
Mobile Robot Navigation based on CNN Images Processing –
 An Experimental Setup

I. GAVRILUT1, V. TIPONUT2, A. GACSADI1

1Electronics Department, University of Oradea, Str. Universităţii, No. 1, 410087,
2Applied Electronics Department, Politehnica University from Timişoara, B-dul Vasile Pârvan, No. 2, 

300223, 
ROMANIA,

e-mail: gavrilut@uoradea.ro, agacsadi@uoradea.ro, tiponut@etc.utt.ro.

Abstract: – This paper presents results of our work in development of a path-planning algorithm for obstacle 
avoidance of a mobile robot in a real workspace. The gray-scale images processing of the robot’s workspace 
(global path-planning) is realized by using cellular neural networks (CNNs). Besides that, two IR sensors, 
mounted in front of the robot were used for fast obstacle avoidance (local path-planning).
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1   Introduction
Autonomously navigating robots have become 
increasingly important. Motion planning is one of 
the important tasks in intelligent control of an 
autonomous mobile robot. The path-planning 
problem is generating a collision-free path in an 
environment with obstacles and optimizing it with 
respect to some criterion [1],[2].

Mobile robot navigation is divided into three 
major areas: perception of the environment, path 
planning and control of the robot. The path-planning 
component is again divided in two sections: global 
path planning and local path planning.

Global path planning requires the environment to 
be completely known and the terrain should be 
static. In this approach the algorithm generates a 
complete path from the start point to the destination 
point before the robot starts its motion. On the other 
hand, local path planning means that path planning 
is done while the robot is moving, so the algorithm 
is capable of producing a new path in response to 
environmental changes.

   The path planning is a complex process starting 
with the perception of the environment based on 
maps or images. A central supervisor can do that 
(global path planning), but in many cases, the 
corrections of the path, based on sensorial 
information obtained online through robot’s sensors, 
are required (local path planning). The most 
frequent sensors for mobile robot are the proximity 
sensors (laser, IR, sonar) and the visual sensors 
(video cameras) and 

IR sensors are simple, commonly employed, and 
relatively low-cost sensing modalities to perform the 

local navigation tasks (especially, fast obstacles 
avoidance). Sometimes, IR sensors may be 
preferable to ultrasonic sensors due to their faster 
response time, narrower beam width, and lower 
cost. Unfortunately, the intensity of the light 
detected depends on several parameters including 
the surface reflectance properties, the distance to the 
surface, and the relative orientation of the emitter, 
the detector, and the surface. Due to single intensity 
readings not providing sufficiently accurate 
information about an object’s position and 
properties, the recognition capabilities of simple IR 
sensors have been underused in many applications. 
Although these devices are inexpensive, practical, 
and widely available, their use has been mostly 
limited to detection the presence or absence of 
objects in the environment (proximity detection) for 
applications such as obstacle avoidance, counting or 
wall-following [3].

Though recent research using a camera includes 
efficient localization methods due to the wealth of 
information, efficient processing using limited 
computing power is still not an easy task.

By using cellular neural networks [4],[5] which 
have very short image processing time a good 
displacement speed for the mobile robots, can be 
obtained. The CNN methods have been considered a 
solution for images processing in autonomous 
mobile robots guidance [6],[7],[8],[9],[10]. The 
choice of CNNs is based on the possibility of their 
hardware implementation in large networks on a 
single VLSI chip [5],[11],[12].

First, we will present a brief introduction on the 
two-dimensional cellular neural networks.
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1.1 Cellular Neural Networks
A cellular neural network (CNN - Cellular Neural 
Network) is an analog, nonlinear, dynamic, multi-
dimensional circuit having locally recurrent 
topology. The basic circuit units named cells or 
artificial neurons are connected only to its neighbor 
units. The basic cellular neural network [1],[5], has 
a two-dimensional rectangular structure composed 
from identical, nonlinear analog circuits (cells) 
arranged, for example, in M rows and N columns 
(see Fig. 1).

