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Abstract: - Mobile radio channel characterization using linear operators of affine group is presented. The
foundation of this approach is primarily based on the natural extension of basic concepts of time-scale
representations of wavelet-type to the analysis and representation of the nonstationarity associated with the
real-time mobile radio channel. We provide an operator-based characterization initiated by the need to present
an intuitive and physical approach towards describing and representing the various effects of the channel. The
concepts of delay-scale spreading function and operator as well as delay-scale scattering function and operator
is introduced. We established the relationship between the continuous wavelet transform and these
functions/operators by employing the powerful tool of group theory. We also derived canonical expression for
the corresponding channel by discretizing the channel using frame concept. The practical relevance of our
approach is illustrated via deterministic examples and the associated simulations.
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1 Introduction effects using the delay-Doppler spreading function

The challenges of using the mobile radio channel [1], [2] which provides basis for understanding the
are its excessive multipath propagation property and relationship between the physics of the problem and
the d|spers|on in frequency caused by the movement Its tlme—val’ylng Scatte”ng I’epresentatlon. This time-

of the mobile unit/scatteres. In essence, multipath frequency characterization require the use of
propagation is abso|ute|y necessary to ensure windowed Fourier transform which maps a function

sufficient radio coverage for mobile radio to a We|ghted sum of windowed tones with a fixed

communication; however it causes difficulties in Window size which results in poor time-frequency
radio transmission in numerous ways. The deviation resolution . More also the transform fares badly in
in frequency caused by mobility also degrades the representing or analyzing nonstationary processes
performance of the receiver when the offset is like the mobile channel. Thus such characterizations
unable to be estimated and corrected. All kinds of Method may not be adequate in tracking channel
transmission techniques may suffer from channel variations especially in fast fading and frequency
quality degradation due to this doubly influence of Selective channels. The wavelet transform [3], [4],
the mobile channel. And these phenomena becomel[5] on the other hand is a nonstationary linear
much maligned in system design for high data rate transform method and provides an evolutionary
transmission and in high speed environment. channel mapping method which offers better time
The process variation caused by the movement and frequency resolution with evolutional window
of the mobile unit/environment ultimately makes the Ccapable of tracking channel variations. An
mobile radio channel a nonstationary channel. Thus inspirational insight into the application of wavelet
accurate channel characterization and representationtheory to the characterization of signals and system
based on this nonstationarity is crucial in system IS available in [6]. In [7] different methods of
design by providing information on the parameters estimating the time-scale or wideband spreading
essential for optimal mobile communication function is discussed with consideration to radar
transceiver design and network planning. Existing imaging and parameter estimation of distributed
channel characterizations model the doubly channel objects using continuous wavelet transform (CWT).
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The application of wavelet transform as a tool in
wideband correlation processing is addressed by
Weiss [8] with particular interest in sonar and radar.
In [9], [10], the intimate connection between

wideband spreading function characterization for
linear time variant (LTV) systems and CWT is

presented. The proportionality of the wideband
density function to continuous wavelet transform is
also addressed in [11]. In [32] Marggetts considered
the effect of mobility on a wideband direct sequence
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operator  representation of the time-scale
characterization presented in section 4. We discuss
the derived delay-scale function and operator in
section 5. The canonical model for the affine-based
time-scale characterization is developed in section
6, and the second-order statistics of our model is
presented in section 7. An example and
accompanying simulations to demonstrate the
application of our model with respect to a
deterministic channel are presented in Section 8.

spread spectrum communication system and study a
joint scale-lag diversity technique in mobile
wideband systems. 2 Preliminariesand Notations

In this paper, we present the characterization and We provide in this section some of the
description of mobile radio channel using the affine mathematical notations and definitions used in this
group operator concept. The main idea is to project paper. However some definitions are reserved to be
the channel as a linear operator [19] specifically of introduced at appropriate points where it is deem
the affine kind with a view to providing a physical such action will give better cohesion to this work.
as well as intuitive approach toward describing and All operators in this discussion are assumed to be on
representing the influences of the channel on Hilbert space. The concept of an operator or
transmitted signals. In a broad sense the doubly transformation on a Hilbert space is a natural
effect of the mobile radio channel (MRC) can be generalization of the idea of a function of a real
characterized by joint variable operators either in variable. Indeed it is fundamental in mathematics,
the form delay-Doppler or delay-scale operators for science and engineering where linear operators on a
different group representations. We introduce the Hilbert space are widely used to represent physical
general concept of channel operators and quantities and transformations, and hence provide
concentrate on the affine channel operator of better insight to phenomena associated with
wavelet type. We regard the channel in question to processes and systems. The term operator is here
be wideband. However, the usual wideband and considered in the same manner as words like
narrowband distinction made by the ratio of channel transformation, mapping and phenomenal effects
bandwidth and channel center frequency is not associated with the wireless channel. All operators
meaningful for radio propagation. The bandwidth of are in bold face letters.
the system is the zoom factor of the system on the
excess time delay axis of the response function.
Thus the wideband-narrowband question must be
answered with respect to how the system
experiences multipath and frequency fades. Hence
wideband condition can be viewed as the upper
bound for a narrowband assumption and as such it isrespectively, and_: Hy, - K,

deemed that this presentation is general as long as, Cis linear if /}|:|x+/1 |:|y 0 x yOH. and
2 0

the channel is regarded as being nonstationary and"
frequency selective. In any broadband and high data A, A, OC, where Cdenotes complex-valued
number.

