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Abstract: - This paper proposes a novel adaptive genetic algorithm (AGA) for the multi-objective optimization 
design of a fractional PID controller and applies it to the control of an active magnetic bearing (AMB) system. 
Different from PID controllers with three constants, the fractional PID controller’s parameters are composed of 
proportional constant, integral constant, derivative constant, derivative order and integral order. The fractional 
PID controller is more flexible and gives the possibility of adjusting more carefully the closed-loop system 
characteristics. However, its design becomes more complex than that of conventional integer order PID 
controller. An adaptive genetic algorithm is proposed to design the fractional PID controller. The five 
parameters of the fractional PID controller are selected as parameters to be determined. The dynamic model of 
an AMB system for axial motion is also presented. The simulation results of this AMB system show that a 
fractional PID controller designed via the proposed AGA has good performance. 
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1 Introduction 
The active magnetic bearing (AMB) systems with 
controlled-permanent magnet electromagnets have 
been reported elsewhere. It supports a rotating body 
without direct contact and will be used widely for 
various purposes due to its significant feature. It 
offers a number of practical advantages over 
conventional bearings such as higher speeds, lower 
rotating losses, elimination of the lubrication system 
and lubricant contamination of the process, operation 
at temperature extremes and in vacuum, and longer 
life [1-3]. However, AMB applications often require 
the solution of very interesting and formidable 
control problems because of the inherent instability 
and the nonlinear relationship between the lift force 
and the air gap distance [4, 5]. The controller is one 
of key techniques of AMB system, and its 
performance affects directly whether magnetic 
bearing can work stably and unfailingly or not. Large 
numbers of control strategies have been studied 
inside and outside, e.g., acceleration feedforward 
control [6], sliding control [7], switching control [8], 
LQ control [9], and nonlinear control [10].  

In the past decades, conventional PID controllers 
are widely applied in industry process control. This 
is mainly because PID controllers have simple 
control structures, and are simple to maintain [11, 
12]. However, a conventional PID controller may 
have poor control performance for nonlinear and/or 
complex systems. Since the PID gains are fixed, the 
main disadvantage is that they usually lack in 
flexibility and capability. Recently, many researchers 
revealed that factional order differential equations 
could model various materials more adequately than 
integer order ones. Especially, controllers consisting 
of factional order derivatives and integrals could 
achieve better performance and robustness results 
than those obtained with conventional (integer order) 
controllers [13-15]. Expanding derivatives and 
integrals to fractional orders can control system’s 
response directly and continuously. This great 
capability makes it possible to design more robust 
control system. A fractional PID controller has five 
design parameters. Unfortunately, it is quit difficult 
to optimize the parameter settings of fractional PID 
controllers because AMB systems have serious non-
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linearities and strong couplings. There is a need for 
effective and efficient global optimal approach to 
optimize the parameter settings of robot fractional 
PID controllers automatically. 

Genetic algorithms (GA) have received much 
interest in recent years [16-18]. The basic operating 
principles of GA are based on the principles of 
natural evolution. GA requires little knowledge of 
the problem itself and need not require that the 
search space is differentiable or continuous. 
Therefore, it can solve nonlinear multi-objective 
optimization problems. The basic form of GA is 
simple genetic algorithm (SGA). SGA searches 
global optimum solution possibly, but premature 
convergence and random roam can easily take place 
[16, 19]. On this issue, more efforts should be made 
especially for industrial control applications. 

In this paper, we propose a novel multi-objective 
optimization method for the parameter tuning of 
fractional PID controller based on adaptive genetic 
algorithm (AGA) to solve the control problem of an 
AMB system. By using adaptive crossover and 
mutation operators, the global searching ability and 
the convergence speed of the genetic algorithm are 
significantly improved. With the incorporating of 
both the transient performance index of dynamic 
response and control input into the fitness function 
and properly weighting these terms, the overall 
performance of the fractional PID controller is 
optimized to satisfaction. The performance of the 
optimized fractional PID based on proposed AGA is 
also shown superior to the one base on SGA. 
 