Due to their locally connections, the field areas 
occupied on the chip by the connection wire is 
minimized so that these networks could be 
implemented in the present VLSI technology, [11], 
[13]. Cells that are not directly connected together 
may affect each other indirectly because of the 
propagation effects of the continuous-time dynamics 
of cellular neural networks.

A CNN is entirely characterized by a set of 
nonlinear differential equations associated with the 
cells in the circuit. The mathematical model for the 
state equation of the single cell Cij is given by (1).
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where xij denotes the state of the cell Cij; ykl, ukl

denote the output and input respectively of cells Ckl

located in the sphere of influence with radius r, Sr, 
from Cij cell, Ckl  Sr; A(ij,kl) and, B(ij,kl) are the 
feedback and control templates respectively; zij is 
the bias term.

C(1,1) C(1,2)

C(2,1) C(2,2)

C(1,N)

C(M,1) C(M,N)

C(i,j)

Fig. 1. A two-dimensional cellular neural network with M 
rows and N columns. 

The equation, which expresses the output value 
of Cij cell, is given in the equation (2):

 1x1x
2

1
)f(xy ijijijij  (2)

where yij denotes output value of Cij.
In Fig. 2 is presented how the two-dimensional 

signals are processed with a standard cellular neural 
network having templates of 3×3 dimensions.
Applying the image U on the CNN input and having 
at state an initial image X, the CNN output image Y 
is obtained by using operators A, B, z, when that 
equilibrium point is reached.

z

f(x)

X (STATE)

A

Y (OUTPUT)

B

U (INPUT)

Fig. 2. Signals processing with a standard cellular neural 
network having templates of 3×3 dimensions.

There is a huge library of templates, available to 
the whole scientific community, whose content is 
continuously updated. The difficult task in an 
implementation of a CNN application is to choose 
the most appropriate series of templates, 
corresponding to the processing operations to be 
performed.

Cellular neural networks are very suited for high-
speed parallel signal processing like image or other 
two-dimensional signals processing. In the same 
time CNN was used for solving partial differential 
equations (PDEs). For example, it is presented a 
numerical solution of a class of PDEs by using 
emulated digital CNN-UM implemented on FPGAs 
[14].

Usually, for mobile robot path planning by using 
CNN, the image of the environment with obstacles 
must be divided into discrete image and in this way 
it is possible to represent the workspace through a 
standard neural network having m×n cells. The 
processed images have the value of the pixel in the 
interval [-1, 1], known as the standard CNN domain. 
For binary images, these values could be only +1 for 
the black pixels and –1 for the white pixels.
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2   The Experiment Presentation
In Fig. 3 the components of the experiment used for 
trajectory planning and movement control of a
mobile robot based on the real workspace images 
are presented.

The robot has to take the shortest way toward the 
target avoiding the obstacles located between the 
initial position and the target position. The PC 
supervises the whole activity of the robot by images 
processing of the work place, acquired by a visual 
sensor (camera). That observes the whole 
environment and captures images of the workspace 
at discrete moments. After each image processing 
operation, the PC will plan, if it is necessary, a new 
direction for the mobile robot displacement and a 
control signal will be sent to the robot.

In the same time, if any unexpected obstacle is 
meeting in the robot path, it is detected by the robot 
sensors. In this case the robot will take alone the 
decision for obstacle avoidance.

TX
RX

Mobile robot

Obstacles

Target

Camera

Fig. 3. The components of the experiment.

The flowchart of the whole algorithm used for 
image-based path planning and control of the 
mobile robot is presented in Fig. 4.

The color images of the whole workspace are 
acquired by a camera. In these images will be 
identified, the mobile robot position and the target 
position, respectively. Then, these are each 
represented by one pixel for future processing, even 
the real dimensions of the robot is bigger (see Fig. 
5). In fact, the pixels above mentioned are the 
symmetrical points in the robot’s image and the 
target’s image, respectively.