rate systems typical of mobile broadband
communication systems like Ultra wideband
(UWB), Acoustic Communications and mobile
Wireless interoperability for microwave access ijji [lis surjective ifRange(D):KO_
(WiMax) channels, this method greatly suffices.

Th|s paper |S Orgarnzed as fO||0WS The |V D|S b”ec“ve |f |t |S bOth |nJeCt|Ve and
mathematical preliminaries and notations associated subjective. This means that given ayyl K, there
with this paper are given in section 2. In section 3
the generalized operator-based system model is
developed and then narrowed down to affine

Definition 2.1: Let D be an operator, and let's
assume thatH jandK, are Hilbert spaces with norm

.., M, and inner products<.,.>, ,<..>,

Llis injective if [x# |:|y whenevex Z y .

is exactly onex JH, such thatl_Ix = y.
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v The norm of[] is given by
[Of= suf0h g+ x0 H; and]x],, =1} MRC

vi L] is bounded if there exist a number Q such i(t) —> Dgc —— Y(t)

that|[LJx €] CxOH,.

[] is continuous atx, if |x %] -0 implies  Fig.1: Generalized mobile channel model
HD()g) g()g#‘ -0 such that
e _ HC~

viii The adjoint of [ is the unigue operator y( _~( DG X)(0) - (1)

7.k H h th wherex(t) and Yy(t) are the baseband

+Ko — Hosuch that representations of the transmitted and received
Ldxy > %&£y . > & H, yOK, signals respectively. We consided!c as a Hilbert-
0 0 G

: . : . - Schmidt (HS) operator [20] which is always
x Uisan sometry If“w‘% H )4‘% 0 xOH,. bounded. This type of operator establishes a Hilbert

A linear map Llis norm-preserving, if and only ~ SPace H, with inner produck Dgc ,U> and
it Klx[y e XY » UxyUH,. norm “ gis =< [} [ > whereU is a
x U is called unitary in the case unitary operator that acts on the transmitted signal
(°0=00°=1 where I is an identity as will be explained shortly.
operator.

Definition 3.1: Let |:|HC be a linear mappin
xi Uis self-adjoint or Hermitian it 1°=[1. Pping

[J% :H, - H, in the Hilbert spaceH ,which
Def|n|t|0n 22 Let fDC denote a CompleX' maps a func'“on X_¢S(_g to a funct|on

valued function, and] a real number line, given

: Y = ¢;0 where H “is the channel parameterization
1< p<ow, we define the Lebesgue space

with superscriptc denoting either time-invariant or

1 . .
LP(O) =1 f " f"p - (,“ f(t)| pdt)p <o as a t|~me—va£|ant channel, ang; and @, are the tiases of
Xand Yy, with corresponding coefficientg) and

Banach space antl’((J) as the Hilbert space with g . If we defineDgc on a groufs, then the
inner product< f,g > where g in our case is a  |g|ation with H ®is given by

time function. ~ e c va
y( = (L0t £H 0o ) (2)
wherell; ; delineates the actions of the channel on
3 System Mod€ X(t). The subscriptsen denotes the channel

The mobile communications channel s
dominantly characterized by the doubly influence of
multipath _phenomenon and shlft/varla'qon N channel,G is of the Heisenberg group ampdis in
frequency induced on the transmitted signal by ) : . _
mobility. To represent these phenomena require the the Fourier domain, thuslgis equivalent to a
use of appropriate joint time-frequency or as the convolution operator of the Fourier class, and for

case may be, a jOInt time-scale representaﬂon IN time- Varymg Channeﬂj |3 group convolution

general we neglect the effect of additive white operator. Hence de endln uoon the assumptions
Gaussian noise, thus for a continuous time case, the P ' . P 9 up ; P
. made regarding the channel and the entire system,
effect of the mobile channel can be represented by a . , S o)
_ | o several different channel operators’ approximations
linear operatorDGC as shown in Fig.1, and parameterizations suffice. Note that for
simplicity, since we are considering a time-varying

operation under a particular gro@pand transform
domain . For a linear time-invariant (LTI)
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channel, we assurrIL—e|gC EDG, and work on

ef

d
baseband level such thag y = X, y.

