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Abstract: - Based on distributions theory to continuous time systems with friction using the this paper presents 
a batch on-line method for the parameter identification of the modified LuGre friction model. Mainly it applies 
the results of the identification procedures based on distributions theory to continuous time systems with 
friction. There are defined the so called generalized friction dynamic systems (GFDS) as a closed loop structure 
around a smooth system with discontinuous feedback loops representing friction reaction vectors. Both GFDS 
with static friction models (SFM) and dynamic friction models (DFM), also the modified friction LuGre model 
is analyzed. The identification problem is formulated as a condition of vanishing the existence relation of the 
system. Then, this relation is represented by functionals using techniques from distribution theory based on 
testing function from a finite dimensional fundamental space. The advantage of representing information by 
distributions are pointed out when special evolutions as sliding mode, or limit cycle can appear.The proposed 
method is a batch on-line identification because identification results are obtained during the system evolution 
after some time intervals but not in any time moment. This method does not require the derivatives of measured 
signals for its implementation. Some experimental results are presented to illuminate its advantages and 
practical use. At last, the simulation results have shown effectiveness of the proposed method for friction 
parameter identification.  
 
Keywords: - Identification; Distribution theory; Friction; the modified friction LuGre model.  
 
1 Introduction 
     Motion in many mechanical, hydraulic or 
pneumatic systems is influenced by the so-called 
friction forces because of interactions with the 
environment or of the interaction between their 
components.  
Friction is a complex phenomenon, not yet 
completely known, with many different physical 
causes, so it is a difficult task to model it. Such 
models contain some specific nonlinearity such as 
stiction, hysteretic, Stribeck effect, stick-slip, 
depending on velocity [1], [2], [3], [4]. These models 
depend on many parameters whose values can change 
during the system evolution or are influenced by some 
other causes as external temperature, quality of 
materials etc. In literature there are accepted a large 
variety of friction models as Coulomb friction model 
[1], LuGre model [24], Dahl model [5], [6], 
exponential model [7], bristle model [8], state 
variable model [9].  
Ignoring friction in controlling such systems can lead 
to tracking errors, limit cycles, undesired stick-slip 
motion [2]. To avoid these difficulties, adaptive 
control strategies, named model-based friction 

compensation techniques [2], are recommended. Such 
adaptive strategies involve identification procedures 
of the controlled system, including identification of 
the model friction parameters. 
Unfortunately friction models are nonlinear, involving 
a discontinuous dependence with respect to velocity. 
Because of this, many techniques, as identification 
based on time-discretized models fail to offer good 
results. 
A survey of models, analysis tools and compensation 
methods for the control of machines with friction is 
presented in [11]. Furthermore, the application of 
classical identification methods for continuous time 
friction models requires the acceleration measurement 
that is not an easy task. A frequency domain approach 
to identification of mechanical systems with friction 
is developed in [12], which does not require the 
acceleration information but the procedure is 
available for periodic excitation input only. 
Good results on continuous time system identification 
based on distribution theory are reported in [13], for 
linear systems, or in [14], for nonlinear systems. 
Because of their discontinuities, identification of 
systems with frictions is much more difficult. One 
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way is to perform continuous time domain 
identification transforming the system differential 
equations to an algebraic system that reveals the 
unknown parameters [15], [16], [17]. This can be 
done by using some modulating functions to generate 
functionals to avoid the direct computation of the 
input-output data derivatives [18], [19].  
From computational point of view many advantages 
are obtained by using the classic methods based on 
orthogonal functions. The main disadvantages of 
them are the strong sensitivity to nonzero initial 
conditions and the fixed time interval for integrals.  
A novel approach to identify the continuous-time 
system is the distribution-based approach, using 
deterministic distributions [13], or random 
distributions [20]. Through these approaches, 
derivatives are described in the sense of distribution 
theory and construct the input-output algebraic 
relationships using differential information produced 
in the distribution sense. 
This paper extends the procedures of [13], [14[, based 
on distributions, for parametric identification in 
continuous time systems with friction. By this 
method, it is possible to perform identification of 
these systems, processing only information on 
position and the sign of the velocity in any consistent 
transient response. 
The proposed method is a batch on-line identification 
method because identification results are obtained 
during the system evolution after some time intervals 
but not in any time moment. Even if it is based on the 
input-output measurements only, the method is 
insensitive to the initial state of any transient. 
     The paper is organized as follows: After 
introduction in the first section, Section 2 is dedicated 
to the generalized friction dynamic systems GFDS, as 
presented in [10]. Section 3, presents the main steps 
the of continuous time system identification based on 
distributions. Section 4 illustrates application for a 
friction mechanical system identification using the 
modified friction LuGre model . Section 5 presents 
experimental results, again conclusions are resumed 
in Section 6. 
 
