Accuracy

Training Ccv

Max. Min. Avg. SD Max. Min. Avag. SD
Tanh 0.0024 | 0.0016 | 0.0021 | 0.0003 | 0.1997 | 0.1148 | 0.1708 | 0.0345 | 100 | 100 | 100
L-Tanh | 0.0645 | 0.0035 | 0.0158 | 0.0273 | 0.2742 | 0.0304 | 0.1506 | 0.0877 | 75 | 100 | 75
L-sig 0.3731 | 0.3548 | 0.3668 | 0.0084 | 0.3734 | 0.352 | 0.3626 | 0.0084 | 75 | 66.7 | 65.6
Sg 0.3569 | 0.3557 | 0.3564 | 0.0005 | 0.3659 | 0.3609 | 0.3645 | 0.0021 | 50 | 66.7 | 52.2
Lin 0.405 | 0.3897 | 0.3979 | 0.0059 | 0.4103 | 0.3946 | 0.403 | 0.0057 | 50 0 | 455
BAX 0.2985 | 0.2985 | 0.2985 0 0.3035 | 0.3035 | 0.3035 0 21.88 | 50 | 219
AX 0.1248 | 0.1222 | 0.1233 | 0.001 | 0.4304 | 0.2804 | 0.3524 | 0.0649 | 50 | 83.3| 464
Soft 0.0184 | 0.0144 | 0.0158 | 0.0017 | 0.0484 | 0.0429 | 0.0449 | 0.0021 | 100 | 83.3| 86.2

Test | CV | TR

Tanh : hyperbolictan L-Tanh: Linear hyperbolictan L-sig: Linear Sigmoid Lin: Linear
Sig: Sigmoid BAX : Biased Axon AX : Axon Soft: Softmax.

Table 2
VARIATION OF AVERAGE MINIMUM MSE AND AVERAGE CLASSIFICATION
ACCURACY WITH TRANSFER FUNCTIONS

Average
Average Minimum MSE on Classification
TE Accuracy
Training CVv
Test |CV | TR

Max. Min. | Avg. SD Max. | Min. | Avg.| SD
Moment | 0.0024 |0.0016 |0.0021| 0.0003| 0.1997 |0.1148|0.1708|0.0345| 100 | 100( 100
DBD 0.016 | 0.0109 |0.0132|0.0019| 0.0128 |0.0028|0.0057(0.0041| 50 |[100( 64.3
QP 0.0026 | 0.0025 [ 0.0026 | 8E-05 | 0.2124 |10.1536(0.1828 0.0216| 100 |83.3| 100
CG 0.0294 | 0.0025 | 0.0086| 0.0116 | 0.3015 |0.1246|0.1666| 0.0756 | 100 |83.3| 100
Step 0.0037 | 0.0026 | 0.0029| 0.0004 | 0.1657 |0.1356| 0.15 | 0.011 | 100 |83.3| 100

LM 0.0085 | 0.006 [0.0075| 0.001 | 0.1827| 0.129 (0.1571(0.0224| 75 |100| 75
DBD: DeltaBar Delta QP: Quick Propagation
CG: Conjugate-Gradient LM: Levenberg-Marquardt
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Table3

V. N. Ghate, S. V. Dudul

EFFECT OF NOISE ON AVERAGE CLASSIFICATION ACCURACY WHEN CLASSIFIER

TESTED ON TESTING DATA

NN-M odel GFFDNN GFFDNN-DR SVM SYM-DR
Noisein Input Output Input Output Input Output Input Output
Typeof Noise | G Uu |G| U G U G U G u G U G| U G U
% Variance Average Classification Accuracy on Testing on Testing Datai.e. unseen Dat
1 75 | 100 [ 100| 50 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
2 100 | 100 | 100|100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
3 100| 100 | 100(100| 100 ( 100 | 100 | 100 | 100 | 100| 100 | 100 | 100 | 100 | 66.7 | 100
4 100 | 100 [ 100| 75 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 66.7| 100 | 100 | 100
5 100| 100 | 50 |{100| 100 | 75 | 100 | 100 | 100 | 100 | 100 | 100 | 66.7 | 66.7 | 100 | 100
6 100 | 100 (100|100 100 | 100 | O | 100 | 100 | 100| 100 | 100 | 100 | 100 | 100 | 100
7 100 | 100 | 100|100| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 66.7 | 100 | 100 | 100 | 100
8 100| 75 |[100| 75 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
9 100|875 |100| 75| 75 | 100 | 100 | 100 | 100 | 100| 100 | 100 | 100 | 100 | 100 | 100
10 100| 75 |[100|100| 100 | 75 | 100 | 100 | 100 | 100| 100 | 100 | 100 | 66.7 | 100 | 100
11 100| 100 | 100 75 | 100 | 87.5| 100 | 100 | 100 | 100| 100 | 100 | 100 | 100 | 100 | 100
12 100 | 100 (100|100 100 | 75 | 100 | 100 | 100 | 100| 100 | 100 | 100 | 100 | 100 | 100
13 100 | 100 | 100|100 | 100 | 100 | 100 | 100 | 66.7 | 100 | 100 | 100 | 66.7 | 66.7 | 100 | 100
14 100| 100 | 75 |100| 100 | 100 | 100 | 100 | 66.7 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 100 | 100 | 100|100| 100 | 100 | 100 | 87.5 | 66.7 | 66.7 | 66.7 | 100 | 66.7 | 66.7 | 100 | 100
16 100 | 100 (100|100 875 | 75 | 100 | 100 | 66.7 | 66.7 | 33.3 | 100 | 66.7 | 66.7 | 100 | 100
17 100 | 100 [ 100|100| 75 | 100 | 100 | 87.5 | 66.7 | 66.7 | 66.7 | 100 | 66.7 | 66.7 | 100 | 66.7
18 100| 100 | 75| 75 | 100 | 100 | 100 | 100 | 66.7 | 100 | 100 | 66.7 | 33.3| 33.3| 100 | 100
19 100| 100 | 75 | 75 | 100 [ 100 | 625|875 | 66.7 | 66.7 | 100 | 66.7 | 100 | 100 | 100 | 66.7
20 100|875 | 75 |100| 100 | 100 | 100 | 100 | 66.7 | 66.7 | 100 | 66.7 | 33.3| 33.3| 100 | 100