In mobile radio system DG involves the

combination of different operators which are
generally time-delay, and frequency variation or
time-dilation operators acting jointly to account for
time-frequency and time-scale dispersion effects of
the channel on the transmitted signal. The order of
occurrences of the operators in the joint
representations (commutativity); or if the actions are
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V and A_ for delay-Doppler and delay-scale

operators respectively by
Vo BCOO-ECF), (V,30=0F)O Ht-1)e“
4)

A, E(H0LH, ARO=DER)0= ﬂ{t T]
©)

s except if the
to be accorded

def

where V. ¢V .and A ZA

joint operat|on is deemed

simultaneous, can be of importance in the accurate Simultaneity condition (commutative). Thi3, and

representation of the channel action by the
associated mathematical representational or
mapping tool employed. Joint Time-frequency and

Time-scale characterization has been addressed in

[12], [13], [14], [15]. In [16] the association of joint
variable  representation is presented. For

t M w M%nds M° we denote byD, the
time delay operator, F the frequency shift
(Doppler) operator, an® _ the time scaling operator
defined respectively by

D, :L°( “® -L*@"), O, X)) =X(t-71)

F,:L%( D -L2(@%), (F,X()=%1e"
(3)
81U 0%, (807 L
\/E s
where D,, F,, and S, are considered as unitary,

isometric and bijective operators arda,s are
implicitly defined in the above expressions.

Theorem 1: Assume H, is a Hilbert space with

norm ||.||H0and inner product.,.>, , and that

U,:H, - H, m=212,is aunitary operator
i. There exist joint operatod U, =U,
and UU,=U

il. U,,.U,, are also unitary operators
U,,=U,, if and only if U,and
U, are commutative

If U,and U, are isometric, so arJ,,

andU,,.
The corresponding proof is easy.

We define the corresponding joint operators
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F,. and,D,and S_, do not commute. In fact the

Heisenberg and affine group are generally regarded
as non-commutative groups with  unitary

transformations that are non-commutative except
when the underlying physics says otherwise. Of

course |V ',J,:|Vw

for the rest of the discussion except otherwise
stated, we assume that the joint channel operators
are of the forms in (4) and (5). The expression in (5)
is a joint channel operator of the affine group, and
uses the term//|s| to maintain the norm of the

operator. This joint operator of affine group forms
the bases of our discussions.

Classical results from group theory can be used
to gain insight into properties of systems with joint
variable functions. Group representation theory
provides unified framework for the study of
spreading function both for the Heisenberg group
and the affine group which are used to represent
time-varying propagations and scattering channels.
Some applications of this theory as regards system
representation are available in [9], [10], [11], [22].
We refer the reader to [18] for some background on
group representations.

We now build our operator-based channel
model mimicking the real mobile channel using
three basic operators namely; unitary operator, inner
product operator and integral operator simple
kind. The unitary operator has been defined in
Definition 2.1. x.

However

Definition 3.2: The inner product operator
s (,.)=<.,.> of group G Hilbert spadd , maps
two function pairs say(y,X)to produce a third
which is a dependent on the group eleméhts

Definition 3.3: An integral operatoL of group G
on a Hilbert spackl , given by
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L EII d 49 :IDDD d #9) is calledsimple

kindif and only if L] °[J=[[]"=1.

The transmitted signal on one hand undergoes
a time-frequency/scale operation resulting in
different copies of thex(t) at the receiver end. We

consider these copies as a function of a unitary
operator denoted arbitrarily byJ,, which is a

unitary operator of group G and measyreon each
group elemenf = (7,&) and J = (7,s) for Weyl-
Heisenberg and affine group ohl respectively.

Thus we split this operator of{‘jG as shown in
Fig.2.

X(t) —> %0 ,

U,

—> y(t)

J

Fig.2: Compact model with the unitary operator split
off the channel operator

We can express the received signal as

y®) = (LU %), 0 ®)

For this expression and representation to be valid,

we regard |:|G as also containing an operator that

maintains and ensures the equivalence between the

‘spread’ copies of the transmitted signal and the
received signaly(t) . We describe the weight of the

coefficients associated with the unitary operatay

and generated by the operaﬂallG in mappingx(t)

onto y(t) as a density function defined by an inner

product operatol; of groupG with respect to the

pairs (Y, X,) such that

IG(y’)%):<va>5:dﬁ (7)
We consider an equivalent operat&which

acts onXx, (t) or which acts orx(t) (if we assume it

is split off DG) to produce the weight and whatever

is the order is irrelevant siné@U ,= U, Z . Hence

IG(yvxﬂ):EXﬁ:dﬂ (8)
We modify figure 2 accordingly as shown in Fig.3.
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y(®)

G

Fig.3: Equivalent mobile channel model comprising
all three operators

The two figures above are equivalent; the upper
figure is a real-time model of the mobile radio
channel whereas the other is more of a synthesized
channel in which the density function is estimated
given that we have knowledge of the channel input

and output. The operatoLG,ﬁ is an integral
operator of simple kind defined on group G and
measure 4, and emphasizes on the collective
actions of all other operators discussed. Hence we

can represent a typical mobile radio channel (MRC)
by the operator-based expression given by
y() = (L(EUX) 5. (1) 9)