 
2 Generalized Friction Dynamic 
Systems 
     As presented in [12], a generalized dynamic 
friction system (GFDS) is a system characterized by 
the state equation of the form 

1 i px f ( x,u,r ,..,r ,..,r )=&   (1) 
where x , is the state vector and u  is the input vector. 
The vectors ir  are called friction reaction vectors. 

They depend on x  and u through a specific operator 

i{}Ψ , called friction operator, 

i 1ir { x,u } ,i : p= Ψ =   (2) 
There are two categories of friction models: static 
friction models (SFM) and dynamic friction 
models.(DFM). For SFM, we deal with only in this 
paper, the operator (2) is a non-dynamic mapping 
with a specific structure as follows. For any 

1i : p= ,there are two functions iiv ( x,u )= ν , which 
determines the so called generalized velocity vector 

iv , and iia ( x,u )= α ,expressing the so called active 
component of the velocity vector iv . In SFM, the non 
dynamic mapping (2) can be expressed as a function 
of iv , and ia only, as depicted in Figure 2, 

iir F { x,u }= . 
 
 
 
 
 
 
 
 
 
 
 
Fig.1, The feedback structure of a GDFS with SFM.  
 
Inspired from mechanics [11], the function iρ  is 
explicitly defined for 0iv =  and for 0iv ≠ . As a 
result, two components of the friction reaction vectors 

1ir ,i : p=  can be defined: static friction reaction s
ir  

and cinematic friction reaction c
ir , where, 

particularly, s c
i i ir r r= + , 

0 0 0s s s
i i i i i i ir ( v ,a ),v ; r ,v= ρ = = ≠ ;  (3) 

0 0 0c c c
i i i i i i ir ( v ,a ),v ; r ,v= ρ ≠ = =  (4) 

The adjective static and dynamic, for the friction 
reaction vectors 1ir , i : p= , must be understood with 
respect to the velocity vector iv only. Also, for a 

vector im 1iv ,i : p∈ =R , it is defined the function 

isgn( v )  as i i isgn( v ) v / v= ,where iv  is the 

Euclidian norm of imR . In this norm the function 
isgn( v ) is a discontinuous function in the point 

0iv = . It is observed that  

1 0 0 0i i isgn(v ) sgn( v ) , v , sgn( )= = ≠ =  (5) 
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If 1im = , iv is a scalar variable, then (12) can be 
presented by using inequalities. Because of (3) and 
(4), the system state vector evolution x( t )  is 
characterized by a status of two values, related to each 
friction reaction vectors 1ir , i : p= , 
1. Evolution inside a surface characterized by zero 
value of the velocity vector iv , iSx( t )∈ , where 

iS 0 0i i{ x , v } { x , ( x ) }= ∈ = = ∈ ν =X X . 
2. Evolution with nonzero value of the velocity vector 

iv , that means outside the surface iS , iSx( t )∉ . 
Outside the surface iS , ir  is a vector opposite to 

0iv ≠  but inside the surface iS , ir  is a vector 

opposite to ia . There is a closed subset 0S Si i( u )⊆ , 
called sticky area (SA), which keeps the system state 
inside . This means  

0
i0 STd d

i idt dxv ( x( t )) [ v ( x )] x( t ) , x (u )= ⋅ = ∀ ∈& . (6) 
Inside the SA i ir a= − . Because the input u  can 
change the SA position the state x  can be forced to 
be out of 0Si ( u ) , crossing its border. For any 
admissible u, the function i ir F ( x,u )= is continuous 

with respect to 0
iSx ( u )∀ ∈ . Because of this, when 

the system state x( t )  arrives on or leaves out 0
iS ( u )  

the friction reaction ir ( t )  is a continuous time 
function. Condition c, is called the smooth sticky 
condition (SSC). However, when 0

i ix(t) S S\ ( u )∈ , 

ir ( t )has a discontinuity and 0d
idt v ( x( t )) ≠ . In this 

case x( t ) passes from one side to other of 0
i iS S\ ( u ) , 

as a switching mode or as a sliding mode. For 
example, expressions as (7) and (8) of (3) and (4) 
respectively, satisfy the above  conditions, where by 

ia it must understand i ia a ( x,u )= , 

1s s
i i i i i i i ir (v ,a ) max{Q, a } sgn(a ) [ sgn( v )]=ρ =− ⋅ ⋅ −  (7) 

