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Abstract: - Mobile radio channel characterization using linear operators of affine group is presented. The 
foundation of this approach is primarily based on the natural extension of basic concepts of time-scale 
representations of wavelet-type to the analysis and representation of the nonstationarity associated with the 
real-time mobile radio channel. We provide an operator-based characterization initiated by the need to present 
an intuitive and physical approach towards describing and representing the various effects of the channel. The 
concepts of delay-scale spreading function and operator as well as delay-scale scattering function and operator 
is introduced. We established the relationship between the continuous wavelet transform and these 
functions/operators by employing the powerful tool of group theory. We also derived canonical expression for 
the corresponding channel by discretizing the channel using frame concept. The practical relevance of our 
approach is illustrated via deterministic examples and the associated simulations.  
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1 Introduction 
The challenges of using the mobile radio channel 

are its excessive multipath propagation property and 
the dispersion in frequency caused by the movement 
of the mobile unit/scatteres. In essence, multipath 
propagation is absolutely necessary to ensure 
sufficient radio coverage for mobile radio 
communication; however it causes difficulties in 
radio transmission in numerous ways. The deviation 
in frequency caused by mobility also degrades the 
performance of the receiver when the offset is 
unable to be estimated and corrected. All kinds of 
transmission techniques may suffer from channel 
quality degradation due to this doubly influence of 
the mobile channel. And these phenomena become 
much maligned in system design for high data rate 
transmission and in high speed environment.  

The process variation caused by the movement 
of the mobile unit/environment ultimately makes the 
mobile radio channel a nonstationary channel. Thus 
accurate channel characterization and representation 
based on this nonstationarity is crucial in system 
design by providing information on the parameters 
essential for optimal mobile communication 
transceiver design and network planning. Existing 
channel characterizations model the doubly channel 

effects using the delay-Doppler spreading function 
[1], [2] which provides basis for understanding the 
relationship between the physics of the problem and 
its time-varying scattering representation. This time-
frequency characterization require the use of 
windowed Fourier transform which maps a function 
to a weighted sum of windowed tones with a fixed 
window size which results in poor time-frequency 
resolution . More also the transform fares badly in 
representing or analyzing nonstationary processes 
like the mobile channel. Thus such characterizations 
method may not be adequate in tracking channel 
variations especially in fast fading and frequency 
selective channels. The wavelet transform [3], [4], 
[5] on the other hand is a nonstationary linear 
transform method and provides an evolutionary 
channel mapping method which offers better time 
and frequency resolution with evolutional window 
capable of tracking channel variations. An 
inspirational insight into the application of wavelet 
theory to the characterization of signals and system 
is available in [6]. In [7] different methods of 
estimating the time-scale or wideband spreading 
function is discussed with consideration to  radar 
imaging and parameter estimation of distributed 
objects using continuous wavelet transform (CWT). 
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The application of wavelet transform as a tool in 
wideband correlation processing is addressed by 
Weiss [8] with particular interest in sonar and radar. 
In [9], [10], the intimate connection between 
wideband spreading function characterization for 
linear time variant (LTV) systems and CWT is 
presented. The proportionality of the wideband 
density function to continuous wavelet transform is 
also addressed in [11]. In [32] Marggetts considered 
the effect of mobility on a wideband direct sequence 
spread spectrum communication system and study a 
joint scale-lag diversity technique in mobile 
wideband systems.  

In this paper, we present the characterization and 
description of mobile radio channel using the affine 
group operator concept. The main idea is to project 
the channel as a linear operator [19] specifically of 
the affine kind with a view to providing a physical 
as well as intuitive approach toward describing and 
representing the influences of the channel on 
transmitted signals. In a broad sense the doubly 
effect of the mobile radio channel (MRC) can be 
characterized by joint variable operators either in 
the form delay-Doppler or delay-scale operators for 
different group representations. We introduce the 
general concept of channel operators and 
concentrate on the affine channel operator of 
wavelet type.  We regard the channel in question to 
be wideband. However, the usual wideband and 
narrowband distinction made by the ratio of channel 
bandwidth and channel center frequency is not 
meaningful for radio propagation. The bandwidth of 
the system is the zoom factor of the system on the 
excess time delay axis of the response function. 
Thus the wideband-narrowband question must be 
answered with respect to how the system 
experiences multipath and frequency fades. Hence 
wideband condition can be viewed as the upper 
bound for a narrowband assumption and as such it is 
deemed that this presentation is general as long as 
the channel is regarded as being nonstationary and 
frequency selective. In any broadband and high data 
rate systems typical of mobile broadband 
communication systems like Ultra wideband 
(UWB), Acoustic Communications and mobile 
Wireless interoperability for microwave access 
(WiMax) channels, this method greatly suffices. 

 This paper is organized as follows. The 
mathematical preliminaries and notations associated 
with this paper are given in section 2. In section 3 
the generalized operator-based system model is 
developed and then narrowed down to affine 

operator representation of the time-scale 
characterization presented in section 4. We discuss 
the derived delay-scale function and operator in 
section 5. The canonical model for the affine-based 
time-scale characterization is developed in section 
6, and the second-order statistics of our model is 
presented in section 7.  An example and 
accompanying simulations to demonstrate the 
application of our model with respect to a 
deterministic channel are presented in Section 8. 

  
 

2 Preliminaries and Notations 
We provide in this section some of the 

mathematical notations and definitions used in this 
paper. However some definitions are reserved to be 
introduced at appropriate points where it is deem 
such action will give better cohesion to this work. 
All operators in this discussion are assumed to be on 
Hilbert space. The concept of an operator or 
transformation on a Hilbert space is a natural 
generalization of the idea of a function of a real 
variable. Indeed it is fundamental in mathematics, 
science and engineering where linear operators on a 
Hilbert space are widely used to represent physical 
quantities and transformations, and hence provide 
better insight to phenomena associated with 
processes and systems. The term operator is here 
considered in the same manner as words like 
transformation, mapping and phenomenal effects 
associated with the wireless channel. All operators 
are in bold face letters. 