We maintain that all operators associated with
(9) are HS operators where for clarity the bracket
(AQ)(t) represents the result of operating a@n
with the operatorA and then evaluating at the point
t. This representation is a full and intuitive
characterization of the mobile radio channel or any
such system where mobility and scatters are
involved. The choice of representation and its
accuracy strictly depend on the physics of the
problem, the group G and measure, and the
group element? . The operatolJ, is equal to the

joint time-frequency and time-scale expressions in
(4) and (5) respectively and can be deduced from
them considering the appropriate group G. On the

other hand,Z,is an inner product operator and for
an ideal channel equals a norm operator
<U,U, >..

Definition 3.4: Let T be the torus group with unit
circleinC i.e. T $2z0C:|Z =1}, and0 the real
number line thought of as the frequency axis, we
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define a groupH T = L% the set acting on
L*(d) as Weyl-Heisenberg group with unitary
operator denoted by

TxRxR

If we consider the groupl and group element
Jd=(r,v), the appropriate measureg:for the
representation of the joint delay-Doppler €v)
action of the mobile channel is the Left Invariant
measure du(d) = dr dv (see Appendix A in [22]
for more details and definitions). Thus (9) is
simplified as

= L EMVX) )0 by

where (10) is an operator-based time-frequency

representation with respect to the grobh An
observation from our discussion shows that th

operator E,4is obviously a pivot operator that is

related in one way or another to all other operators
defined as indicated by the expression

= % =lo( kU9 =1.(Lhxux @y

This operator therefore explicitly describes the
dispersive behavior of the channel. The result of the
operator onX, is the weighted function termed
spreading function(in time-frequency theory) or
coherent statdin Quantum Physics) [20], thus we
can refer to E,as the spreading operator The
connection between the coherent state and short-
time Fourier transform (STFT) can be extended to
the spreading function due to strong interrelation
between time-frequency analysis and Quantum
physics thus

=2, x=STFT(rv; W =< KN’y,wa> 12)

where Kk, (7,t) = y(t).w(t - 7) is called the kernel

(10)

of the channel operato|:|G for a given window
function w(t) . We denote the ensuing functidp

by §( 7v) refer to as thelelay-Doppler spreading
function by Bello [21] and accounts for the joint
delay and Doppler variation of the channel. And
accordingly we defineE ,, as thedelay-Doppler

spreading operator The window term w(t) is

viewed as the snapshot of the mobile radio channel
often modeled as a time-varying filter. This

shapshot irrespective of the width is assumed to be
stationary over the transmission interval in order to
analyze the channel using the windowed transform.
Such situation constrains the resolution of the

operatorZ,. Thus since the mobile radio channel is
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nonstationary in reality, any channel variation in
time and frequency that does not fall within this
window width is not accounted for. This fixed
window orientation results in channel mapping with
poor (fixed) time-frequency resolution as indicated
in Fig.4.

4

Fig.4:Delay-Doppler resolution plane as a function
of fixed windowed transform

And for a frequency selective and fast fading
channel, and even in the narrowband time-varying
baseband equivalent channel, the delay-Doppler
operator is not shift invariance; hence sinusoids are
not eigenfunctions. We thus need eigenfunctions
that will provide shift invariance spreading operator
that adequately match the channel properties so
mentioned thus providing optimal representation.

4 Affine Operator-Based Time-Scale

Channéd Characterization

The notion of Doppler variation can be
considered as a form of time scaling (dilation)
operation [22] where scale is given by

s:C_V:::I_+wd (13)
c+v w,
where c,v,a.and «, are the speed of

electromagnetic wave in free space, speed of mobile
unit, operating frequency and associated Doppler
shift respectively. Thus we can obtain a time-scale
representation of the channel on temporal plane
equivalent to time-frequency representation. Note
the use of time-scale and time scaling; while the
former refers to joint operator and representation,
the latter is a single linear operation.

Definition 4.1: Let A £1X] be a set acting on
L?(0) which involves translatiorr and dilation or
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time scaling s, and maps a function on The importance of this method in mobile radio

) ) . ) é_ T channel characterization is that it provides solution
x [L°(0) into a new independent varia P to the lapses of (12) in representing the spreading
= operator.