1i ivc c
i i i i i vi i i ir (v ,a ) [Q K v B (e )] sgn(v )β ⋅=ρ =− + ⋅ + ⋅ − ⋅  (8) 

As it can be observed, the cinematic reaction c
ir is a 

sum of three components, cc cv cs
i i ir ,r ,r  expressing 

respectively Coulomb friction, viscous friction and 
the so called Stribeck effect, [4], [11],  

c cc cv cs
i i i ir r r r= + + .  (9) 

For 1im = , all i i ir ,a ,v are scalar variables so the 

static reaction (7), s
ir , is illustrated in Fig.2a and the 

cinematic reaction (8), c
ir , in Fig.2b. 

 

 
 
 
 
 
 
 

 
Fig.2, Static and cinematic components of a scalar 

friction reaction. 
 
     A friction reaction vector ir , as above defined, has 
a sticky characteristic which means there is a subset 

S
iS Si( u )⊆ , called sticky set (SS), such  

S
i0 S Si i iv ( t ) d/dt{v ( x( t ))} , x( t ) (u( t ))= = ∀ ∈ ⊆&  (10) 

The position of SS depends on input vector u . When 
the system state x( t )  approaches S

iS ( u ) , generated 
by a vector ir , it remains inside of that SS till the 

input u( t )  changes the position of S
iS ( u ) , forcing 

x( t )  to be outside of it. Substituting (4) into (1) and 
denoting 
 1 1 i p( x,u ) f ( x,u,F ( x,u ) ,..,F( x,u ),..,F ( x,u ))=f (11) 
the GDFS takes the compact form 

0 0 0x ( x,u ) , x( t ) x ,t t= = ≥f& . (12) 
This is a differential system with a discontinuous 
function on right side so for its analytical description, 
special mathematical approaches are necessary. For 
example approaches describing the solution in the 
Charatheodory sense [4], using the Filippov approach 
or differential inclusions and differential inequalities. 
However, for the identification it is supposed a 
solution exist for (28) and are available as 
measurements the input variable u  and the output 
variable y where 
y h( x,u )= .  (13) 
 
 
3 Continuous Time System 
Identification Based on Distributions 
     This section presents the main results on 
continuous time system identification based on 
distribution, as have been presented in [11]. Let nΦ be 
the fundamental space from distribution theory [17] 
of the real testing functions, : , ( )t tϕ → →ϕ¡ ¡ , 
having continuous derivatives at least up to the 
order n , with compact support T  for any of the above 
derivative. The linear space nΦ  is organized as a 
topological space considering a specific norm [17]. A 
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distribution is a linear, continuous real functional 
on nΦ , : , ( )nF FΦ → ϕ→ ϕ ∈¡ ¡ . 
Let : , ( )q t q t→ →¡ ¡  be a function that admits a 
Riemann integral on any compact interval T  from ¡ . 
Using this function, a unique distribution 

: , ( )q n qF FΦ → ϕ→ ϕ ∈¡ ¡ can be build by the 

relation ( ) ( ) ( ) ,q nF q t t dtϕ = ⋅ϕ ⋅ ∀ϕ∈Φ∫¡ .  

     Considering, at least, 0C ( )q∈ ¡ , the following 
important equivalence take place [18], 

 ( ) 0, ( ) 0,q nF q t tϕ = ∀ϕ∈Φ ⇔ = ∀ ∈ ¡         (14) 
The m-order derivative of a distribution is a new 
distribution, ( ) /m

q nF ∈Φ uniquely defined by the 
relations,  

 ( ) ( )( ) ( 1) ( ),m m m
q q nF Fϕ = − ⋅ ϕ ∀ϕ ∈Φ   (15) 

When ( )mq C∈ ¡ , then     

 ( )
( ) ( )( ) ( ) ( ) ( )m
m m

q q
F F q t t dtϕ = ϕ = ϕ∫

¡

 

that means the k-order derivative of a distribution 
generated by a function C ( )mq∈ ¡  equals to the 
distribution generated by ( )mq , the k-order time 
derivative of the function q . If C ( )mq∈ ¡ , from (13), 
(16) one can write, n∀ϕ∈Φ  

( ) ( ) ( )( ) ( ) ( ) ( 1) ( ) ( )m m m m
qF q t t dt q t t dtϕ = ϕ = − ⋅ϕ ⋅∫ ∫¡ ¡