 
2 Analysis of System Dynamic Model 
Fig. 1 shows the schematic of the controlled AMB 
system. It consists of a levitated object (rotor) and a 
pair of opposing E-shaped controlled-PM 
electromagnets with coil winding. An attraction force 
acts between each pair of hybrid magnet and 
extremity of the rotor. The attractive force each 
electromagnet exerts on the levitated object is 
proportional to the square of the current in each coil 
and is inversely dependent on the square of the gap. 
The entire system becomes only one degree of 
freedom of one axis, namely the axial position. 
Assuming a minimum distance to the length of the 

axis, the two attraction forces assure the restriction of 
radial motions of the axis in a stable way. The rotor 
position in axial direction is controlled by a closed 
loop control system, which is composed of a non-
contact type gap sensor, a fractional PID controller 
and an electromagnetic actuator (power amplifier). 
This control is necessary since it is impossible to 
reach the equilibrium only by permanent magnets. 

To model the AMB system, few simplifications 
are assumed: (a) the rotor maintains symmetry 
around the rotating axis, (b) deviation around the 
normal operating point is small, and (c) the magnetic 
axial attraction force and the electromagnetic force 
are linearized around the operation point. The rotor 
with mass m is suspended. Two attraction forces F1 
and F2 are produced by the hybrid magnets. The 
applied voltage E from power amplifier to the coil 
will generate a current i which is necessary only 
when the system is subjected to an external 
disturbance w. Equations governing the dynamics of 
the system are 

 

 
Fig. 1  The schematic of the controlled AMB system. 
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Where y is the distance from gap sensor to bottom of 
rotor. R and N are the resistance and number of turns 
of the coil. 1φ  and 2φ  are the flux of the top and 
bottom air gap, respectively. Under small disturbance, 
the above equation becomes 
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If the weight of rotor is equal to the sum of these 
two attraction forces, the rotor will rotate on specific 
gap. According to (2), the disturbance equation at 
specific gap is calculated as follows  
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We denote 21 φφφ +=  and 21 FFF += . The 

system is linearized at the operation point (y=yo, i=0) 
and described as follows 
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The partial derivatives are calculated from the 
experimental characteristics at the normal 
equilibrium operating point. It can be seen from the 
characteristic roots that the system is unstable. This 
system has to be stabilized by a controller with 
appropriate controller parameters tuning. 
 
 
3 Fractional Order PID Controllers 
Fractional controllers are characterized by 
differential equations that have an integral and/or a 
derivative of fractional-order in the control algorithm. 
These operators are defined by irrational continuous 
transfer functions, in the Laplace domain, or infinite 
dimensional discrete transfer functions, in the Z 
domain. We often encounter evaluation problems in 
the simulations. Therefore, when analyzing fractional 
systems, we usually adopt continuous or discrete 
integer-order approximations of fractional-order 
operators. 

The mathematical definition of a fractional 
derivative and integral has been the subject of several 
different approaches [20, 21]. One commonly used 
definition is given by the Riemann-Liouville 
expression (α>0 and n−1<α<n): 
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where f(t) is the applied function and Γ(x) is the 
Gamma function of x. Another widely used 
definition is given by the Grünwald-Letnikov 
approach (α∈ R): 
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where h is the time increment and [x] means the 
integer part of x. The “memory” effect of these 
operators is demonstrated by (9) and (10), where the 
convolution integral in (9) and the infinite series in 
(10). These definitions reveal the unlimited memory 
of these kinds of operators, ideal for modeling 
hereditary and memory properties in many physical 
systems and materials. 