The set A is called the affine group with unitary
operation denoted bA ..x

The time-scale representation of (10) with
respect to the affine group and unitary operator

A=A, isgiven by

To improve on the resolution of the spreading
operator Z,we thus require a coherent statéh

better  time-frequency/scale  resolution.  An
alternative to windowed Fourier transform was
proposed by Grossmann and Morlet [23] in which

yt) = (L EAX)),)O) s, (14) the rule for generating the ‘basis functions’ was
where 7 is a time delay or translation parameter changed. This is done by replacing the modulation
with respect to the delay operatBr,, ands is a operation defined oh! by a scaling operation. This

time scaling parameter with respect to time scaling transform method is called continuous wavelet

operator S, as a result of channel mobility. With ~ ransform (CWT). On its merit CWT promises
better time-frequency resolution due to the use of

evolutionary ‘window’ in terms of variable scales.
_ _ t-r1 (15) Basically continuous wavelet transform (CWT) is an
(Arsx)(t)_xrs(t)_ X . . .
' ' \/ﬁ s inherently two dimensional transform that uses
The left Haar measures of the affine group is ‘Small waves’ of finite support as the analyzing
given by 4 () = dsdz [3]. This measure other Kernels generated by affine unitary operation on an
g s? arbitrary ‘mother wavele(t) such that

reference to Fig.3,x, ;(t) can be written as
1

than d,(9)=dsdr énsures constant surface and is 1 t—1
required for due energy conservation in mapping the (A,,S (l)(t) =¢.5(t) :—¢(—j 0 m (7)
input to output. \/H S

A similar coherent state relationship to the pe waveletg, .(t) can be viewed as a copy of the

spreading operator= . can be extended to the
P g op i original wavelet ¢(t) shifted by time steps and

rescaled in time by step size Given an analyzing

to yield the delay-scale densityor spreading  waveletg(t), the corresponding CWT is defined as
function analogous to the delay-Doppler spreading follows:

function of the Weyl-Heisenberg group. In general o L 5
the goal in electronic communication is to recover Definition 42: Let ¢ L ) (U)be an
the transmitted signal from the ‘echoes’ with the analyzing wavelet, the continuous wavelet transform
help of the information from this density function of an arbitrary finite-energy signaf (t) is defined
d, . The estimation of d, ; is thus important in

providing efficient communication services. The

affine spreading operat®&, ,which acts onx, ((t)

by the inner product operatbg (.,.) such that

delay-scale spreading function can be estimated by s (T.A, p) = < f ’AT'S¢> =d, (18)
formulating the inverse problem for obtaining The inverse transform is given by
d, , with recourse to [7] and expressed as f(t) = (AQ)(t)
19
y(t) =Td, (16) =CHL[, (A, 9),,0 (19)
where W) ’
% W (w
re) = jj(.) L x(t - TJ drzds where C, = J.| («) dw <o is an admissibility
vl U s ) s . o
Thus condition described fully in [3] an¢(a)| is the
|:|G x=Td, Fourier transform off(t) .

This expression is an estimator where the A close observation on (9) and (18) reveals that
knowledge of the operators and the response can aidboth equations are equal except for the admissibility
in recovering X. Different methods of solving for  term. This means that we can assume that for a

d, have been addressed by the literature [7]. One transmitted  signal x(t) ¢(tE L'Q0)0A%(0),
of such methods is the wavelet transform technique.
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[J=/\, there exist a unitary affine operator For an ideal channeld, ; is theauto-wavelet
A, which acts on it to produce delayed and channel response It can be shown that when

rescaled versions ok(t) which with associated  drshas support only along =1 and is perfectly

spreading functiond. _, are integrated to yield the concentrated along the axis, then (14) reduces to

a linear time-invariant system andl,, - d,.

received signay(t) = f (t) as shown in Fig.5.
While for d, (with support only alongr =0 and

perfectly concentrated along tte axis, we have a
linear frequency-invariant’ system ardj ; — d,.

If we considerd, . as also a function time, then at

,S
s =1, the resultant functiord, ;, — d

a time-varying channel response.

The time-scale resolution of the delay-scale
spreading function is shown in Fig.6, indicating a
! ! ! ! good resolution due to variable scales of the
5, A, L, | owsao analyzing functions which corresponds to high
) ) ) frequency/low scale and low frequency/high scale
Fig.5: Illustration of the operators with respect to representation and capable of tracking time-varying

wavelet-type affine time-scale channel model channels more accurately compared to the constant

relative bandwidth of the STFT.

provides

Tt

Mobile Unit

Thus we can extend the coherent state relation
with Fourier transform to wavelet transform which
implies and by induction that the response or
associated spreading function of the affine time-
scale channel representation is the wavelet
transform of the received signg{(t) with respect to

the transmitted signak(t) . We reframe (11) as
Er,s)s,s :IG(yiAr,sX) :dr,s (20)

The functiord, ; can be referred tas thedelay-

scale spreading functioand E, ; as thedelay-scale

spreading operator However, d, (is unique to a
particular probe signal. It should be noted that a Fig.6: Time-scale resolution plane of wavelet

necessary requirement here is that the probe or transform
transmitted signalx(t) must be admissible so that
T X(w)| | 5 Delay-Scale Spreading Function and
- Operator
If we let ¢ y(t) _then We observe that since continuous wavelet
transform with respect to the invariant measure
() = (L(dr,s'(Ar,sX)))A#(t) 21) dST?S is asymmetric, therd, , is also asymmetric.