3   CNN based Image Processing
The obstacles positions from the environment are 
identified based on the gray-scale image. That was 
transferred into standard CNN domain, having the 
value of the pixel in the interval [-1, 1] from white 

Acquisition of the environment image

Image preprocessing using CNN 

The robot and target positions are identified

Global path planning using CNN 
processing 

Control for the robot displacement 
Local path 
planning

Signals from 
robot sensors

One step moving of the robot

NoRobot
 reached the 

target?

STOP

Yes

Fig. 4. The flowchart for mobile robot navigation based 
on CNN Images Processing 

to black. In this way the image can be processed 
with a standard cellular neural network. In our paper 
the MATCNN toolbox [15], from simulation 
environment Matlab was used.

If the obstacles from the environment have the 
luminance more lower than the free space, in the 
captured image, for their identifying the template 
TRESHOLD [15], given by (3) can be use:
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On the INPUT and the STATE, respectively, of 
the cellular neural network the gray-scale image of 
the environment is applied. After the threshold 
template applying, the binary image of the 
environment is obtained on the OUTPUT of the 
cellular neural network.

Mobile robot

Target

Obstacles

Fig. 5. The binary image of the workspace.
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Depending on the illumination conditions, in the 
acquired image different noises can be found, so that 
same portions from the free space are interpreted 
like obstacles. These noises can be removed by 
applying the template EROSION [15], given by (4).
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After the above processing, the size of obstacles
in the image can be affected so that the template 
DILATION [15] given by the (5) is used. 
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The robot and target positions are each identified 
by a single pixel. In our example, the occupied 
pixels having values +1 (black) represent the 
forbidden positions where the robot can’t move and 
the pixels having values –1 (white) represent the 
free positions accessible for the mobile robot.

4   Path Planning
The robot displacement will be made step by step 
over free space of the workspace avoiding the 
obstacles, until the target position is reached. The 
trajectory must be planned so that the robot no 
reaches the obstacles and more, that will keeping a 
fixed distance away from any obstacle.

4.1 Artificial potential field method
For the position estimation between the target and 
the points from the workspace, an artificial potential
field [16],[17] will be created based on the 
discretized image (m×n resolution). This is 
composed from an attractive potential field and a
repulsive potential field, respectively.

The attractive field is created based on the 
function Uatt(i,j) which, in any point from the 
workspace, has the values given by (6).
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where k is a positive scaling factor and d(i,j) 
represent the Euclidean distance between the target 
point and the point (i,j) from image.

In this way, for all point from the discretization 
area which represent the environment is allocated a 

proportionally value with the distance (number of 
pixels) between the points and the target point.

If denote the target point with T, having the 
coordinates (xt,yt), the distance between a point (i,j) 
from an environment up to the target point is given 
by (7).

.n1j,m1ifor

)jy()ix()j,i(d 2
t

2
t

 


(7)

The attractive potential has the minimum value 
where the target point is placed and for other points 
from the workspace the potential value is 
proportionally with the distance between the point 
and the target point.

The repulsive field is created based on the 
function Urep(i,j) which has the values given by 
relation (8).
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where n represent a positive integer number and 
q is the radius of action of that field around the 
obstacles positions (z,c).

Finally, based on the total potential field the 
robot will be “attracted” by the target and in the 
same time will be “pushing” away from the obstacle
(9).
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Based on that potential field the mobile robot 
will be coordinates to choose, every time, the 
optimally direction toward the target which 
corresponds to the minimum potential around the 
pixel representing the current position of the robot. 
The robot movement is on the same direction until 
the attractive potential is decreased.