 

Definition 2.1: Let ℑ  be an operator, and let’s 

assume that 0H and 0K are Hilbert spaces with norm 

0
.

H
,

0
.

K
and inner products 

0
.,. H>< ,

0
.,. K>< , 

respectively, and 00: KH →ℑ  

i. ℑ is linear if yx ℑℑ + 21 λλ  0, Hyx ∈∀ and C∈21,λλ , where Cdenotes complex-valued 

number. 

ii  ℑ is injective if yx ℑℑ ≠  whenever yx ≠ . 

iii ℑ is surjective if 0)( KRange =ℑ .  

iv ℑ is bijective if it is both injective and 

subjective. This means that given any 0Ky ∈ , there 

is exactly one 0Hx∈  such that yx =ℑ .  
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v   The norm of ℑ is given by 

}1:{
0

0
0 =∈= ℑℑ

HK
xandHxxSup  

vi  ℑ is bounded if there exist a number Q such 

that 0HxxQx ∈∀≤ℑ . 

vii ℑ  is continuous at 0x  if 00 →−xxn  implies 

0)()( 0 →−ℑℑ xxn  

viii The adjoint of ℑ  is the unique operator 

00: HK →∗ℑ such  that 

00,,,
00

KyHxyxyx HK ∈∈∀>=<>< ∗ℑℑ  

ix  ℑ  is an isometry if  
0

0
HK

xx =ℑ  0Hx∈∀ . 

A linear map ℑ is norm-preserving, if and only 

if  0,,,
00

Hyxyxyx HK ∈∀>=<>< ℑℑ .  

x ℑ  is called unitary in the case 

I== ∗∗ ℑℑℑℑ  where I  is an identity 
operator. 

xi   ℑ  is self-adjoint or Hermitian if ℑℑ =∗ . 
 

Definition 2.2: Let C∈f  denote a complex-

valued function, and ℜ  a real number line, given 
∞<≤ p1 , we define the Lebesgue space 

( )












∞<==ℜ ∫ pp

p

p dttfffL
1

)(:)(  as a 

Banach space and )(2 ℜL as the Hilbert space with 

inner product >< gf ,  where g  in our case is a 

time function.  
 
 

3 System Model 
The mobile communications channel is 

dominantly characterized by the doubly influence of 
multipath phenomenon and shift/variation in 
frequency induced on the transmitted signal by 
mobility. To represent these phenomena require the 
use of appropriate joint time-frequency or as the 
case may be, a joint time-scale representation. In 
general we neglect the effect of additive white 
Gaussian noise, thus for a continuous time case, the 
effect of the mobile channel can be represented by a 

linear operator CH
Gℑ  as shown in Fig.1,  

 
 
Fig.1: Generalized mobile channel model 

 
such that 

))(~()(~ txty CH
Gℑ=     (1) 

where )(~ tx  and )(~ ty  are the baseband 
representations of the transmitted and received 

signals respectively. We consider CH
Gℑ as a Hilbert-

Schmidt (HS) operator [20] which is always 
bounded. This type of operator establishes a Hilbert 

space 0H  with inner product >< ℑ UUUU,CH
G  and 

norm >=< ℑℑℑ CCC H
G

H
G

HS

H
G ,:

2

, where UUUU  is a 

unitary operator that acts on the transmitted signal 
as will be explained shortly. 
 

Definition 3.1: Let CH
Gℑ be a linear mapping 

00: HHCH
G →ℑ  in the Hilbert space 0H which 

maps a function gx x
~~

~φ=  to a function 

qy y
~~

~φ= where cH is the channel parameterization 

with superscript c  denoting either time-invariant or 
time-variant channel, and x~φ and y~φ  are the bases of 

x~ and y~ , with corresponding coefficients g~  and  

q~  .  If we define CH
Gℑ on a groupG , then the 

relation with cH is given by 

))(~())(~()(~
, txHtxty G

cH
G

C

∏⊗== ℑ    (2) 

where ∏⊗ ,G  delineates the actions of the channel on 

)(~ tx . The subscripts ∏,G  denotes the channel 

operation under a particular groupG  and transform 
domain ∏ . For a linear time-invariant (LTI) 
channel, G   is of the Heisenberg group and ∏  is in 
the Fourier domain, thus ∏⊗ ,G is equivalent to a 

convolution operator of the Fourier class, and for 
time-varying channel ∏⊗ ,G is group convolution 

operator. Hence depending upon the assumptions 
made regarding the channel and the entire system, 
several different channel operators’ approximations 
and parameterizations suffice. Note that for 
simplicity, since we are considering a time-varying 

 

)(~ ty  )(~ tx  CH
Gℑ  

MRC 
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channel, we assume G
H
G

C ℑℑ ≡ , and work on 

baseband level such that yxyx
def

,~,~ = . 

 In mobile radio system Gℑ  involves the 

combination of different operators which are 
generally time-delay, and frequency variation or 
time-dilation operators acting jointly to account for 
time-frequency  and time-scale dispersion effects of 
the channel on the transmitted signal. The order of 
occurrences of the operators in the joint 
representations (commutativity); or if the actions are 
simultaneous, can be of importance in the accurate 
representation of the channel action by the 
associated mathematical representational or 
mapping tool employed. Joint Time-frequency and 
Time-scale characterization has been addressed in 
[12], [13], [14], [15]. In [16] the association of joint 
variable representation is presented. For 

dt ℜ∈ , dℜ∈ω and ds ℜ∈  we denote by τDDDD the 

time delay operator, ωFFFF the frequency shift 

(Doppler) operator, and sSSSS the time scaling operator 

defined respectively by 

)(~))(~(),()(: 22 τττ −=ℜ→ℜ txtxLL dd DDDDDDDD  
tjdd etxtxLL ω

ωω )(~))(~(),()(: 22 =ℜ→ℜ FFFFFFFF
     (3) 








=ℜ→ℜ
s

t
x

s
txLL s

dd
s

~1
))(~(),()(: 22 SSSSSSSS  

where τDDDD , ωFFFF , and sSSSS are considered as unitary, 

isometric and bijective operators and s,,ωτ  are 
implicitly defined in the above expressions. 
 