(16) 

     Let us consider a dynamical continuous time 
system expressed by a differential operator,                                                                                                        
 /( , ) ( , , )u y Cq F u yθ = θ                                       (17) 
whose expression depends on a vector of parameters 

      1[ ... ... ]T
i pθ = θ θ θ .  (18) 

    It represents a family of models with a given 
structure in constant parameters. A special case is the 
model (17) expressing a linear relation in the 
parameters 

/( , ) 1
( , , ) p T

u y C ii
q F u y w v w vθ =

= θ = ⋅θ − = ⋅θ −∑ , (19) 

where iw  and v  represent a sum of the derivatives of 
some known, possible nonlinear, functions j

iψ , 0
jψ , 

with respect to the input and output variables, 
 ( )

1
[ ( , )] , 1:

ji i
p nj

i ij
w u y i p

=
= ψ =∑ , (20) 

 0 0( )
01

[ ( , )]
jp nj

j
v u y

=
= ψ∑ . (21) 

where parameters 0 0, , ,j j
i ip n p n  are given integer 

numbers. In [11] the existence and uniqueness 
conditions for a problem of distribution based 
continuous time system identification are presented. 
Suppose that it is possible to record the functions 

(u, y) in an the time interval T ⊂ ¡ , called 
observation time interval or just time window. The 
restriction of the functions ( , )u y  to the time interval 
T is denoted by ( , )T Tu y  respectively. If no confusion 
would appear, then we may drop the subscript T . 
     An identification problem means to determine the 
parameter θ = θ

)
, given the priori information on the 

model structure CF , (17), and a set of observed input-

output pairs ( , )T Tu y , ( , , )T T Cu y Fθ = θ
) )

 in a such a 
way that,  

 /( , ) ( ) 0,
T Tu yq t tθ = ∀ ∈) ¡   (22) 

This condition involves,  
 /( , ) ( ) 0, , ( , )u yq t t u yθ = ∀ ∈ ∀ ∈Ω×Γ) ¡   (23) 

for any input-output pair ( , )u y  observed to that 
system.  
     Let us consider two families of regular 
distributions, , 1:

iwF i p= , and ( )vF ϕ  created based on 
the functions (20), (21),  

( )
1 R

( )
1 R

( ) [ ( )] ( )

( 1) [ ( )] ( )

ji i

i

j ji i i

p nj
w ij

p n nj
ij

F t t dt

t t dt

=

=

ϕ = ψ ϕ =

= − ψ ϕ

∑ ∫
∑ ∫

                 (24) 

which determines the row vector, 

1
( ) [ ( ),..., ( ),..., ( )]

i p

T p
w w w wF F F Fϕ = ϕ ϕ ϕ ∈ ¡ .       (25) 

0 0

0 0 0

( )
01 R

( )
01 R

( ) [ ( )] ( )

( 1) [ ( )] ( )

j

j j

p nj
v j

p n nj
j

F t t dt

t t dt

=

=

ϕ = ψ ϕ =

= − ψ ϕ

∑ ∫
∑ ∫

                  (26) 

Any input-output pair ( ,u y ) observed from the 
system (27) is described by a pair of regular 
distribution ( ,w vF F ) for any nϕ∈Φ , [11]. The 
problem of the system (17) parameter identification 
can be represented now by distributions. For example, 
the regular distribution generated by the continuous 
function /( , )u yqθ  from (17), is related to the parameter 

vector θ , n∀ϕ∈Φ  as                                             (27) 

θ θ /( , ) 1
( ) ( ) ( ) ( )

( ) ( )
i

p
q q u y w i vi

T
w y

F F F F

F F
=

ϕ = ϕ = ϕ θ − ϕ =

= ϕ θ − ϕ

∑  

If a triple ( *, *, *)u y θ is a realization of the model 
(17), then the identity (39) takes place, 

 
θ* θ* /( *, *)( ) ( ) 0,q q u y nF Fϕ = ϕ = ∀ϕ∈Φ  (28) 

and vice versa, if an input-output pair ( *, *)u y  of the 
family of models (27), with unknown parameter θ , 
generates a distribution  
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θ θ /( *, *) 1
( ) ( ) ( ) ( )

i

p
q q u y w i vi

F F F F
=

ϕ = ϕ = ϕ ⋅θ − ϕ∑  (29) 
which satisfies 

 
θ θ /( *, *)( ) ( ) 0, *q q u y nF Fϕ = ϕ = ∀ϕ∈Φ ⇒θ = θ , (30) 