It can easily be shown that the corresponding delay- The values ofr ands provides the support for the
spreading function in delay and scale coordinates

scale spreading functiod, ; is related toy(t) by respectively. Let's define the total spread

d, .= CMe (v.A, ) (22) AV =r1,.s.. as the coherent rectangular area
Thus within some power constraints, we that determines the extension of the spreading
equA|vaIentIy state that function about the origin. The quantitigs,,, and

ds Od.g Snaxare the differences between the largest and
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smallest delay and scale respectively of significant
systems,

multipath  components. In  actual
T .odetermines the length of the operatr  or

system memory, arg],determines the relative

motion due to system fluctuations or the operator’'s
if we have a
proper knowledge of the maximum delay and scale

as well as the minimum delay and

time-variations. Quintessentially,

valuesr S

max’ “max

scale values Smwin respectively, and if we also

min ?

have approximate statistics on the number of
propagation pathd which we here assume is
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In practice,d, ¢ has finite support. The minimum

delay is zero (., =0 ) thusy, ,, =T, Which
corresponds to a line-of-sight-propagation. For a

signifies fast fading

X

signaling rate_l_i, T, >7,.

and T, <r1,__.is slow fading. If the mobile unit is

moving towards the transmitter, then the minimum

and maximum (single-sided) scale values are given
+

- 1+ Vmax

by smin(l—sided) = l' Smaxq.—sided) C

equivalent to the number of the received versions of wherev’_ is the maximum velocity towards the

the transmitted signal, then the range of the channel

S

operator L is implicitly determines byr min

min ?

andr .., S,

’S(t):(L(dr,s'(Ar,sX)))Aﬂ(t) ’Tminsrsrmax %mSSSSma
(23)

In general, we define the following:

@l Fax Swn — Maximum scale spread

“Toin —

Vinax = Tmax Maximum delay spread

For any Lth received versions of(t), we can
write

$u1 Spn |04
Z:rl :Tmin * ‘yl+1‘

where s, ,7,,and a,,,,) are instantaneous

(24)

transmitter and assumes parallel arrival of copies of
transmitted signal with respect to the receiver. For
two-sided case, the scale dilation and contraction
caused by the movement of the mobile unit towards
or away from the transmitter is asymmetric about
the unit value (implies a zero shift in frequency),

Vmax
thus S ino-sideg =L~ c
V+
and Smaxa—sided) =1+ e
(

where Vv, ,.is the maximum velocity away from the

transmitter. If we define the associated total spread
for the time-frequency representation in (12) as

A [24, pp. 2-6], v, being the

total — Z-ma>ymax
W

Doppler spread, thed\! , and A", are related

scale, instantaneous delay, and the associated scaléor the one sided case by

spread, delay spread

accurate knowledge 0fS, .., Smins Tmac @Nd T

respectively. With fairly

AF
\?:Jtal = Tnax + %tal (25)

C

the channel responsé, ; can be estimated as the \yhere f_ is the operating frequency. Note the

group correlation ofy(t) with X, s(t) as shown in
Fig.7.

o “]\AKI/ ®
o8 |2 3@ ﬁ//x\
85 D EX)
X(t) 22 > e d,,
o g ! H
] S S

Admissibility
function -
synthesizer

difference between the symbols associated with
Doppler shift ¥ and velocity v. For any L"
received versions ofx(t) the delay spread at that
scale is

(2] =|3+1 _]l (26)

In general, if we assume the presence of mobile
scatterers and mobile transmitter/receiver, then

aI+Ln {Z S|+],n _]~
n

wheren represents the number of all contributions
to the scaling of the propagating signal along a path
L. Equations (26) and (27) are equivalent when only
the mobile terminal is considered.

The broadening, or extension, of the spreading

(27)

Figure 7: Estimator for channel response to wavelet function about the origin of the(7,s) plane

input
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provides a global characterization of the time-scale
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shifts introduced by the operatoA, . If the explicitly written as
spreading function is concentrated about some point y(t) = S"ax max deS (28)
(@',s')# (00)), this corresponds to an offset time- % drs \/‘

scale variation which can be split off the operator d
resulting in an operator whose spreading function is .
concentrated about the origin. We defined the d = jy(t)ixu(t _Tjdt (29)

minimum resolvable delay, to be the smallest \/E

7>0 such thatd, ; 00, and theminimum Applying the discretization operation on (28) and
resolvable scales, to be the smalless> s, such (29) yields the canonical expression given by
m
thatd,, (10 [32]. 1=33 d, 32 Agt-nr,) (30)
iz iz
and