Theorem 1: Assume 0H  is a Hilbert space with 

norm 
0

.
H

and inner product
0

.,. H>< , and that 

2,1: 00 =→ mHHmUUUU , is a unitary operator 

i. There exist joint operator 2,121 UUUUUUUUUUUU ≡  

and  1,212 UUUUUUUUUUUU ≡  

ii. 2,1UUUU , 1,2UUUU  are also unitary operators  

iii.  2,11,2 UUUUUUUU =  if and only if 1UUUU and 

2UUUU are commutative  

iv. If 1UUUU and 2UUUU  are isometric, so are 2,1UUUU  

and 1,2UUUU . 

The corresponding proof is easy. 
 

We define the corresponding joint operators 

ωτ,VVVV and s,τAAAA for delay-Doppler and delay-scale 

operators respectively by 
tjdd etxtxtxLL ω

ωτωτωτ τ)(~)))(~(())(~(),()(: ,
22

, −==ℜ→ℜ FFFFDDDDVVVVVVVV
      (4) 








 −==ℜ→ℜ
s

t
x

s
txtxLL ss

dd
s

τ
τττ

~
||

1
)))(~(())(~(),()(: ,

22
, SSSSDDDDAAAAAAAA

      (5) 

where τωωτ ,, VVVVVVVV def

≠ and ττ ,, s

def

s AAAAAAAA ≠ , except if the 

joint operation is deemed to be accorded 
simultaneity condition (commutative). Thus τDDDD and 

ωFFFF , and, τDDDD and sSSSS , do not commute. In fact the 

Heisenberg and affine group are generally regarded 
as non-commutative groups with unitary 
transformations that are non-commutative except 
when the underlying physics says otherwise. Of 

course τωωτ ,, VVVVVVVV = and ττ ,, ss AAAAAAAA = . However 

for the rest of the discussion except otherwise 
stated, we assume that the joint channel operators 
are of the forms in (4) and (5). The expression in (5) 
is a joint channel operator of the affine group, and 
uses the term ||/1 s  to maintain the norm of the 

operator. This joint operator of affine group forms 
the bases of our discussions.  

Classical results from group theory can be used 
to gain insight into properties of systems with joint 
variable functions. Group representation theory 
provides unified framework for the study of 
spreading function both for the Heisenberg group 
and the affine group which are used to represent 
time-varying propagations and scattering channels. 
Some applications of this theory as regards system 
representation are available in [9], [10], [11], [22]. 
We refer the reader to [18] for some background on 
group representations. 

We now build our operator-based channel 
model mimicking the real mobile channel using 
three basic operators namely; unitary operator, inner 
product operator and integral operator of simple 
kind. The unitary operator has been defined in 
Definition 2.1. x. 
 
Definition 3.2: The inner product operator 

G>≡< .,.(.,.)GIIII  of group G Hilbert space 0H  maps 

two function pairs say ),( xy to produce a third 

which is a dependent on the group elements ϑ . 
 
Definition 3.3: An integral operator LLLL  of group G 
on a Hilbert space 0H given by 
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∫ ∫ℑℑ∗=≡
G G

dd )()( ϑµϑµILLLL  is called simple 

kind if and only if I== ∗∗ ℑℑℑℑ . 
  

The transmitted signal on one hand undergoes 
a time-frequency/scale operation resulting in 
different copies of the )(tx at the receiver end. We 
consider these copies as a function of a unitary 
operator denoted arbitrarily by ϑUUUU , which is a 

unitary operator of group G and measure µ  on each 

group element ),( ωτϑ ≡  and ),( sτϑ ≡  for Weyl-

Heisenberg and affine group on 0H respectively. 

Thus we split this operator off Gℑ  as shown in 

Fig.2. 

 
 
Fig.2: Compact model with the unitary operator split 

off the channel operator 
 
We can express the received signal as 

)())~(()( txty G µϑUUUUℑ=    (6) 

For this expression and representation to be valid, 

we regard Gℑ  as also containing an operator that 

maintains and ensures the equivalence between the 
‘spread’ copies of the transmitted signal and the 
received signal )(ty . We describe the weight of the 

coefficients associated with the unitary operator ϑU  

and generated by the operator Gℑ  in mapping )(tx  

onto )(ty  as a density function defined by an inner 

product operator GIIII of group G with respect to the 

pairs ),( ϑxy  such that 

( ) ϑϑϑ dxyxyG =>=< ,,IIII    (7) 

We consider an equivalent operator Ξwhich 
acts on )(txϑ  or which acts on )(tx (if we assume it 

is split off Gℑ ) to produce the weight and whatever 

is the order is irrelevant since ΞΞ ϑϑ UUUUUUUU = . Hence 

( ) ϑϑϑ dxxyG == Ξ,IIII     (8) 

We modify figure 2 accordingly as shown in Fig.3. 

 
Fig.3: Equivalent mobile channel model comprising 

all three operators 
 
The two figures above are equivalent; the upper 
figure is a real-time model of the mobile radio 
channel whereas the other is more of a synthesized 
channel in which the density function is estimated 
given that we have knowledge of the channel input 
and output. The operator µ,GLLLL  is an integral 

operator of simple kind defined on group G and 
measure µ , and emphasizes on the collective 
actions of all other operators discussed. Hence we 
can represent a typical mobile radio channel (MRC) 
by the operator-based expression given by 

)()))((()( , tUxty G µϑΞL=    (9) 

We maintain that all operators associated with 
(9) are HS operators where for clarity the bracket 

))(( tgΛ represents the result of operating on g  

with the operator Λ and then evaluating at the point 
t . This representation is a full and intuitive 
characterization of the mobile radio channel or any 
such system where mobility and scatters are 
involved. The choice of representation and its 
accuracy strictly depend on the physics of the 
problem, the group G and measure µ , and the 

group element ϑ . The operator ϑUUUU  is equal to the 

joint time-frequency and time-scale expressions in 
(4) and (5) respectively and can be deduced from 
them considering the appropriate group G. On the 
other hand, ϑΞ is an inner product operator and for 

an ideal channel equals a norm operator 

G>< ϑϑ UUUUUUUU , .  