As θ  has p components it is enough a chose (utilize) 
a finite number N p≥  of fundamental function 

, 1:i i Nϕ =  and to build an algebraic equation,                                                                                                              
 w v⋅ θ =F F                                                   (31) 
where wF  is an ( N p× ) matrix of real numbers 
           1[ ( );...; ( );...; ( )]T T T T

w w w k w NF F F= ϕ ϕ ϕF          (32) 
where k-th row ( )T

w kF ϕ  is given by (25). The symbol 

vF denotes an N -column real vector built from (26), 
 1[ ( ),..., ( ),..., ( )]T

v v v k v NF F F= ϕ ϕ ϕF .          (33) 
When only the restriction ( ,T Tu y ) of the pair ( ,u y ) 
on the time interval T is available, any iϕ must have 
for its k derivative ( ) ( ), 1:m

k t m nϕ =  the same compact 
support kT , 

( )supp{ ( )} [ , ] , 1: , 1:m k k
k i a bt T t t T m n k Nϕ = = ⊆ ∀ = = (34) 

Below there are some simple testing functions 
k nϕ ∈Φ ,   
( ) ( , ) ( , , )k k k k

k k k a b k a bt t t t t tϕ = α ⋅β ⋅Ψ                             (35) 

sin [ ( ) / ( )], ,
( , , )

0, ( , ] [ , )

kn k k k
k k b b a k
a b k k

a b

t t t t k n n
t t t

t t t
⎧ π ⋅ − − ∀ ≥⎪Ψ = ⎨

∀ ∈ −∞ ∪ ∞⎪⎩
 (36) 

where iα  is a scaling factor and iβ normalizes the 
area 

 ( , ) 1 / ( , , ) ,
k
b

k
a

tk k k k k k
k a b k a b a bt

t t t t t t tβ = Ψ ∀ <∫ .          (37) 

If ( )wr rank p= =F , then a unique solution is 
obtained. 

      1( ) *T T
w w w v

−θ = ⋅ ⋅ ⋅ = θF F F F
)

                          (38) 
 
 
4 Application for a Friction Mechanical 
System Identification Using the 
Modified of Friction LuGre Model  
     To combine the elements of GFS with the theory 
of identification based on distributions, as presented 
in [10], let us consider a simple mechanical system 
consisting of a mass m , moving on a surface with 
bristle. The system is excited by a force u , while the 
(unmeasurable) friction force f  resists the motion 
(Fig.3). The model for this system is: 
 mv u F= −&                                                    (39) 
 
 
 

where v  and v& represents the velocity, respectively 
the acceleration. 
     The friction force F  is given of the modified 
LuGre model: 
 0F z vσ α= +                                        (40) 

where 0

( )
v

z v z
g v
σ

= −&                                      (41) 

and ( ) ( )
1s c s

vg v F F F
v

= + −
+

                          (42) 

with 0σ  known as dynamic friction parameters and is 
a stiffness parameter, respectively sF , cF  and α  
known as static friction parameters, where cF  is the 
Coulomb friction, sF  is the static friction and α  is a 
viscous friction coefficient, again z  is the internal 
state of the modified friction model. We have did 

1 0σ =  of the original friction LuGre model and have 

replaced 
2

( ) ( )expc s c
s

vg v F F F
V

⎛ ⎞⎛ ⎞
= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 with 

( ) ( )
1s c s

vg v F F F
v

= + −
+

. 

From the equations above: 

 0

0

( )

mv u F
F z v

v
z z v

g v

σ α

σ

⎧
⎪ = −⎪⎪ = +⎨
⎪ −⎪ = +
⎪⎩

&

&

                                          (43) 

will obtain the state of equations: 

m  

  F  

  u  

  v  

         the zone of friction 

  v&  

Fig.3, A simple mechanical system 
with friction
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 ( )
1 2

2 0 3 2

0 2
3 3 2

2

2

1

( )
1s c s

x x

x u x x
m

x
x x xxF F F

x

σ α

σ

⎧
⎪
⎪

=⎪
⎪⎪ = − −⎨
⎪
⎪ −

= +⎪
⎪ + − ⋅
⎪ +⎩

&

&

&

              (44) 

where  1x x=  is position, 2x v=  represents velocity, 
again 3x z=  represents the displacement of bristles 
which is unmeasureable. Therefore, the state x  of (1) 
has three components, 1x x= , 2x v=  and 3x z= . 
Because z  is the internal state of the friction model, 
which is unmeasureable, must to get to a independent 
relation of z , for can to identify by way of 
distributions the parameters of our model. For to get 
to so of relation, will proceeding in next mode. 
    The relations (39) and (40) can be rewritten so: 
 F u mv= − &                                                   (45) 
 0 z F vσ α= −                                                (46) 
from result: 
 0z mv v uσ α= − − +&                                (47) 
Will multiply the relation (41) with 0σ  and will have: 

