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Abstract: - The aim of this paper is to utilize an unordinary anisochronic modelling principle on a circuit 
thermal laboratory plant. The class of anisochronic models is characterized by the existence of state (internal) 
delays, both distributed or lumped ones. The modelled laboratory appliance was designed at Tomas Bata 
University in Zlín, Czech Republic, as a thermal heating circuit small scale model with dynamic properties 
similar to that of a real heating system (e.g. a cooling circuit in cars). The motivation for the modelling of this 
plant was double. First, the dynamics of the plant exhibits unconventional step responses which cannot be explained 
by a standard analytic means. Second, the authors of this contribution intend to use the obtained anisochronic 
mathematical description of the plant with the view of the verification of algebraic control algorithms in the RMS ring 
designed for delayed systems earlier. 
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1 Introduction 
Heating (or thermal) systems are still prolific 
practical industrial as well as real-life applications 
and they represent a favourite research area as it 
reveals from recent studies. To name a few, in [1] a 
method of integral equations for some thermal 
problems of engineering is proposed (e.g. for 
radiative heat transfer, heat conduction etc.) which 
leads to Volterra-Fredholm integrals. Applicable 
models of pipelines and pipe connections are 
suggested in [2]. A model of heating system in a 
room, which is similar to that studied in this paper, 
is presented in [3]. In [4] a model incorporating 
internal delays (even of neutral type) for central 
heating system is presented. However, many of 
there approaches are a rather complicated and yield 
distributed parameter models, nearly unusable for a 
controller design. 

The presented contribution deals with 
anisochronic modelling philosophy introduced 
already in [5] and subsequently developed for 
heating systems e.g. in [6-7]. Anisochronic models 
are characterized by the occurrence of state 
(internal) delays in a system model. Nevertheless, 
there are also many industrial processes that include 
delays in internal feedback loops, e.g. in the model 
of mass flows in sugar factory [8] or in metallurgic 
processes [9], to name but a few. 

The laboratory heating plant modelled in this 
paper was assembled at the Faculty of Applied 
Informatics of Tomas Bata University in Zlín in 

order to test control algorithms for systems with 
dead time. The original description of the apparatus 
and its electronic circuits can be found in [10]. The 
motivation for the modelling the plant was double. 
First, the dynamics of the plant exhibits 
unconventional step responses which cannot be 
explained by a standard analytic means. Second, the 
authors of this contribution intend to use the 
obtained anisochronic mathematical description of 
the plant with the view of the verification of 
algebraic control algorithms in the RMS ring 
designed for delayed systems, see e.g. [11-12] 

 
 

2 Description of the Laboratory 
Heating Model 
The plant to be mathematically modelled in this 
paper was built in order to verify several control 
algorithms for (conventional) time delay systems. 
Originally, it was intended to control input delays 
only; however, as it is shown in this contribution, 
the plant contains internal delays as well, and thus it 
is suitable also for testing control approaches for 
anisochronic systems. The plant dynamics is based 
on the principle of heat transferring from a source 
through a piping system using a heat transferring 
media to a heat-consuming appliance. External 
appearance of the plant is shown in Fig.1. 
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Fig.1 – A photo of the laboratory heating model 

 
A schematic sketch of the model is depicted in Fig.2 
 

 
Fig.2 – A scheme of the laboratory heating model 

 
Let us describe the plant according to a 

schematic sketch depicted in Fig.2. The heat 
transferring fluid (namely distilled water) is 
transported using a continuously controllable DC 
pump {6} into a flow heater {1} with maximum 
power of 750 W. The temperature of a fluid at the 
heater output is measured by a platinum 
thermometer giving value of HOϑ . Warmed liquid 
then goes through a 15 meters long insulated coiled 
pipeline {2} which causes the significant delay in 
the system. The air-water heat exchanger (cooler) 
{3} with two cooling fans {4, 5} represents a heat-

consuming appliance. The speed of the first fan can 
be continuously adjusted, whereas the second one is 
of on/off type. Input and output temperatures of the 
cooler are measured again by platinum 
thermometers giving CIϑ , resp. COϑ . The expansion 
tank {7} compensates for the expansion effect of the 
water.  