 
Definition 3.4: Let T be the torus group with unit 

circle in C  i.e. }1:{ =∈= zzT C , and ℜ̂  the real 

number line thought of as the frequency axis, we 

 )(txϑ  
)(ty  )(tx  

Gℑ  ϑU  
 

 

ϑd  

)(tzϑ  
)(tx  )(ty  

)(txϑ  
µ,GL  

ϑU  

G
I  

 

 

 

 
tz ,ϑ  )(txϑ  

)(tx  )(ty  ϑU  ϑΞ  µ,GL  
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define a group ℜ×ℜ×= ˆTΗ  the set acting on 

)(2 ℜL  as Weyl-Heisenberg group with unitary 

operator denoted by 
RRT ˆ××VVVV  

If we consider the group Ηand group element 
),( ντϑ ≡ , the appropriate measure µ for the 

representation of the joint delay-Doppler (ντ − ) 
action of the mobile channel is the Left Invariant 
measure ντϑµ ddd =)( (see Appendix A in [22] 
for more details and definitions). Thus (9) is 
simplified as 

µντϑ ,, |))())((()( Htxty UUUUΞL=           (10) 

µντ ,, |))())((( HtxVVVVΞL=  

where (10) is an operator-based time-frequency 
representation with respect to the group Η. An 
observation from our discussion shows that the 
operator ϑΞ is obviously a pivot operator that is 

related in one way or another to all other operators 
defined as indicated by the expression 

),(),( xxxxx GGGG ϑϑϑϑ UUUUIIIIUUUUIIII ℑℑ ==Ξ         (11) 

This operator therefore explicitly describes the 
dispersive behavior of the channel. The result of the 
operator on ϑx  is the weighted function termed 

spreading function (in time-frequency theory) or 
coherent state (in Quantum Physics) [20], thus we 
can refer to ϑΞ as the spreading operator. The 

connection between the coherent state and short-
time Fourier transform (STFT) can be extended to 
the spreading function due to strong interrelation 
between time-frequency analysis and Quantum 
physics thus 

>=<= xVkwSTFTx yw ντντ ντ ,,, ,);,(Ξ       (12) 

where )().(),(, ττ −= twtytk yw is called the kernel 

of the channel operator Gℑ  for a given window 

function )(tw . We denote the ensuing functionϑd  

by ),(
~ ντS refer to as the delay-Doppler spreading 

function by Bello [21] and accounts for the joint 
delay and Doppler variation of the channel. And 
accordingly we define ντ,Ξ  as the delay-Doppler 

spreading operator. The window term )(tw  is 
viewed as the snapshot of the mobile radio channel 
often modeled as a time-varying filter. This 
snapshot irrespective of the width is assumed to be 
stationary over the transmission interval in order to 
analyze the channel using the windowed transform. 
Such situation constrains the resolution of the 
operator ϑΞ . Thus since the mobile radio channel is 

nonstationary in reality, any channel variation in 
time and frequency that does not fall within this 
window width is not accounted for. This fixed 
window orientation results in channel mapping with 
poor (fixed) time-frequency resolution as indicated 
in Fig.4.  
 
 
ν  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4:Delay-Doppler resolution plane as a function 

of fixed windowed transform 
 

And for a frequency selective and fast fading 
channel, and even in the narrowband time-varying 
baseband equivalent channel, the delay-Doppler 
operator is not shift invariance; hence sinusoids are 
not eigenfunctions. We thus need eigenfunctions 
that will provide shift invariance spreading operator 
that adequately match the channel properties so 
mentioned thus providing optimal representation.   
 
 
4 Affine Operator-Based Time-Scale 

Channel Characterization  
The notion of Doppler variation can be 

considered as a form of time scaling (dilation) 
operation [22] where scale is given by 

c

d

vc

vc
s

ω
ω

+≈
+
−= 1               (13) 

where cvc ω,, and dω  are the speed of 

electromagnetic wave in free space, speed of mobile 
unit, operating frequency and associated Doppler 
shift respectively. Thus we can obtain a time-scale 
representation of the channel on temporal plane 
equivalent to time-frequency representation. Note 
the use of time-scale and time scaling; while the 
former refers to joint operator and representation, 
the latter is a single linear operation. 
 

Definition 4.1: Let ℜ×ℜ= ˆA  be a set acting on 

)(2 ℜL which involves translation τ  and dilation or 

τ  

T

1  

B

1  

ν−  
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time scaling s , and maps a function on 

)(2 ℜ∈Lx into a new independent variable 
s

x τ−
. 

The set A  is called the affine group with unitary 
operation denoted by RR×AAAA  

The time-scale representation of (10) with 
respect to the affine group and unitary operator 

sRR ,τAAAAAAAA =× is given by 

µτ ,, |))())((()( Atxty sAAAAΞL=              (14) 

where τ  is a time delay or translation parameter 
with respect to the delay operator τDDDD , and s is a 

time scaling parameter with respect to time scaling 
operator sSSSS  as a result of channel mobility. With 

reference to Fig.3,  )(, tx sτ  can be written as 








 −==
s

t
x

s
txtx ss

τ
ττ

1
)())(( ,,AAAA            (15) 

The left Haar measures of the affine group is 
given by 

2
)(

s

dds
d

τϑµ =  [3]. This measure other 

than  τϑµ ddsd =)( ensures constant surface and is 

required for due energy conservation in mapping the 
input to output. 