4.2  CNN methods
For distance evaluation between the target point and 
the other free position points in the workspace, a 
wave is generated in the image plane as can be seen 
in Fig. 6 [6]. The origin of the source, which 
generates the wave, is actually the position of the 
target point. The image for distance evaluation can 
be achieved using the template EXPLORE, defined 
by (10)

The template EXPLORE is nonlinear because the 
parameter a is a nonlinear function, and depends on 
the difference, between the output value of the Cij
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Fig. 6. The principle of determination of the distances 
through wave propagation: a) the image of the wave 
moving to the target point b) the values of the pixels 

located around the target point.

cell and the output value of the Ckl cell, situated in 
her neighborhood (yij-ykl).
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The template EXPLORE is nonlinear because the 
parameter a is a nonlinear function, and depends on 
the difference, between the output value of the Cij

cell and the output value of the Ckl cell, situated in 
her neighborhood (yij-ykl).

Because of these operations, the value of the 
pixel corresponding to the target position in the 
output image remains unchanged at its initial value 
–1, while the other pixels, which represent the free 
workspace, will have values proportionally with the 
distance between their position and the position of 
the target point.

The mobile robot trajectory is determined by 
choosing, at each step, the optimal direction, given 
by the pixel having the minimal value within a 3×3 
neighborhood (with r=1). This pixel can be obtained 
through successive comparisons between all pixels 
situated in the 3×3 neighborhood of the actual 
position of the robot [6], or by applying the template 
PATH [7]. By using EXPLORE there are not two
pixels, in the wave image, with the same minimal 
value in any 3×3 neighborhood.

In case of the successive comparison method, the 
choice of the optimal direction is realized by 
extracting the pixel value from a gray-scale image. 
Using a local method, a neighbor cell from eight 
possible directions N, S, E, V, SE, NE, NV, SV is 
chosen in such a way that the output of that cell has 
the smallest possible value. Practically, the pixel 
values from the robot neighborhood will be 
compared in order to choose that pixel which has 
the minimal value. In this respect, elementary 
processing AMC [18], are used here, based on the 

template family SHIFT, corresponding to the eight 
directions mentioned above (11).
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where, depending of the considered direction, the 
only one element from operator B is equal to 1, the 
other elements having 0 values.

In the case of the second method, by applying the 
template PATH, a mask image representing the 
robot neighborhood (r=1) is realized so that the 
wave obtained with EXPLORE only in the robot 
neighborhood is selected. After the CNN processing 
operations on that image, by applying PATH, an 
image, which indicates the next direction for the 
robot, is obtained. The template PATH has the form:
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The image processing operations take place as 
follows. The environment image having the updated 
value of the wave (Fig. 7a) is applied to the input of 
the cellular neural network while on the initial state 
x(t0) an image having all the pixels at value 0 (Fig. 
7b) is applied. An image that has a single black 
pixel (the others being white) is obtained like output 
image of the network (Fig. 7c). This pixel indicates 
the next position (direction) of the robot (Fig. 7d).

After an optimal direction has been determined, 
the robot movement toward the target can be 
realized on that direction as long as the current 
direction allows the robot to move closer to the 
target or pixel by pixel.

4.2  Determining of the trajectory
The mobile robot trajectory is determined pixel by 
pixel starting with the pixel which indicates the 
initial position of the robot (iR, jR). The next position 
will be that pixel which has the minimal value from 
the neighborhood, with radius r=1, of the current 
pixel.

If the actual position of the mobile robot is 
represented by the pixel (i,j), from the processed 
image, the possible direction of movement are 
shown in Fig. 8.

The pixels values around the current pixel are 
representing by a line matrix X and the minimal 
value is given by the parameter d (13).
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Fig. 7. Determination of the next position for mobile 
robot; a) the wave image after processing b) the image 
having all pixels at value 0, c) the mask image, d) the 
image that indicates the future position of the robot.

 
).Xmin(d

,SWSENWNEWESNX




(13)

The next pixel of the trajectory will be obtained 
through comparison of d with the matrix elements. 
That pixel becomes actual pixel and so on, until the 
pixel representing the target point will be reached.

Fig. 8. The possible directions of the robot movement.

5   The Robot Displacement
The robot displacement toward the target along the 
planned trajectory can be done after the three main 
steps are completed. These steps are: generating and 
transmitting of the command toward the locomotion 
system, robot orientation on the specified direction 
and the robot movement.