 0
0 0 0

( 1)
( 1) ( )s c s

v v
z v z

F v F F v
σ

σ σ σ
+

= −
+ + −

&          (48) 

We will derive the relation (45) and will obtain: 
  0mv u z vσ α= − −&& & &&                                         (49) 
In continuance, will replace the relation (47) in the 
relation (48), again the relation which will obtain, wiil 
introduce in (49) and will result the independent 
relation of z  (50):  

( )
( ) ( )

0 0

2 2
0 0 0

s s s c c

c c s

mF v F v F v mF vv F vv m v v v vv

v v v v F v F vu v u v vu F u

α σ α σ

σ α σ σ

+ + + + + + +

+ + + − − + =

&& & && & & &

& &

relation, can be rewritten through divide with sF  so 
(51): 

( )

( ) ( )

0
0

2 2
0 00

c c

s s s

c c

s s s s

m v v v vvmF vv F vv
mv v v

F F F

v v v v v u v vuF v F vu u
F F F F

σα
α σ

σ α σσ

+
+ + + + + +

+ +
+ + − − =

& &&& &
&& &

&
&

 

Will note wth 1 mθ = ; 2θ α= ; 3 0θ σ= ; 4
c

s

mF
F

θ = ; 

5
c

s

F
F
α

θ = ; 0
6

s

m
F
σ

θ = ; 0
7

sF
σ α

θ = ; 0
8

c

s

F
F

σ
θ = ; 

9
c

s

F
F

θ =  and 0
10

sF
σ

θ =                                             (52) 

the parameters which will be identified, again the 

relation (51) is expressed as the operator (19), where 
10p = , 

1w v= &&; 2w v= & ; 3w v= ; 4w vv= && ; 5w vv= & ; 

6w v v v vv= +& & ; 2
7w v v v v= + ; 2

8w v= ; 

9w vu= − & ; ( )10w v u v vu= − + ; v u= &                   (53) 
except a set of points of a zero measure.  
     The distribution image (29) of this differential 
operator, evaluated for a testing function kϕ  on the 

time interval ,k k
k a bT t t T⎡ ⎤= ⊆⎣ ⎦ , contains the 

elements given by (24), (25), (26) of the form 

( ) ( ) ( )
k

b

i
k

a

t

w k i k
t

F w t t dtϕ ϕ= ⋅∫  where, 

( )
1

( ) ( )
k

b

k
a

t

w k k
t

F v t t dtϕ ϕ= − ⋅∫ &&  ( )
2

( ) ( )
k

b

k
a

t

w k k
t

F v t t dtϕ ϕ= ⋅∫ &  

( )
3

( ) ( )
k

b

k
a

t

w k k
t

F v t t dtϕ ϕ= ⋅∫

( ) ( ) ( )
4

2( ) ( ) ( )
k k

b b

k k
a a

t t

w k k k
t t

F v t v t t dt v t t dtϕ ϕ ϕ= − ⋅ ⋅ − ⋅∫ ∫&& &  

( )
5

( ) ( ) ( )
k

b

k
a

t

w k k
t

F v t v t t dtϕ ϕ= ⋅ ⋅∫ &

( )
6

( ) ( ) ( ) ( ) ( ) ( ) ( )
k k

b b

k k
a a

t t

w k k k
t t

F v t v t t dt v t v t v t t dtϕ ϕ ϕ= ⋅ ⋅ + ⋅ ⋅ ⋅∫ ∫& &  

( )
7

2( ) ( ) ( ) ( ) ( ) ( )
k k

b b

k k
a a

t t

w k k k
t t

F v t v t t dt v t v t t dtϕ ϕ ϕ= ⋅ ⋅ + ⋅ ⋅∫ ∫                   

( )
8

2 ( ) ( )
k

b

k
a

t

w k k
t

F v t t dtϕ ϕ= ⋅∫                                      

( )
9

( ) ( ) ( ) ( ) ( ) ( )
k k

b b

k k
a a

t t

w k k k
t t

F v t u t t dt v t u t t dtϕ ϕ ϕ= ⋅ ⋅ + ⋅ ⋅∫ ∫ &&  

( )
10

( ) ( ) ( ) ( ) ( ) ( ) ( )
k k

b b

k k
a a

t t

w k k k
t t

F v t u t t dt v t v t u t t dtϕ ϕ ϕ= − ⋅ ⋅ − ⋅ ⋅ ⋅∫ ∫  

( ) ( ) ( )
k

b

k
a

t

v k k
t

F u t t dtϕ ϕ= − ⋅∫ & . 