A similar coherent state relationship to the 
spreading operator ντ,Ξ can be extended to the 

affine spreading operator s,τΞ which acts on )(, tx sτ  

to yield the delay-scale density or spreading 
function analogous to the delay-Doppler spreading 
function of the Weyl-Heisenberg group. In general 
the goal in electronic communication is to recover 
the transmitted signal from the ‘echoes’ with the 
help of the information from this density function 

sd ,τ . The estimation of  sd ,τ  is thus important in 

providing efficient communication services. The 
delay-scale spreading function can be estimated by 
formulating the inverse problem for obtaining 

sd ,τ with recourse to [7] and expressed as 

sdty ,)( τΓΓΓΓ=                (16) 

where  

2

1
(.)(.)

s

dsd

s

t
x

s

ττ
∫ ∫
∞

∞−

∞

∞−








 −=ΓΓΓΓ   

 Thus 

sG dx ,τΓΓΓΓ=ℑ     

This expression is an estimator where the 
knowledge of the operators and the response can aid 
in recovering x . Different methods of solving for 

sd ,τ  have been addressed by the literature [7]. One 

of such methods is the wavelet transform technique. 

The importance of this method in mobile radio 
channel characterization is that it provides solution 
to the lapses of (12) in representing the spreading 
operator.  

To improve on the resolution of the spreading 

operator ϑΞ we thus require a coherent state with 

better time-frequency/scale resolution. An 
alternative to windowed Fourier transform was 
proposed by Grossmann and Morlet [23] in which 
the rule for generating the ‘basis functions’ was 
changed. This is done by replacing the modulation 

operation defined on ℜ̂  by a scaling operation. This 
transform method is called continuous wavelet 
transform (CWT). On its merit CWT promises 
better time-frequency resolution due to the use of 
evolutionary ‘window’ in terms of variable scales. 
Basically continuous wavelet transform (CWT) is an 
inherently two dimensional transform that uses 
‘small waves’ of finite support as the analyzing 
kernels generated by affine unitary operation on an 
arbitrary ‘mother wavelet’ )(tϕ such that 

( ) ℜ∈






 −== t
s

t

s
tt ss ,

1
)()( ,,

τϕϕϕ ττAAAA       (17) 

The wavelet )(, tsτϕ can be viewed as a copy of the 

original wavelet )(tϕ  shifted by time steps τ and 

rescaled in time by step size s. Given an analyzing 
wavelet )(tϕ , the corresponding CWT is defined as 

follows: 

Definition 4.2: Let )()( 21 ℜ∩ℜ∈ LLϕ be an 

analyzing wavelet, the continuous wavelet transform 
of an arbitrary finite-energy signal )(tf  is defined 

by the inner product operator (.,.)GIIII  such that 

sssG dff ,,, ,),( τττ ϕϕ == AAAAAAAAIIII             (18) 

 The inverse transform is given by 

( ) )()).((

))(()(

,,,
1 tdC

ttf

Ass µττϕ ϕ
ϕ AAAALLLLΛΛΛΛ

−=

=
                    (19) 

where ∫
∞

∞−

∞<
Ψ

= ω
ω
ω

ϕ dC
2

)(
 is an admissibility 

condition described fully in [3] and )(ωΨ  is the 

Fourier transform of )(tϕ .  

A close observation on (9) and (18) reveals that 
both equations are equal except for the admissibility 
term. This means that we can assume that for a 

transmitted signal )()()()( 21 ℜ∩ℜ∈≡ LLttx ϕ , 
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Λ≡ℑ , there exist a unitary affine operator 

s,τAAAA which acts on it to produce delayed and 

rescaled versions of )(tx  which with associated 

spreading function sd ,τ , are integrated to yield the 

received signal )()( tfty ≡  as shown in Fig.5. 

 
 

Fig.5: Illustration of the operators with respect to 
wavelet-type affine time-scale channel model 

 
 Thus we can extend the coherent state relation 

with Fourier transform to wavelet transform which 
implies and by induction that the response or 
associated spreading function of the affine time-
scale channel representation is the wavelet 
transform of the received signal )(ty with respect to 

the transmitted signal )(tx . We reframe (11) as 

ssGss dxyx ,,,, ),( ττττ == AAAAIIIIΞ              (20) 

 The function sd ,τ  can be referred to as the delay-

scale spreading function and s,τΞ as the  delay-scale 

spreading operator. However, sd ,τ is unique to a 

particular probe signal. It should be noted that a 
necessary requirement here is that the probe or 
transmitted signal )(tx  must be admissible so that 

∫
∞

∞−

∞<= ω
ω
ω

d
X

Cx

2
)(

. 

If we let 
xC

ty
y

)(
ˆ = , then 

( ) )()).(()(ˆ
,,, txdty

Ass µττ AAAALLLL=             (21) 

It can easily be shown that the corresponding delay-

scale spreading function sd ,
ˆ

τ  is related to )(ty  by 

 ( )xyCd sGxs ,
1

, ,.ˆ
ττ AAAAIIII−=           (22) 

Thus within some power constraints, we 
equivalently state that 

ss dd ,,
ˆ

ττ ≅       

For an ideal channel, sd ,τ  is the auto-wavelet 

channel response.  It can be shown that when 

sd ,τ has support only along 1=s  and is perfectly 

concentrated along the τ  axis, then (14) reduces to 
a linear time-invariant system and ττ dd s →, . 

While for sd ,τ with support only along 0=τ  and 

perfectly concentrated along the s  axis, we have a 
linear frequency-invariant` system and ss dd →,τ . 

If we consider sd ,τ  as also a function time, then at 

1=s , the resultant function, tts dd ,,, ττ → , provides 

a time-varying channel response. 
The time-scale resolution of the delay-scale 

spreading function is shown in Fig.6, indicating a 
good resolution due to variable scales of the 
analyzing functions which corresponds to high 
frequency/low scale and low frequency/high scale 
representation and capable of tracking time-varying 
channels more accurately compared to the constant 
relative bandwidth of the STFT.  
 