This small scale model can represents dynamics 
of real heating systems, e.g. a cooling circuit system 
in cars, heating systems in buildings, etc. The 
laboratory model is connected to a standard PC via 
serial bus RS232 and a portable data acquisition 
unit. All tasks relating to the monitoring and control 
of the plant are served by software running in 
Matlab 6.5 environment.  
 
 
3 Anisochronic Model of the Plant 
In this section, a possible mathematical model of the 
plant is proposed. Obviously, an accurate 
mathematical model of the plant would be rather 
complicated due to the existence of components 
causing distributed delays in the system. However, 
the aim of this contribution is not to find an exact 
description of the model, but a sufficiently simple 
mathematical model which can be used for the 
verification of some control algorithms. Thus, in the 
following section, the construction of a suitable 
anisochronic model is proposed. The methodology 
is based on comprehension of all significant delays 
and latencies in the model which is built in two 
steps: First, models of separate functional parts of 
the plant are found; secondly, separate models are 
combined by means of their common physical 
quantities. 
 Let us introduce notation for process quantities 
first: 
c [J kg-1 K-1] – the specific heat capacity of water 

( )tm&  [kg s-1] – the mass flow rate of water 
MH [kg] – the overall mass of water in the heater 
MC [kg] – the overall mass of water in the cooler 
MP [kg] – the overall mass of water in the pipeline 

( )tHOϑ  [°C] – output temperature of the heater 

( )tCIϑ  [°C] – input temperature of the cooler 

( )tCOϑ  [°C] – output temperature of the cooler 

( )tHIϑ  [°C] – input temperature of the heater 

Aϑ  [°C] – ambient temperature 

( )tP  [W] – the power of the heater 

Hτ  [s] – the delay of a water flow through the 
heater 

HCτ  [s] – the delay of a water flow between the 
heater and the cooler 
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Cτ  [s] – the delay of a water flow through the cooler 

KCτ  [s] – the delay between a control signal to the 
cooling fan and the output temperature of the cooler 

CHτ  [s] – the delay of a water flow between the 
cooler and the heater 

( )tuP  [V] – a voltage input to the pump 

( )tuC  [V] – a voltage input to the cooling fan 
( )tK H  [W K-1] – the overall heat transmission 

coefficient of heater wastage energy 
( )tKC  [W K-1] – the overall heat transmission 

coefficient of the cooler 

PK  [W K-1] – the overall heat transmission 
coefficient of  the long pipeline 
h0, h1, h2, h3, h4, h5 – weighting coefficients for the 
estimation of the overall heat transmission 
coefficient of the heater 
c0 [W K-1], c1[W K-1 V-1], c2 – weighting coefficients 
for the estimation of the overall heat transmission 
coefficient of the cooler 
p0 [m

3 s-1], p1 [V], p2 – weighting coefficients for the 
estimation of the mass flow rate of water 
 
 
3.1 Model of the heater 
The energy balance equation is used for the 
description of the heater 
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where the arithmetical mean temperature difference 
is taken for heat losses. and a heating body is 
assumed to perform heat energy in the middle of the 
heater. Input temperature, ( )tHIϑ , is estimated by 

“the nearest” measured one, ( )tCOϑ , as 
 
 ( ) ( )CHCOHI tt τϑϑ −=  (2) 
 
due to the fact that the fluid transport between the 
cooler output and the heater input is fast enough so 
that these two temperatures almost do not differ, 
except for a time delay. The overall heat 
transmission coefficient of the heater, ( )tK H , is 
numerically approximated by the relation 
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see [13]. 
 
 
3.2 Model of the coiled insulated pipeline 
A transportation delay in the piping has a decisive 
influence on the behaviour of the system. Consider 
the energy balance equation again where heat losses 
are supposed to be linear along the pipeline 
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Notice that input and output temperatures are not 

considered in the same time since the thermal effect 
of the water inlet affects the outlet after some dead 
time. Heat transmitting coefficient is considered as a 
low valued constant, thanks to the very good 
isolation. 

The mass of the piping is neglected in the model 
due to the fact that the specific heat capacity of the 
material of the pipeline (copper ≈ 385 J kg-1 K-1) is 
much smaller than that of water (≈ 4180 J kg-1 K-1), 
approximately ten times, and because of the fact that 
the mass of used copper is lower than that of the 
fluid (water) inside the piping. 
 