The most usual way of making use, both in 
simulations and hardware implementations, of 
transfer functions involving fractional powers of s is 
to approximate them with usual (integer order) 
transfer functions with a similar behavior. So as to 
perfectly mimic a fractional transfer function, an 
integer transfer function would have to include an 
infinite number of poles and zeroes. Nevertheless, it 
is possible to obtain reasonable approximations with 
a finite number of zeroes and poles. One of the best-
known approximations is proposed by Manabe and 
Oustaloup, which is called Crone approximation. 
This approximation uses a recursive distribution of N 
poles and N zeros leading to a transfer function as 
follows [22]: 
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The approximation is valid in the frequency 
range ];[ hl ωω . Gain k is adjusted so that both sides 
of (11) shall have unit gain at 1 rad/s. The number of 
poles and zeroes N is chosen beforehand, and the 
good performance of the approximation strongly 
depends thereon. Frequencies of poles and zeroes in 
(14) are given by 
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The case v<0 may be dealt with inverting (11). But if 

1>v , these approximations become unsatisfactory 

[22]. For that reason, it is usual to split fractional 
powers of s as 
 

ββ +== nvsss nv ,  (20)

 
where Zn∈ and ]1;0[∈β . In this manner only the 
latter term has to be approximated. 

The generalized PID controller Gc(s) has a 
transfer function of the form: 
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where α and β are the orders of the fractional 
integrator and differentiator, respectively. As shown 
in Fig. 2, the fractional order PIαDβ controller 
generalizes the conventional integer order PID 
controller and expands it from point to plane. The 
constants KP, KI , and KD are correspondingly the 
proportional constant, the integral constant and the 
derivative constant. Clearly, taking (α, β) = {(1, 1), 
(1, 0), (0, 1), (0, 0)} we get the classical {PID, PI, 
PD, P} controllers, respectively. The PIαDβ controller 
is more flexible and gives the possibility of adjusting 
more carefully the closed-loop system characteristics. 
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Fig. 2  PID controllers with fractional order (a) 
traditional PID controllers (b) fractional PID 
controllers. 

 
 
4 AGA-Based Optimal Fractional 

PID Controller Design 
As a mathematical means for optimization, GA can 
naturally be applied to the optimal-tuning of 
fractional PID controllers. The design of fractional 
PID controller could be treated as a multi-objective 
optimization problem, which is to compromise the 
rapidity, stability and accuracy of system control. It 
is difficult for the general adjustment of fractional 
PID parameters to satisfy the overall the performance 
at the same time. Therefore, this paper describes the 
application of GA to the fine-tuning of the 
parameters for fractional PID controllers. The novel 
multi-objective optimization method for parameter 
tuning of fractional PID controller based on adaptive 
genetic algorithm is proposed, which consists of the 
following five steps: 

Step 1: Representation of Parameters   

For most applications of genetic algorithms to 
optimization problems, the real coding technique is 
used to represent a solution to a given problem [23]. 
In real coding implementation, each chromosome is 
encoded as a vector of real numbers, of the same 
lengths as the solution vector. According to control 
objectives, five parameters KP, KI, KD, α, and β of a 
fractional PID controller are required to be designed 
in this research. In this way, the k chromosome of i 
generation could be represented 

as ],,,,[ i
k

i
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i
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i
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i
k xxxxxX 54321= . Each 

chromosome i
kX  is corresponding to five tuned 

parameters of the fractional PID controller, i.e. 

1kP xK = , 2kI xK = , 3kD xK = , 4kx=α , 
and 5kx=β , where 521 ,,,,maxmin L=≤≤ jxxx jkjj , 

minjx  and maxjx  are the upper and lower limits of 

the jth gene value respectively. 

Step 2: Design of Fitness Function   
To evaluate the controller performance and get the 
satisfied transient dynamic, the fitness function 
includes not only the four main transient 
performance indices, overshoot, rise time, settling 
time and cumulative error, but also the quadratic 
term of control input to avoid that the control energy 
became too big. The fitness function is designed as 
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where e(t) is the system error, u(t) is the controller 
input, rt  is the rise time, σ is the maximal overshoot, 

st  is the settling time with 5% error band, 

54321 ωωωωω ,,,,  are weighting coefficients. For a 
practical fractional PID design issue, one could 
adjust all the weighting coefficients in the fitness 
function based on the specific requests such as 
rapidity, accuracy and stability of the system. For 
example if a system with little overshoot value is 
required, 4ω  would be increased appropriately; if a 
system with fast dynamic responses is required, then 

3ω would be increased appropriately. This research 
has picked the weighting coefficients 

5210.2 ,,,, K== iiω  to cover all the performance 
indices completely. 