 

 
 
Fig.6: Time-scale resolution plane of wavelet 

transform 
 

  

5 Delay-Scale Spreading Function and 
Operator 
We observe that since continuous wavelet 

transform with respect to the invariant measure 

2s

dsdτ  is asymmetric, then sd ,τ  is also asymmetric. 

The values of τ andsprovides the support for the 
spreading function in delay and scale coordinates 
respectively. Let’s define the total spread 

maxmaxs
W
total τ=∆  as the coherent rectangular area 

that determines the extension of the spreading 
function about the origin. The quantities maxτ  and 

maxs are the differences between the largest and 

T

1  

sB

s

B ′
′

=1
 

s 

    τ  

 

Mobile Unit 

 

)(tx  sd ,τ  
)(, tx sτ  

)(ty  

µ,ALLLL  s,τΞ  s,τAAAA  Base Station 
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smallest delay and scale respectively of significant 
multipath components. In actual systems, 

maxτ determines the length of the operator s,τΞ  or 

system memory, andmaxs determines the relative 

motion due to system fluctuations or the operator’s 
time-variations. Quintessentially, if we have a 
proper knowledge of the maximum delay and scale 
values maxτ , maxs as well as the minimum delay and 

scale values minτ , mins  respectively, and if we also 
have approximate statistics on the number of 
propagation paths L which we here assume is 
equivalent to the number of the received versions of 
the transmitted signal, then the range of the channel 
operator Gℑ  is implicitly determines by minτ , mins  

and maxτ , maxs . 

( ) maxminmaxmin,,, ,,)()).(()(ˆ ssstxdty
Ass ≤≤≤≤= τττµττ AAAALLLL

                                         (23) 
In general, we define the following: 

→−= minmaxmax ssα Maximum scale spread  

→−= minmaxmax ττγ        Maximum delay spread

                         
For any Lth received versions of )(tx , we can 

write 

1,.....,2,1,0
1min1

1min1 −=




±=
±=

++

++ Ll
ss

ll

ll

γττ
α

           (24) 

where 11 , ++ lls τ and 11 , ++ ll γα are instantaneous 

scale, instantaneous delay, and the associated scale 
spread, delay spread respectively. With fairly 
accurate knowledge of ,,, maxminmax τss and minτ , 

the channel response sd ,τ  can be estimated as the 

group correlation of )(ty with )(, tx Sτ as shown in 

Fig.7. 

 
Figure 7: Estimator for channel response to wavelet 

input  

In practice, sd ,τ  has finite support. The minimum 

delay is zero ( 0min =τ  ) thus maxmax τγ =  which 

corresponds to a line-of-sight-propagation. For a 

signaling rate 
sT

1
, maxτ>sT  signifies fast fading 

and maxτ<sT is slow fading. If the mobile unit is 

moving towards the transmitter, then the minimum 
and maximum (single-sided) scale values are given 

by 1)1min( =−sideds , 
c

v
s sided

+

− += max
)1max( 1  

where +
maxv  is the maximum velocity towards the 

transmitter and assumes parallel arrival of copies of 
transmitted signal with respect to the receiver. For 
two-sided case, the scale dilation and contraction 
caused by the movement of the mobile unit towards 
or away from the transmitter is asymmetric about 
the unit value (implies a zero shift in frequency), 

thus 
c

v
s sided

−

− −= max
)2min( 1  

and  
c

v
s sided

+

− += max
)2max( 1   

where −
maxv is the maximum velocity away from the 

transmitter.  If we define the associated total spread 
for the time-frequency representation in (12) as 

maxmaxντ=∆F
total  [24, pp. 2-6], maxν being the 

Doppler spread, then Wtotal∆  and F
total∆  are related 

for the one sided case by 

c

F
totalW

total f

∆
+=∆ maxτ                           (25) 

where cf  is the operating frequency. Note the 

difference between the symbols associated with 
Doppler shift ν  and velocity v . For any Lth 
received versions of )(tx the delay spread at that 
scale is 

111 −= ++ ll sα              (26) 

In general, if we assume the presence of mobile 
scatterers and mobile transmitter/receiver, then 

∑ −= ++
n

nlnl s 1,1,1α             (27) 

where n represents the number of all contributions 
to the scaling of the propagating signal along a path 
L. Equations (26) and (27) are equivalent when only 
the mobile terminal is considered.  

The broadening, or extension, of the spreading 
function about the origin of the ),( sτ  plane 
provides a global characterization of the time-scale 

 )(ty  

)(tx  

D
aug

hter W
avelet 

G
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shifts introduced by the operator s,τAAAA . If the 

spreading function is concentrated about some point 
( )0,0(),( ≠′′ sτ ), this corresponds to an offset time-
scale variation which can be split off the operator 
resulting in an operator whose spreading function is 
concentrated about the origin. We defined the 
minimum resolvable delay rτ  to be the smallest 

0>τ  such that 0
min, ≅sr

dτ , and the minimum 

resolvable scale rs  to be the smallest minss>  such 

that 0,0 ≅
rsd  [32]. 

 
 
6 Canonical Affine Time-Scale 

Characterization 
In essence, all practical channels and signals have 

effective finite number of freedom due to 
restrictions on time duration, fading rate, bandwidth, 
etc. These restrictions allow a simplified 
representation of linear time varying channels in 
terms of canonical elements or building blocks. The 
discrete representation form of (10) in terms of 
sampled time and frequency shifts was developed 
by Bello [21] based on time and bandwidth 
constraints [3]. A similar formation was also 
obtained by Sayeed et al [25], [26] in order to 
design the transmission signaling and obtain 
multipath and Doppler diversity. The discrete time- 
scale model of Mellin type for wideband time-
varying system was developed by Jang and 
Papandreou-Suppappola [27]. In the same vein we 
develop the discrete time-scale model for the affine 
type expressed in (20). Our time-scale model is 
based on sampling the time delay τ  and time 
scaling s  parameters by utilizing the frame theory 
based approach.  