 
3.3 Model of the heat exchanger (cooler) 
Time delays in the air-water exchanger are of a 
distributed nature, thus they have not an important 
role in system behaviour. On the other hand, the 
cooler significantly affects the temperature because 
of its high heat transmission coefficient supported 
by fans. The energy balance equation reads 
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The dynamics of the air part of the cooler is 

much faster in comparison with the water one, thus 
this dynamics is neglected. The heat transmission 
coefficient, ( )tKC , is attempted to be approximated 
by a function 
 
 ( ) ( ) ( ) 01

2
2 ctuctuctK KCCKCCC +−+−= ττ  (6) 
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Changes in the fan speed affect ( )tKC . Notice 
that there is a delay between the control input 
voltage to the continuously controllable cooling fan, 

( )tuC , and a change of ( )tKC , in the model. There 
is no attempt to use models of all electrical and 
electronics equipments (e.g. the fan motor), and thus 
coefficients c0, c1, c2 are determined experimentally. 
 
 
3.4 Model of the pump 
The influence of the voltage input to the pump, 

( )tuP , upon the mass flow rate of water, ( )tm& , can 
be described by a static characteristic 
 

 ( ) ( )[ ] 2

10
p

P ptuptm +=&  (7) 
 
see [13]. The pump dynamics is omitted comparing 
to the whole process dynamics. Changes of process 
delays caused by the change of ( )tm&  are neglected 
as well, in order to avoid a rather complicated 
mathematical description of the plant dynamics. 
 
 

4 Model Linearization 
From the modelling above, a nonlinear multi-input 
multi-output (MIMO) model of the plant is 
obtained. Measured temperatures ( )tHOϑ , ( )tCIϑ , 

( )tCOϑ  are taken as system outputs, whereas analog 

input voltages ( )tuP , ( )tuC  and the power ( )tP  are 
considered as system inputs. To obtain linearized 
model, the first two terms of the Taylor series 
expansion at an operation point are used. 

From (1)-(3) and (7) one can have 
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Additional index (·)0 denotes the appropriate 
quantity value in the steady state (an operation 
point) and symbol Δ  stands for deviation from an 
operation point. 
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From (4) and (7) we have 
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with 
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Linearization of (5)-(7) gives 
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A linearized state space model in an operation point 
then reads 
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It should be note that the whole system state is 

given not only by current values of state variables at 
time t, but also by a segment of last system history 
within the time range tt ,τ−  where 

{ }HCHC ττττ += ,max . Symbol Δ  for the linearized 
model is omitted hereinafter. Assuming zero initial 
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conditions (i.e. steady state in an operation point), 
the Laplace transform of (11) is given by 
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where the capital letters stand for transformed 
variables denoted with corresponding lower case 
letters. The transfer matrix of the model thus reads 
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To demonstrate the structure of anisochronic systems 
dynamics graphically, a Matlab-Simulink scheme of 
transfer function ( )sG33  is displayed in Fig. 3. 
 

 
Fig.3 – Matlab-Simulink scheme of transfer 

function ( )sG33  
 
 

5 Parameters Identification 
Prior to solving the task of enumeration of model 
parameters, let us display how unconventional the 
step response of the system is. Consider the step 
change of ( )tP  resulting in changes of system output 
temperatures, as it is pictured in Fig.4. An interesting 
feature of the step response is the existence of “stairs” 
(“quasi” steady states) in the plot. 
 

 
Fig.4 – Heater power step change responses 

The existence of these multiple “quasi” steady 
states can be explained as follows: Temperature of 
water at the heater output, ( )tHOϑ , increases until 
the energy inlet and outlet of the heater equal. In the 
meanwhile, the “hot” water flow goes through the 
long pipe to the cooler, and, after some dead-time, 

HCτ , it affects input, ( )tCIϑ , and output, ( )tCOϑ , 
temperatures of the cooler. At this time, the heater 
input temperature remains constant, because the 
water flow has not gone a round yet, and ( )tCOϑ  
becomes constant. Then “cold” water goes back to 
the heater and closes a circuit. Again, the closed 
loop dead time between the cooler output and cooler 
input, HCHCH ττττ ++= , is long enough so that 

( )tCIϑ  and ( )tC 0ϑ  become almost constant. 
 