6 Canonical Affine  Time-Scale Ty oo
Characterization :J ¥ 52 X(g't-nz, o (31)

In essence, all practical channels and signals have operator based expression for (30) and (31)

restrictions on time duration, fading rate, bandwidth, summation operatorZ, and affine-type frame
etc. These restrictions allow a simplified

representation of linear time varying channels in unitary operatod-\ :T, S— n,m such that

terms of canonical elements or building blocks. The _

discrete representation form of (10) in terms of y(t)_( G(dnm'(An,m rs))) (t) (32)
sampled time and frequency shifts was developed and

by Bello [21] based on time and bandwidth dnm:|e(yaAners) (33)

constraints [3]. A similar formation was also . . . .
obtained by Sayeed et al [25], [26] in order to which represents a continuous function of time by a

design the transmission Signa]ing and obtain countable sets of Coefficientdnm. The resultant

multipath and Doppler diversity. The discrete time- compact canonical affine-type (wavelet) time-scale
scale model of Mellin type for wideband time- model corresponding to (30) is shown in figure 8
varying system was developed by Jang and

Papandreou-Suppappola [27]. In the same vein we
develop the discrete time-scale model for the affine

|
NE]

type expressed in (20). Our time-scale model is S
based on sampling the time delay and time \ - ’
scaling s parameters by utilizing the frame theory XV ”[ eS| " Y0
based approach. d

The natural way to sample and s is to use a II .
logarithmic discretization of the scale and link S°
this, in turn, to the size of steps taken between B () /L ,
locations. To links to 7, we move a discrete step X _< ® o QT(/ Yo
to each new locatiom’ which is proportional to the Ao
scale s'. We choose s=¢g', s,>1land Figure 8: Canonical time-scale model

m
T=NZSy, 7o >0 [3]. The parameterd, and The outputs y(t) and y'(t) are related by

S, are fixed delay and scale sizes respectively and ¢onsidering the frame conditions given by
determines the density of the discrete lattice and A”y”z <ZZ
implicitly the resolution of the time-scale model. -

Accurate choices for, and s, are very important  \here A and Bare energy bounds of(t). If

(34)

nm _

control the actual delay and scale values ._ .
. implies that
respectively.

The mobile channel expression (20) can be
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Y1) = ky'(t)

where k=i [6], is an error margin with
A+B

(35)

which the sampled model differs froy(t) . For the
purpose of this work, and in most practical

) . B . .
situations, we assume that the raio is unity, thus

y(t) =y'(t) upholds. The parameters, and s,
are chosen to provide good resolution and

acceptable sparseness to the model. This is ensured  °

if the lattice structure is as close as possible to the
continuous grid as shown in figure 9. A practical
choice is to take the minimum resolvable delay and

scale as the values foy, ands,.

35 T T
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Fig.10a: Original delay-scale grid structure
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Fig.10b: Lattice structure for the corresponding
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Figure 9: Lattice structure of an original delay-scale
plane and the corresponding structure with respect

to different values of, and S,

For instance, let the delays associated with a
particular channel be given as 0, 0.2, 0.8, 1.6, 2.4,

and 5.0 s and the corresponding scales,
V,
s =1+— , 1= 0L2...L-1 wherev,  , is the
c
maximum velocity v, =120km/hr and
L=6.Using the lattice structure s=s;,

S, = D00000022 we arrive at discrete levels
m= 0J...5 corresponding to approximately
discrete step velocity o2376km/hr . The delay

I, =
s, = 100000022

7 Statistical Channel Characterization
In the foregoing discussion, our analysis has been
based on deterministic models which invariably are

of first order statistics. The spreading operaEqr,

is thus a deterministic operator. In reality,
deterministic characterization of the mobile radio
channel is not feasible and because the randomness
of the channel, we have to resort to finding the
appropriate statistical characterization. A scattering
function as well as operator equivalent to the delay-
Doppler Scattering function [2] of the Heisenberg
group is required.

The delay-scale spreading functiah ; can be

regarded as thdeterministicscattering function of
the low-pass equivalent received signal
y(t) = y'(t). Statistical characterization are

basically applied to stochastic processes, however to
gain insight tostatistical quantities like probability

density function, the level-crossing rate, and the
average duration of fades, the behaviour of

structure given above leads to a reasonable choice ofdeterministic processes as a funtion of random time

sampling interval of T, = 0.2us, thus for the
lattice structure 7= nr,s;’, n= 01...25, with

7, = [@99999956we arrive at a relatively sparse

lattice density close to the original grid as shown in
Fig.10.
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t can be studies. Th& imoment of such process is
defined by

m, (7,9 = E[d'] (36)
where the first moment is the statistical mean, the

second moment is the quadratic mean or the total
power associated with the spreading function, and
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the third moment can be used to measure the
asymmetry of function. The variance which captures
the time-varying power is given by

Y(@, § =B(d-m,,(7,9)’| (37)