Step 3: Selection 
In proportional selection procedure, the selection 
probability of a chromosome is proportional to its 
fitness. This simple scheme exhibits some undesired 
properties. To maintain a reasonable differential 
between relative fitness ratings of chromosomes and 
to prevent a too-rapid takeover by some super 
chromosomes, the exponential ranking fitness 
assignment is selected in fitness calculations of 
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reproduction operator, because its simplicity and 
robustness [23, 24]. The idea is straightforward: Sort 
the population from the best to the worst and assign 
the selection probability of each chromosome 
according to the ranking but not its raw fitness. 
Normalized geometric select is a ranking selection 
function based on the normalized geometric 
distribution, which is utilized in this research. 

Step 4: Crossover 
Crossover used here is single-point method. Setting 
two randomly selected chromosomes at i generation 
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k
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i
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i
l xxxxxX 54321= , the genetic values at 

the crossover point of these two chromosomes 

are i
kjx  and i

ljx  respectively. Two new chromosomes 

would be created after the crossover operation. The 
genetic values before and after crossover point 
remain the same, while the genetic value of the 
crossover point is 
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where cr  is the randomly generated constant 
between 0 and 1. Crossover operation is the major 
technique to generate new individual in genetic 
algorithm, and the crossover rate would generally 
pick the larger value. However if the crossover rate is 
picked too large, it might damage the good pattern of 
the population; if the value is too small, then the 
speed to generate the new individual is too slow. 
Furthermore, the less diversity of the population is 
the major cause for the instability and premature of 
GA [19, 25]. One should take measures before the 
diversity of population is getting poor. Therefore this 
paper puts forward the adaptive method which took 
the diversity of the population as the controlled 
variable and also adjusted the individual crossover 
rate based on the fitness value of itself. The adaptive 
crossover rate of an individual is defined as 
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maxf  is the maximal fitness value of the present 

population. avgf  is the average fitness value of the 

present population. cf  is the larger fitness value of 
the two individual who would intersect; ck , 1cp  and 

2cp  are the crossover coefficients, 21 cc pp >  and 
they are the constants between 0 and 1, c the 
crossover amplitude coefficient. 

Step 5: Mutation 
Mutation used here is non-uniform method. Set the 
mutation operation individual 

as ],,,,[ i
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i
k xxxxxX 54321= , after the mutation 

operation, the genetic value of the individual which 

is not mutated remains the same, while the gene i
k j

x ′  

on the mutated one is 
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where mr  is a random number between 0 and 1. 

)( yi ,δ  represents a random number within the range 
of [0, y], which is varying with evaluation generation. 
The expression of )( yi ,δ  is 
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G
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where r is a random number between 0 and 1. i is the 
present evolution generation. G is the set maximal 
evolution generation. b is the coefficient that 
determines the dependency of stochastic disturbance 
on evolution generation i, which is generally 
determined by the experience, one would pick b=2 in 
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this research. Mutation rate has an important effect 
on the parametric optimization. If it is too large, the 
optimization procedure would not converge; if it is 
too small, then the GA might lead to prematurity. In 
the same way, the variation of diversity of the 
population is also the major cause for prematurity of 
GA [19, 25]. One should take measures before the 
diversity of population is getting poor. Therefore this 
paper puts forward the adaptive method which took 
the diversity of the population as the controlled 
variable and also adjusted the individual mutation 
rate based on the fitness value of itself. The adaptive 
mutation rate of an individual is defined as  
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where 
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mf  is the fitness value of the individual that would 

undergo mutation operation. mk , 1mp  and 2mp  are 
the mutation coefficients. 1mp  and 2mp  are the 
constants between 0 and 1, and 21 mm pp > . m is the 
mutation amplitude coefficient. 
 