5.1 Estimation of the mass flow rate and the 
heat transmission coefficient of the heater 
There were made no attempts to determinate 
measure the mass flow rate of water by measuring 
of the diameter of the pipeline, the water-flow 
velocity, etc. Steady state data in Table 1 can be 
used for evaluation of ( )tm&  by taking into account 
the fact that more than one steady state can be 
usually found in a step response of the system, see 
Fig.4. 

The steady state of (1) reads 
 

[ ] ⎥⎦
⎤

⎢⎣
⎡ −

+
−−+= A

HIHO
HHOHI KmcP ϑϑϑϑϑ

2
0 00

00000 &  

  (14) 
 
i.e. the derivative is assumed identically zero. There 
are two unknown static parameters in (14), 0m&  and 

0HK , for a particular setting of inputs. Mass flow 

rate, ( )tm& , as a function of ( )tuP  influences mainly 

system delays, whereas ( )tK H  given by (3) 
impresses a “height” of the “first” steady state of 

( )tHOϑ , see Fig.4 (A). Table 2 contains the “first” 

steady state values of temperatures ( )tHOϑ  and 

( )tHIϑ = ( )CHCO t τϑ − . These data together with data 

from Table 1 enable to estimate 0m&  and 0HK  for a 
particular setting of input values by inserting these 
data into (14), thus, we have two independent 
equations (14) for a particular setting of inputs. The 
final values of 0m&  and 0HK  are taken as the 
arithmetical mean of all calculated values from 
these tables for a particular (same) setting. There 
can be then estimated unknown parameters of 0m&  

and 0HK  in (3) and (7), from these values. 
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Table 1 - Measurements of steady-state 
temperatures for V3=Cu  

Pu  
[V] 

P   
[W] 

0HOϑ  
[°C] 

0CIϑ  
[°C] 

0COϑ  
[°C] 

Aϑ  
[°C] 

4 225 38.1 38.0 31.3 22 
4 225 41.8 41.5 35.1 26 
5 225 39.4 39.3 32.9 25 
5 225 40.9 40.7 34.5 27 
6 225 39.5 39.3 32.9 25.5 
6 225 38.0 37.9 33.0 23.5 
4 300 43.5 43.2 34.9 25 
4 300 42.6 42.5 33.7 23 
5 300 41.9 41.8 33.3 22.5 
5 300 44.1 43.8 36.0 25 
6 300 43.3 42.8 35.2 24 
6 300 43.4 43.1 35.3 24 
4 375 48.1 47.9 37.1 24 
4 375 47.8 47.3 36.8 23.5 
5 375 48.8 48.5 38.7 25.5 
5 375 49.9 49.7 40.0 26 
6 375 48.2 47.8 38.3 23 
6 375 49.1 48.9 39.5 26.5 
4 400 51.2 50.9 37.7 24 
5 400 52.2 52.0 39.9 24 
6 400 49.9 49.8 38.2 23 

 
Table 2 - Measurements of “quasi” steady-state 

temperatures for V3=Cu  

Pu  
[V] 

P   
[W
] 

0HOϑ  
[°C] 

0HIϑ  
[°C] 

Aϑ  
[°C] 

4 225 28.8 21.7 22 
4 225 33.0 26.1 26 
5 225 31.2 24.7 25 
5 225 33.8 26.9 27 
6 225 31.8 25.6 25.5 
6 225 29.6 23.1 23.5 
4 300 33.9 24.5 25 
4 300 30.7 21.7 23 
5 300 33.9 25.4 25.5 
5 300 33.9 25.1 25 
6 300 32.1 23.6 24 
6 300 32.7 24.1 24 
4 375 35.5 24.1 24 
4 375 35.3 23.6 23.5 
5 375 36.4 25.2 25.5 
5 375 36.7 25.7 26 
6 375 29.2 22.9 23 
6 375 32.8 26.5 26.5 
4 400 38.2 23.5 24 
5 400 38.9 25.2 24 
6 400 36.3 23.3 23 

Hence, equation (7) together with data in Table 1 
and Table 2 results in 0m&  as in Table 3, and 0HK  as 
in Table 4, where the water density was chosen as 

993=ρ  kg m-3, and c = 4180 J kg-1 K-1. 
 