The natural way to sample τ  and s  is to use a 
logarithmic discretization of the scale s and link 
this, in turn, to the size of steps taken between τ  
locations. To link s  to τ , we move a discrete step 
to each new location τ ′  which is proportional to the 

scale s′ . We choose 1, 00 >= sss m and 

0, 000 >= τττ msn  [3]. The parameters 0τ  and 

0s  are fixed delay and scale sizes respectively and 

determines the density of the discrete lattice and 
implicitly the resolution of the time-scale model. 
Accurate choices for 0τ  and 0s  are very important 

as will be discussed shortly. The integers n  and m  
control the actual delay and scale values 
respectively.  

The mobile channel expression (20) can be 

explicitly written as 

∫ ∫ 






 −=
max

min

max

min

2,

1
)(

s

s

s s

dsd

s

t
x

s
dty

τ

τ
τ

ττ
            (28) 

and 

∫
∞

∞−

∗







 −= dt
s

t
x

s
tyd s

τ
τ

1
)(,            (29) 

Applying the discretization operation on (28) and 
(29) yields the canonical expression given by 

( )∑∑
∈ ∈

−
−=′

Zm Zn

m
m

mn ntsxsdty 00
2

0,)( τ             (30) 

and 

( )∫
∞

∞−

∗−
−′= dtntsxstyd m

m

s 00
2

0, )( ττ             (31) 

An operator based expression for (30) and (31) 
can be obtained by defining a simple group 
summation operator GZZZZ  and affine-type frame 

unitary operator mnsmn ,,:
~

, →τΑΑΑΑ  such that 

( ) )())
~

(.()( ,,, txdty smnmnG τΑΑΑΑΖΖΖΖ=′            (32) 

and 

( )smnGmn xyd ,,,

~
, τΑΑΑΑΙΙΙΙ ′=                   (33) 

which represents a continuous function of time by a 
countable sets of coefficients mnd , . The resultant 

compact canonical affine-type (wavelet) time-scale 
model corresponding to (30) is shown in figure 8 

 

 
Figure 8: Canonical time-scale model 

 
The outputs )(ty  and )(ty′  are related by 

considering the frame conditions given by  

∑∑ ≤≤
m n

mn yBdyA
22

,

2
            (34) 

where A  and B are energy bounds of )(ty . If 

)(ty′  falls within this acceptable energy range, it 
implies that 
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)(ty′  msn 00τ  ms−
0  

2
0

m

s
−

 

)(tx  

mnd ,  

)(ty′  0τn  ms−
0  

2
0

m

s
−

 

)(tx  

WSEAS TRANSACTIONS on SYSTEMS Uche A. K. Okonkwo, Razali Ngah, Tharek A. Rahman

ISSN: 1109-2777 297 Issue 2, Volume 8, February 2009



)()( tykty ′=              (35) 

where 
BA

k
+

= 2
 [6], is an error margin with 

which the sampled model differs from )(ty . For the 
purpose of this work, and in most practical 

situations, we assume that the ratio 
A

B
 is unity, thus 

)()( tyty ′≈  upholds. The parameters 0τ  and 0s  

are chosen to provide good resolution and 
acceptable sparseness to the model. This is ensured 
if the lattice structure is as close as possible to the 
continuous grid as shown in figure 9. A practical 
choice is to take the minimum resolvable delay and 
scale as the values for 0τ  and 0s . 

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

tau

sc
al

e

 

 

Original

tau0=0.4464
s0=1.062

tau0=0.5
s0=1.09

tau0=0.45
s0=1.1

 
 

Figure 9: Lattice structure of an original delay-scale 
plane and the corresponding structure with respect 
to different values of 0τ  and 0s   

 
 For instance, let the delays associated with a 
particular channel be given as 0, 0.2, 0.8, 1.6, 2.4, 
and 5.0 sµ  and the corresponding scales, 

c

v
s l

l += 1  , 1,...,2,1,0 −= Ll  where 1−=Llv  is the 

maximum velocity hrkmv /120max = and 

6=L .Using the lattice structure mss 0= , 

000000022.10 =s  we arrive at discrete levels 

5,...,1,0=m  corresponding to approximately 

discrete step velocity of hrkm/76.23 . The delay 
structure given above leads to a reasonable choice of 
sampling interval of sTs µ2.0= , thus for the 

lattice structure msn 00ττ = , 25,...,1,0=n , with 

199999956.00 =τ  we arrive at a relatively sparse 

lattice density close to the original grid as shown in 
Fig.10. 
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Fig.10b: Lattice structure for the corresponding 

mn −  grid for 199999956.00 =τ  and 

000000022.10 =s  

 
 
7 Statistical Channel Characterization 

In the foregoing discussion, our analysis has been 
based on deterministic models which invariably are 
of first order statistics. The spreading operator s,τΞ  

is thus a deterministic operator. In reality, 
deterministic characterization of the mobile radio 
channel is not feasible and because the randomness 
of the channel, we have to resort to finding the 
appropriate statistical characterization. A scattering 
function as well as operator equivalent to the delay-
Doppler Scattering function [2] of the Heisenberg 
group is required. 