The second order statistic that completely
describes the random channel is the autocorrelation
function (ACF). Depending on the underlying
process, the ACF can be given many definitions.
The process itself can be deterministic, or stochastic
stationary or nonstationary (time-varying). Let
{ (1)} be a stochastic process with zero mean and

finite variance, and letsE be the expectation
operator, we define the ACFpf( 9 = y(t)} by

R (t) =E|y(®)y"()] (38)
If { (1)} is a stationary process, the correlation

is invariant under any time shift and the ACF
depends only on the time differencé’ —t = At ,
thus

R (89 =E[y()y"(t +a0) (39)
If however { (1)} is nonstationary, then the

correlation varies as a function of time. A practical
application will to adopt the philosophy of time-
dependent power spectra [28] and then define a
Local Scattering function (LSF) of the nonstationary
process or channel [29].

Since {Y(t)}is a stochastic process, the

associated spreading function and operator are also
stochastic processes at a given scale 0. The

ACF of{ d, .} is given by
R(r, st s) =E[d, d, (40)

T

This expression is valid as long as the condition [30]

E{Jy(t){t T } {j{l%(tt}z%{ j }<+oc

(41)
is satisfied. This condition ensures the existence of
the second order processaf . Thus

R(zs718)= F” R(ED R(z st7.'s, 1) dtct

(42)
represents the generalized ACF of the affine time-

scale process. We can define the stationary process s

by conS|der|ng correlation with respect to the same
scale i.e. S= S in which a nonstationary process
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reduces to an ordinary wide sense stationary (WSS)
process [31]. If we lett =0, andt’ =t + At then

BrsTiS) —rHFs( {45

(43)
= < R/ , XE,S',AI ><1: Xr,s,t>
(Ryx:

1M S AL
scale Scattering functiofDSSF), an(K:L Xr,s,t> can

easily be shown to be an approximation of
O(r -1)0(s—s) which implies that at each
different scale the distribution is simply a scaled
version of the transmitted signal. If we consider
(34), then the corresponding expression is

R(am A, M)O(R,XG wa (L Xome)  (44)
The delay-scale scattering function can also be
referred to as thdelay-scale affine power spectrum

analogous to the delay-Doppler power spectrum of
Heisenberg group.

where b > is called theDelay-

8 Simulation Resultsand Discussions

To illustrate the practicality of our method, we
provide a delay-scale spreading function
(deterministic channel) example and simulations.
The mobile radio system considered is assumed to
operate at carrier frequency of 3.5GHz with a
maximum velocity of120km/ hr. We consider the
transmission of an admissible probe signal in this
case a Morlet wavelet shown in Fig.11 and given by

12

A1) = L2 cos@rrvt) (45)
2

and which we assumed lasts for about 10seconds,
with v=0.9. We employ a typical urban setting as
the test environment with a propagation path of
L = 6.Let the delay be given by 0, 0.2, 0.8, 1.6, 2.4,
and 5.0 ys and the corresponding scales,

S , 1= 012...L -1 wherev, , is the

maximum velocityV,

V,
::|_+_I
C

All motions away from the

max "

transmitter are not considered. The respectye
correspond to a delay in the order stated above with
S, corresponding to the delay &us and s,

for zero delay. We use the sampling interval
T. = 0002s for the time grid. The resultant delay-

scale spreading function is shown in Fig12.
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Transmitted Morlet wavelet function

n
time t ( sec)

Fig.11: The transmitted Morlet wavelet

Delay-scale spreading function with respect to a transmitted Morlet wavelet function

4

Spreading function dls

Delayr (. sec)

IogE Scale s(scale ) x 10°

Fig.12: Delay-scale spre:";lding function for
transmitted morlet wavelet in time and
frequency dispersive channel

Figure 12 clearly shows dispersion in time and
scale with varying supports for the delay-scale-
spreading  function. The maximum delay

spread .. is about 5.Qusec and the maximum
scale spreads,,is about 11x10™ on the natural
log scale. The total spread is
In@ ., )=— 120607254vhich by applying (25)
corresponds to total delay-Doppler spread of
B, =1925x10° at f =35GHz.It can be

seen that the scale spread is wholly dependent on

the velocity of the mobile unit. A further research on

deriving the associated parameters like power

profile and scale (Doppler) spectrum both for the

deterministic and the stochastic cases are being[7]

conducted.

9 Conclusion

We  presented mobile radio channel

characterization by means of compactly supported

Uche A. K. Okonkwo, Razali Ngah, Tharek A. Rahman

and provides better time and frequency resolution
compared to conventional Fourier domain methods.
Since scale is related to frequency, this allows for a
simultaneous mapping of the delay and frequency
on the time-scale plane. And because the scale
spread is wholly dependent on the velocity of the

mobile unit any variation in time and frequency

associated with the channel can be accounted for
due to the evolutional nature of the analyzing

wavelet ‘window’ with respect to changes in scale.
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