For the evaluation of these integrals only input-output 
pairs ( ,v u ), respectively ( ,v u& ) and the module of v  
are necessary. Otherwise also the speed v  and the 
acceleration v&  will be measured, for to measure 
acceleration will use an accelerator. Integrals are 
utilized to build the system (31), (32), (33), whose 
solution is (38).     
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5 Experimental Results  
     To implement distribution based identification 
methods, an experimental platform (DBI) has been 
developed. It allows creating testing functions with 
settable parameters, automatically to create and solve 
the system (31). The input-output data for 
identification are obtained from an external source (a 
data file) or internally by simulation. 
Many examples and types of friction systems have 
been implemented for identification but, in this paper, 
only one example is analysed, based on the 
application presented in section 4. 
In first case, the measured signals, as indicated in 
Fig.4., are generated by a step input ( ) ( )u t t= 1 passed 

through function of transfer 2
0.1

0.01 0.01 1
s

s s+ +
 with 

initial state (0) [0 0 0]x =  again m , 0σ , cF , α , sF  
are parameters necessary for identification. Ten 
testing functions ϕk  on Tk, as (35), with nk=10 and 
T1=[1,1.4]; T2=[1.4,1.8]; T3=[1.8,2.2]; T4=[2.2,2.6]; 
T5=[2.6,3]; T6=[3,3.4]; T7=[3.4,3.8]; T8=[3.8,4.2]; 
T9=[4.2,4.6]; T10=[4.6,5] are utilized. 
 

0 2 4 6 8 10
-6

  

-2
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6 

←
x
1

←
x
2

←
x
3

←
acceleration

Time (sec.)

 Measured signal 
States: x=[x1 x2 x3] x(0)=[0 0 0]

 
Fig.4, Measured variables for the system with the 

modified friction LuGre model and initial state 
x(0)=[0 0 0] 

 
The matrices wF  and vF , respectively are: 
 
 0.184   0.000   -0.001  -0.038   -0.000   0.000   -0.000    
-0.051   -0.013   0.000   
-0.019  -0.000   -0.001   0.000   -0.087   0.006    0.000    
-0.006    0.000    0.000    
 0.000    0.044    0.001  -0.000   -0.002   -0.000   0.000    
-0.000    0.007   -0.000   
-0.000  -0.000    0.000  -0.000   -0.000  -0.001    0.000 
 0.000   -0.000   0.000    
 0.000   0.000    0.004    0.000   -0.000  -0.000   -0.000 
 0.000   -0.000    0.001   
-0.000  -0.000   -0.000   0.000    -0.000  -0.000   0.002 

 0.000    0.000   -0.000   
 0.000    0.000    0.000    0.002    0.000   -0.000  0.000   
-0.000    0.000   -0.000 
 0.000   0.007     0.000    0.000    0.002   -0.000  0.000   
-0.000   -0.000    0.000    
 0.000    0.000    0.000   -0.000   -0.000    0.000  0.000   
-0.000    0.000   -0.000    
 0.000    0.000   -0.000   -0.000    0.000   -0.000  0.000 
 0.000   -0.000    0.000 
 
 0.035 
-0.032 
 0.011 
 0.009 
-0.018 
 0.012 
-0.001 
-0.006 
 0.008 
-0.004 
 
The real and identified parameter values are 
respectively: 
 
m :   0.2000000000000   0.1999919109469       

0σ :  300.00000000000   299.99937408757 

cF :  0.3300000000000   0.3299672364812 
α :   0.0300000000000   0.0300235552826 

sF :  0.2900000000000   0.2899840840260 
and the conditioning number of wF  is: 
cond( wF )=2.011849741648770e+006. 
 