The delay-scale spreading function sd ,τ  can be 

regarded as the deterministic scattering function of 
the low-pass equivalent received signal 

)()( tyty ′≡ . Statistical characterization are 

basically applied to stochastic processes, however to 
gain insight to statistical quantities like probability 
density function, the level-crossing rate, and the 
average duration of fades, the behaviour of 
deterministic processes as a funtion of random time 
t can be studies. The ith  moment of such process is 
defined by 

[ ]i
id dEsm =),(, τ                (36) 

where the first moment is the statistical mean, the 
second moment is the quadratic mean or the total 
power associated with the spreading function, and 
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the third moment can be used to measure the 
asymmetry of function. The variance which captures 
the time-varying power is given by 

[ ]2
1, )),((),( smdEsV dd ττ −=              (37) 

 The second order statistic that completely 
describes the random channel is the autocorrelation 
function (ACF). Depending on the underlying 
process, the ACF can be given many definitions. 
The process itself can be deterministic, or stochastic 
stationary or nonstationary (time-varying). Let  

)}({ ty be a stochastic process with zero mean and 

finite variance, and lets ΕΕΕΕ  be the expectation 
operator, we define the ACF of )}()({ tyty ′≡  by  

[ ])()(),( tytyttRy
∗=′ ΕΕΕΕ                (38) 

If )}({ ty  is a stationary process, the correlation 
is invariant under any time shift and the ACF 
depends only on the time difference  ttt ∆=−′ , 
thus 

[ ])()()( ttytytRy ∆+=∆ ∗ΕΕΕΕ                (39) 

If however )}({ ty  is nonstationary, then the 
correlation varies as a function of time. A practical 
application will to adopt the philosophy of time-
dependent power spectra [28] and then define a 
Local Scattering function (LSF) of the nonstationary 
process or channel [29].  

Since )}({ ty is a stochastic process, the 
associated spreading function and operator are also 
stochastic processes at a given scale 0>s . The 
ACF of }{ ,sdτ is given by 

][),;,( ,, ssd ddssR ′′=′′ ττττ EEEE              (40) 
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This expression is valid as long as the condition [30]  
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R

ττΕΕΕΕ
                  (41) 
is satisfied. This condition ensures the existence of 
the second order process of sd ,τ . Thus 

∫ ∫
∞

∞−

∞

∞−

′′′′′
′

=′′ tddttstsRttR
ss

ssR xyd ),,;,,(),(
1

),;,( ττττ

                            (42) 
represents the generalized ACF of the affine time-
scale process. We can define the stationary process 
by considering correlation with respect to the same 
scale i.e. ss ′=  in which a nonstationary process 

reduces to an ordinary wide sense stationary (WSS) 
process [31]. If we let  0=t , and ttt ∆+=′ , then 

∫ ∫
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∞−

∞

∞−

∗ ∆



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
′
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s
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ssR yd
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1
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                                       (43) 

tstsy xxR ,,,, ,1, ττ
∗

∆′′=  

where ∗
∆′′= tsys xRb ,,, , ττ  is called the Delay-

scale Scattering function (DSSF), and tsx ,,,1 τ  can 

easily be shown to be an approximation of 
)()( ss ′−′− δττδ  which implies that at each 

different scale the distribution is simply a scaled 
version of the transmitted signal. If we consider 
(34), then the corresponding expression is 

tmntmnyd xxRmnmnR ,,,, ,1,),;,( ∗
∆′′≅′′            (44) 

The delay-scale scattering function can also be 
referred to as the delay-scale affine power spectrum 
analogous to the delay-Doppler power spectrum of 
Heisenberg group. 
 
 
8 Simulation Results and Discussions 

To illustrate the practicality of our method, we 
provide a delay-scale spreading function 
(deterministic channel) example and simulations. 
The mobile radio system considered is assumed to 
operate at carrier frequency of 3.5GHz with a 
maximum velocity of hrkm/120 . We consider the 
transmission of an admissible probe signal in this 
case a Morlet wavelet shown in Fig.11 and given by 

)2cos(
2

1
)(~ 2

2

vtet
t

π
π

ϕ
−

=   (45)  

and which we assumed lasts for about 10seconds, 
with 9.0=v .  We employ a typical urban setting as 
the test environment with a propagation path of 

6=L .Let the delay be given by 0, 0.2, 0.8, 1.6, 2.4, 
and 5.0 sµ  and the corresponding scales, 

c

v
s l

l += 1  , 1,...,2,1,0 −= Ll  where 1−=Llv  is the 

maximum velocity maxv . All motions away from the 

transmitter are not considered. The respective ls  

correspond to a delay in the order stated above with 

maxvs   corresponding to the delay at sµ5  and 0=vs  

for zero delay. We use the sampling interval 
002.0=sT s for the time grid. The resultant delay-

scale spreading function is shown in Fig12.  
 

WSEAS TRANSACTIONS on SYSTEMS Uche A. K. Okonkwo, Razali Ngah, Tharek A. Rahman

ISSN: 1109-2777 299 Issue 2, Volume 8, February 2009



 
Fig.11: The transmitted Morlet wavelet 

 

 
Fig.12: Delay-scale spreading function for 

transmitted morlet wavelet in time and 
frequency dispersive channel 

 
Figure 12 clearly shows dispersion in time and 

scale with varying supports for the delay-scale-
spreading function. The maximum delay 
spread maxτ is about 5.0µ sec and the maximum 

scale spread maxs is about 81011 −×  on the natural 

log scale. The total spread is 

20607254.12)ln( −=∆Wtotal which by applying (25) 

corresponds to total delay-Doppler spread of 
610925.1 −×=∆F

total  at GHzfc 5.3= .It can be 

seen that the scale spread is wholly dependent on 
the velocity of the mobile unit. A further research on 
deriving the associated parameters like power 
profile and scale (Doppler) spectrum both for the 
deterministic and the stochastic cases are being 
conducted.  
 
 

9 Conclusion 
We presented mobile radio channel 

characterization by means of compactly supported 
joint spreading operators. The concept of operator 
provides a more physical approach to channel 
characterization for both the deterministic and 
stochastic cases. The affine group representation in 
the wavelet domain allows for the characterization 
of the time-variant channel in purely time domain 

and provides better time and frequency resolution 
compared to conventional Fourier domain methods. 
Since scale is related to frequency, this allows for a 
simultaneous mapping of the delay and frequency 
on the time-scale plane. And because the scale 
spread is wholly dependent on the velocity of the 
mobile unit any variation in time and frequency 
associated with the channel can be accounted for 
due to the evolutional nature of the analyzing 
wavelet ‘window’ with respect to changes in scale.  
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