Table 3. Measured relation ( )Pum0&  

Pu [V] 3 4 5 6 

0m&  [m3 10-4] 69.8 76.1 80.9 83.0 

 
Table 4. Measured relation ( )PuK PH ,0  [W K-1] 

            Pu [V] 
P [W]           

4 5 6 

225 1.07 1.37 1.40 
300 1.59 1.54 1.24 
375 1.46 2.14 2.04 
400 2.31 2.76 2.63 

 
The evaluation of these data w.r.t. (3) and (7) results 
in the following numeric estimation (made in 
Microsoft Excel Solver): h0 = 8.4925, h1 = -0.0017, 
h2 = -14999, h3 = -12998, h4 = 1507.988, h5 = 77.766; 
p0 = 5.077 10-3, p1 = 0.266, p2 = 0.274. A graphical 
comparisons of measured and calculated data are in 
Fig.5 and Fig.6. 
 

 
Fig.5 – Comparison of measured and 

calculated 0HK   
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Fig.6 – Comparison of measured and calculated 0m&  
 

One can see that ( )PuK PH ,0  is nearly not 

depended on the setting of Pu  and thus a linear 

relation ( )PKH 0  could be enough to take. The 
important disadvantage of these estimations is the 
fact that the results are strongly sensitive to the 
measurement of the ambient air temperature. 
 
 
5.2 Estimation of the heat transmission 
coefficient of the coiled insulated pipeline 
Data in Table 1 together with the static equation 
obtained from (4) can be also used for the 
evaluation of the (constant) heat transmission 
coefficient PK  which characterizes especially a 

“height” of the “quasi” steady state of CIϑ , see Fig. 
4 (C). From (4) we have 
 

 [ ] ⎥⎦
⎤

⎢⎣
⎡ −

+
−−= A

HOCI
PCIHO Kmc ϑϑϑϑϑ

2
0 00

000& (15) 

 
The final value of PK  is taken as the 

arithmetical mean again as 39.0=PK  W K-1. 
Obviously, the pipeline is insulated very well and 
this coefficient does not affect the system dynamics 
significantly. The measurement is sensitive to Aϑ  
again, and the A/D converter resolution (cca 0.1 °C) 
disables to find an more accurate value of PK . 
Moreover, the effect of secondary heating (due to 
the material of the pipeline) makes a measurement 
of 0HOϑ  and 0CIϑ  more difficult. 
 
 
 

5.3 Estimation of the heat transmission 
coefficient of the cooler 
Steady state yields (5) of the form 

[ ] ⎥⎦
⎤

⎢⎣
⎡ −+−−= A

CICO
CCOCI Kmc ϑϑϑϑϑ

2
0 00

0000&  (16) 

 
This equation together with data in Table 5 gives the 
estimation of 0CK , which characterizes especially a 

“height” of the “quasi” steady state of ( )tCOϑ , see 

Fig. 4 (C), for a particular setting of Cu , similarly as 
in Section 5.1. 
 

Table 5 - Measurements of steady-state 
temperatures for various Cu , W300=P , V5=Pu  

Cu  
[V] 

0HOϑ   
[°C] 

0CIϑ  
[°C] 

0COϑ  
[°C] 

Aϑ  
[°C] 

1 48.1 47.9 40.0 24 
1 45.3 45.0 36.2 21.5 
1 46.5 46.3 38.2 25 
2 43.3 42.9 34.7 22.5 
2 43.3 42.8 34.9 23.5 
2 44.5 44.3 35.8 23 
4 39.8 39.3 30.0 20.5 
4 42.3 42.2 32.7 23 
4 43.1 42.8 34.5 25.5 
5 39.6 39.3 31.0 21 
5 39.9 39.6 31.6 22 
5 40.9 40.6 32.3 24 
6 40.6 40.5 32.2 23 
6 41.1 40.9 32.6 24.5 
6 38.6 38.4 30.2 21 

 
Note: Temperature values for V3=Cu are omitted 
in Table 3 since they can be obtained from Table 1. 

The arithmetical mean of particular measured 
values of 0CK  results in relations as in Table 6 

 
Table 6 - Measured relation ( )CC uK 0  

Cu  
[V] 

0CK   
[W K-1] 

1 14.2 
2 16.9 
3 18.2 
4 19.5 
5 21 
6 21.4 

 
With help of the numerical optimization (MS 

Excel) one can obtain coefficients of (6) as 
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 c0 = 11.8, c1 = 2.755, c2 = -0.19 (17) 
 
A graphical comparison of measured and calculated 

( )CC uK 0  is in Fig.7. 