For the second case with same input but with  
x(0)=[1 1 1] and T1=[1,1.3]; T2=[1.3,1.6]; 
T3=[1.6,1.9]; T4=[1.9,2.2]; T5=[2.2,2.5]; T6=[2,5.2.8]; 
T7=[2.8,3.1]; T8=[3.1,3.4]; T9=[3.4,3.7]; T10=[3.7,4], 
the matrices wF  and vF  are: 
 
 0.095   -0.005   -0.001  -0.021   0.001   -0.000  -0.000  
-0.091    0.004    0.000 
-0.012    0.000    0.000   0.000    0.053  -0.003   -0.000  
-0.006    0.000   -0.000   
-0.000   -0.041    0.001   0.000  -0.003    0.000   0.000                   
 0.000    0.016   -0.000  
-0.000   -0.000    0.000  -0.000  -0.000   -0.000  -0.000                  
 0.000    0.000   -0.000 
-0.000    0.000    0.020  -0.000  -0.000   -0.000   0.000  
-0.000   -0.000   -0.019   
 0.000    0.000   -0.000   0.000    0.000   0.000    0.017         
 0.000   -0.000   -0.000   
-0.000    0.000   -0.000  -0.009  -0.000    0.000  -0.000  
-0.000   -0.000   0.000 
 0.000    0.004    0.000    0.000   0.002   -0.000   0.000    
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 0.000    0.000    0.000    
 0.000   -0.000    0.000  -0.000    0.000    0.000  -0.000  
-0.000    0.000   -0.000    
 0.000    0.000   -0.000  -0.000    0.000   -0.000   0.000                                                                                           
 0.000   -0.000   -0.000 
 
 0.017 
-0.011 
 0.006 
-0.002 
-0.000 
 0.003 
-0.004 
 0.005 
-0.006 
 0.006 
with cond( wF )=2.056712069444360e+005. 
 
again the identification results are: 
 
m :   0.2000000000000   0.1999999236194       

0σ :  300.00000000000   299.99993551165 

cF :  0.3300000000000   0.3300031565991 
α :   0.0300000000000   0.0299974467911 

sF :  0.2900000000000   0.2899997173826 
 
The measured variables for this case are illustrated in 
Fig.5. 
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Fig.5, Measured variables for the system with the 

modified friction LuGre model and initial state 
x(0)=[1 1 1] 

 
The third case refers to the same conditions as in the 
second example but considering errors in the 
measurement of both input and output. A zoom of 
these measurements containing error is shown in 
Fig.6. 
Also the real and identified cinematic friction 
characteristic is presented in Fig.7. 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig.6, A zoom representation of measurements 

containing error for the friction system and initial 
state x(0)=[1 1 1] 
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Fig.7, The real and identified cinematic friction 
reaction rc. 

 
Using these noise contamined measurements, the 
matrix wF  is still well conditioned, 
cond( wF )=2.438921172332657e+005. 
with the results:  
 
m :   0.2000000000000   0.1988765213456       

0σ :  300.00000000000   298.39993561175 

cF :  0.3300000000000   0.3201031566981 
α :   0.0300000000000   0.0289971466911 

sF :  0.2900000000000   0.2999897673226 
 
again the matrices wF  and vF  takes next values: 
 
 0.089   -0.001   -0.004  -0.012   0.007   -0.002  -0.001  
-0.082    0.002    0.001 
-0.020    0.001    0.001   0.001    0.045  -0.009   -0.001  
-0.009    0.001   -0.001   
-0.001   -0.034    0.006   0.001  -0.009    0.001   0.001                    
 0.001     0.023  -0.001  
-0.001   -0.001    0.001  -0.001  -0.001   -0.001  -0.001                  
 0.001     0.001   -0.001 
-0.001     0.001    0.015  -0.001  -0.001   -0.001     
 0.001    -0.001   -0.001  -0.023   
 0.001     0.001   -0.001   0.001    0.001   0.001      
 0.034     0.001   -0.001  -0.001   
-0.001     0.001   -0.001  -0.019  -0.001    0.001  0.001  
-0.001    -0.001    0.001 
 0.001      0.012    0.001    0.001   0.007  -0.001  0.001    
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 0.001    0.001   0.001    
 0.001   -0.001   0.001  -0.001   0.001   0.001  -0.001  
-0.001    0.001  -0.001    
 0.001    0.001  -0.001  -0.001    0.001   -0.001   0.001                                                                                           
 0.001   -0.001   -0.001 
 
 0.031 
-0.039 
 0.017 
 0.010 
-0.023 
 0.019 
-0.009 
-0.001 
 0.012 
-0.005 
 
 
6 Conclusions  

  The above results illustrates the advantages of 
distribution based identification for systems with 
discontinuities on the right side. Description by 
functionals allows to enlarge the area of systems to 
which identification procedures can be applied. This 
paper is development of a paper “Identification of 
systems with friction via distributions”. 
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