 
5 Simulations and Discussion 
To demonstrate the feasibility of the proposed 
approach to dynamic systems, the AMB system 
shown in Fig. 1 is used for illustration. Both the 
fractional PID and the conventional PID controllers 
are designed based on the proposed AGA. The 
overall flowchart of fractional PID controllers tuning 
using adaptive genetic algorithm for active magnetic 
bearing system is depicted in Fig. 3. After 20 
generations of genetic operation, the searched 
optimal parameters are shown in Table 1. The 
Simulink module frame of the derived AMB system 
model in (9) with the fractional PID controller is 
depicted in Fig. 4 for simulation. In the simulation,  

βα ,,,, DIP KKK

.genmaxii >

βα ,,,, DIP KKK

 

Fig. 3  The overall flowchart of fractional PID 
controllers tuning using AGA for an AMB system. 
 
 
the goal is to use the proposed approach to tune the 
fractional PID gains in (21) such that the output 
response of the AMB system can be driven within 
the user’s specification. The step responses of rotor 
position from the gap sensor in the AMB system 
using the optimized fractional PID controller and the 
optimized conventional PID controller are shown in 
Fig. 5. It shows that the fractional PID controller has 
remarkably reduced the overshoot and settling time 
compared with the optimized conventional PID 
controller. The fractional PID controller has achieved 
good performances in both transient and steady state 
periods. The fractional PID controller has more 
flexibility and capability than the conventional ones. 

To illustrate how the proposed AGA works well 
than that of the SGA, the variation of the best and 
mean fitness values for both cases is plotted in Fig. 6. 
The population size and the generation size are all 20. 
On comparing the two plots, we observe that the 
mean fitness of the population increases gradually 
for the proposed AGA while it increases rapidly for 
the best SGA. A careful observation of Fig. 6 reveals 
that, in the first 7 generations the mean fitness for the 
SGA increases rapidly, remains rather flat until the 
last generation. The relatively flat zone occurs the 
SGA has yet located and gotten stuck at a locally 
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optimal solution with a fitness of 0.528. In contrast 
with the SGA, the best solution of the proposed AGA 
in each population is being propagated to the 
subsequent generation with a final fitness of 1.272. 
The best fitness is increasing with time. The higher 
fitness value of the proposed AGA indicates that the 
population has remained scattered in the solution 
space and has not gotten stuck at any local optimum. 
Such a simple but general approach, having ability 
for global optimization and with good robustness, is 
effective to overcome some weakness of 
conventional approaches and to be more acceptable 
for industrial practices. 

 
Table 1 The optimal parameters of the fractional PID 
controller and the conventional PID controller based 
on the proposed AGA. 

Parameters 

Controller 

KP KI KD α β 

Conventional PID 3.0956 1.2634 0.0651 1 1 

Fractional PID 5.2193 3.8287 0.0909 0.7270 0.9921

 
Fig. 4  Simulink module frame of the derived AMB 
system. 
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Fig. 5  The step responses of the rotor position from 
the gap sensor in the AMB system using the 
optimized fractional PID controller and the 
optimized conventional PID controller. 
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Fig. 6  Comparison of the best and mean fitness 
values at each generation during optimization 
process (a) the SGA (b) the proposed AGA. 

 
 
6   Conclusions 
This paper has proposed an improved adaptive 
genetic algorithm for the multi-objective 
optimization design of a fractional PID controller 
and applies it to the control of an AMB system. The 
proposed algorithm has better performance of 
convergence speed and better stability in the global 
optimum result. Another merit of the proposed 
method is the way to define the fitness function 
based on the concept of multi-objective optimization. 
This method allows the systematic design of all 
major parameters of a fractional PID controller and 
then enhances the flexibility and capability of the 
PID controller. The simulation results of this AMB 
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system show that a fractional PID controller 
designed via the proposed AGA has good 
performance. 
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