U: Uniform Noise

G: Gaussian Noise
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Table4
COMPARATIVERESULTS
Testing on Test Data Testing on CV Data
8| Performanc
s ax. in. ax. in.
A Sh) A Sh)
Observed | Observed verage Observed | Observed verage
> MSE 0.2435 | 0.00135 | 0.05273 | 0.072 | 0.16856 | 0.00133 | 0.03480 0.048
Zz Y
Q W Percent 1.011 | 146
oo oo 100 75 9479 | 9216 | 100 8333 | 9542 | 7.251
o Correctness
49.3
- MSE 0.28437 | 0.00022 | 0.05653 | 0.077 | 0.21960 | 0.00020 | 0.04624 0.062
Z <
O wv| Percent 0.786 | 74
T 5 een 100 75 985 | 5997 | 100 80 9504 | 7.701
o Correctness
MSE 0.84364 | 0.00529 | 0.04527 | 0.120 | 0.28433 | 0.01047 | 0.06055 0.068
S
Percent 0.937 | 472
3 ereen 100 8333 | 9741 | 5249 | 100 66.67 9756 | 6.842
Correctness 44.06
MSE 0.09926 | 0.05086 | 0.05915 | 0.011 | 0.094134 | 0.05454 | 0.06192 0.007 '
S X[ Percent 0.693 | 264
g O oo 100 88.88 | 99611 | 1944 | 100 8888 | 98722 | 3514
Correctness
T - Time Elapsed per epoch per exemplar for training in ms.
W — Number of weight connections.
%W  — Percent number of weight connections reduced.
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Tables
SAMPLE RESULTS OF NETWORK FOR EACH FAULT
o)
; 3 Performance | HLTY | BOTH INT ECE Ovedl|
=
= s MSE 0.0072 | 0.0023 | 0.0160 | 0.0109 0.0091
pd
a w
L o Percent 10 | 100 | 100 | 100 100
O - Correctness
> MSE 0.0009 | 0.0719 | 0.0024 | 0.0243 0.0249
Zxd
L aw Percent
(L.]'B 0 Correciness 100 100 100 100 100
= MSE 0.0001 | 0.0003 | 0.0002 | 0.0006 0.0003
&% Percent 10 | 100 | 100 | 100 100
Correctness
MSE 0.0036 | 0.0353 | 0.0025 | 0.0294 0.0177
; x Percent
&)
1 1 1 1 1
Correctness 0 0 0 0 0
Table 6

SAMPLE DESIRED AND ACTUAL OUTPUT OF NETWORK

Desired Output of Network

H|B]| I E H B E

0| Q0] 0| 1]-000278 | 0.009998 | -0.01879 | 1.004026
0| 0] 0| 1]0000783 | -0.01557 | 0.00963 | 0.996425
0| Q0| 1|0 000024 | 0.00018 | 1.000255 | -0.00071
0| 1] 0| 0] 0000357 | 0999824 | 0.000434 | -0.00062
0| 0] 1| 0]0000312 | -0.00019 | 0.999955 | -3.1E-05
00| 1| 0]0.000707 | -0.00025 | 1.000305 | -1.2E-05
0| Q0] 0| 1]-000139 [ -0.00034 | -0.00027 | 0.999077
110 0| 0] 100913 | 0.002908 | -0.00255 | -0.01547
0| Q0] 1| 0]0000247 | 0.001613 | 0.998812 | 0.000775
O[O0] 11070000193 ] -0.00113 [ 1.000305 | -0.00061
C[ 1] 0| 0] 295E08] 0999843 | -5.6E-05 | -0.00083
O[O0] 0 1]0.001683 [ -0.00029 | -0.00053 | 1.001546
[ 1] 0| Q07J0000937 [ 0997332 [ 0.001464 | 0.002719
O[O0] 11 07]0.00038 [-0.00099 [ 1.000301 | 0.000357
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