 
Fig.7 – Comparison of measured and calculated 0CK  
 
 
5.4 Static characteristics 
All the above presented data enable to draw up the 
static characteristics of the studied model. Static 
relations between Pu  and all output temperatures, 

for P = 300 W, V3=Cu , C24°=Aϑ , are displayed 
in Fig. 8 
 

 
Fig.8 – Static characteristics ( ) ( ),, PCIPHO uu ϑϑ  

( )PCO uϑ , for P = 300 W, V3=Cu , C24°=Aϑ  
 
Static characteristics ( ) ( ),, CCICHO uu ϑϑ ( )CCO uϑ  are 

in Fig. 9, for P = 300 W, V5=Pu , C24°=Aϑ , and 

relations ( ) ( ),, PP CIHO ϑϑ ( )PCOϑ  are depicted in 

Fig. 10, for V5=Pu , V3=Cu , C24°=Aϑ . 
 

 
Fig.9 – Static characteristics ( ) ( ),, CCICHO uu ϑϑ  

( )CCO uϑ , for P = 300 W, V5=Pu , C24°=Aϑ  
 

 
Fig.10 – Static characteristics ( ) ( ),, PP CIHO ϑϑ  

( )PCOϑ , for V5=Pu , V3=Cu , C24°=Aϑ  
 

The figures demonstrate the very good linearity 
of the model. 
 
5.5 Delays estimation 
Delays were estimated graphically from dynamic 
data (step responses) for appropriate system input 
changes; see Fig. 4 (B). The delay of the control 
action of the heat exchanger (cooler), KCτ , was 
obtained from the cooling curve (not displayed 
here). Results are dependent on the particular mass 
flow rate; as it can be seen from Table 7.  
 

Table 7 - Measured delays as functions of Pu  

Pu  [V] 2 3 4 5 6 

Hτ [s] 3 3 3 3 3 

HCτ [s] 125 125 120 110 105 

Cτ [s] 24 23 22 21 20 

KCτ [s] 14 13 12 12 11 

CHτ [s] 10 10 9 9 8 
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Since the model does not reflect the influence of 

Pu  upon the delays, arithmetical mean was taken in 

the final (i.e. for V4=Pu ). Delay in the heater, Hτ , 
is short enough so that it can be omitted in the 
model, if one wants to. 

 
 s9,s12,s22,s110,s3 ===== CHKCCHCH τττττ  
  (18) 
 

5.6 Masses estimation 
Overall masses of water in the heater, the cooler and 
in the long pipeline were estimated graphically and 
numerically from dynamic characteristics, so that 
measured and calculated model give a good 
agreement. They influence mainly “slopes” of the 
steepest ascents in the particular step responses. For 
example, MH influences the initial slope of the step 
response of ( )tP  to ( )tHOϑ  mainly. An initial 
estimation had been made by graphical comparison 
of (model) simulated and measured responses 

Final results obtained by the evaluation of the 
least mean squares criterion are the following 
 

kg 27.0,kg 22.0,kg08.0 === CPH MMM  (19) 
 

The final comparison of measured step responses 
and the calculated ones is depicted in Fig.11.  
 

 
Fig.11 – Comparison of measured (dotted) and 
calculated (solid) step responses for the settings 

V5=Pu , V3=Cu , W300=ΔP , on/off fan is on 
 
 

6 Conclusions 
The presented contribution studied a laboratory 
thermal heating model. The aim of the paper was to 
find a mathematical model of the appliance. In order 
to avoid needlessly complicated description, we 
utilized anisochronic modelling philosophy 

comprising delays as an important factor in the plant 
dynamics; hence the model exhibits both the input-
output and internal delays. Unknown parameters 
were further estimated experimentally and 
numerically in two steps: First, static characteristics 
gave rise to the static parameters such as heat 
transmitting coefficients, second, dynamic 
parameters such as delays or masses were estimated 
from step responses. The final graphical comparison 
of the step responses records a very good agreement 
of measured and calculated data.  

The final results will be used for the verification 
of control algebraic algorithms developed by 
authors, in the future research. 
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