In our experiment, the miniature mobile robot 
Robby RP5 (see Fig. 9) was used [19]. 

IR
sensors

Fig. 9. The mobile robot Robby RP5.

5.1 The mobile robot Robby RP5
The locomotion system of the robot is composed 
from two symmetrical trays. Both of the DC motors 
and the spur gear transmissions are integrated 
therein. The wheel axles and drive shafts are 
supported in sintered bearings. Two independently 
controllable electric motors ensure highest mobility 
of the chassis.

The robot uses the D/A converters, in this case 
better referred to as PWM outputs, to switch the 
drive motor voltage, so that, the speed and direction 
of each track is freely controllable. 

The command system of the robot is presented in 
Fig. 10.

Fig. 10. The command system of Robby RP5.

The microcontroller on the robot is a computer of 
the C-Control series. This compact unit features 
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universal capabilities for measuring, controlling and 
steering as well as serial data communication and 
data storage. The microprocessor allows 
programming in the well-known BASIC 
programming language. Through a few lines of 
BASIC (simplification variant CC-BASIC) source 
code the computer is able to handle a task like the 
"brain" of a small autonomous mobile robot.

To communicate with its environment, it has 
eight analogue inputs, two analogue outputs and 
sixteen digital port lines randomly usable as in/or 
outputs.

The signals given by IR sensors (LS and RS) are 
directed to microcontroller inputs and the signals 
commands are used for speed control of DC motor 
drive. In the same time these signals can be used to 
turn the mobile robot with different turning radius.

There is an Integrated Design Environment 
(IDE) for the development of application programs 
for the robot. The IDE is equipped with a standard 
mouse-controllable graphical user interface with 
drop-down menus and allows the development of 
source code (Editor), translating into machine 
language (Compiler) and uploading the C-Control 
program to the robot (Loader). 

The developed BASIC program, determining the 
actions and reactions of the robot, will be translated 
into a sequence of command bytes by the compiler. 
The commands and the related parameters may then 
be transferred via serial interface to the 
microcontroller, and stored into the EEPROM 
memory (24C65). The interface connection between 
PC and robot is only necessary while uploading the 
program. When the robot is programmed (the 
program was transferred or uploaded into robot 
memory), it may be disconnected before starting the 
robot.

5.2  The actions of the mobile robot
The control signals of the DC motors are:

 MR – activation of the right motor;
 ML – activation of the left motor;
 SR – sense for the right motor;
 SL – sense for the right motor.

Based on these signals, the possible actions of 
the mobile robot are presented in Tab. 1.

As can be seen in Fig. 10 the mobile robot is 
equipped with two IR sensors, for obstacle 
detection, each of them composed from an emitter 
and a receiver. If during driving the robot, obstacles 
which were not detected by camera or moving 
obstacles, appear in front of it, they can be detected 

by infrared sensors. Depending on position of these 
obstacles, the control system of the robot will 
prepare orders for the locomotion system in order to 
avoid them.

MR ML SR SL Robot action

0 1 - 1 Take right with 
advance

0 1 - 0 Take left with 
withdrawal

1 0 1 - Take left with 
advance

1 0 1 - Take right with 
withdrawal

1 1 0 0 Moving back

1 1 0 1 Rotate right

1 1 1 0 Rotate left

1 1 1 1 Moving 
forward

Tab. 1. The control signals of the robot motors.

The distance of area covered by the IR sensors 
can be set up on three levels (L1, L2, L3 and R1, 
R2, R3 respectively) (see Fig. 11). In case of our 
robot these distances are set up at: 30, 60 and 100 
cm, respectively.

Fig. 11. The positions of IR sensors.

On time of the robot moving, that distances will 
be alternatively set up, in increasing order. In order 
to plan the mobile robot actions, the flowchart 
presented in Fig. 12, is used. If neither sensor 
detects an obstacle then the robot moving will be at 
maximum speed. When one (or both) sensor detects
one (or more) obstacle, at level L3 and/or R3, then 
the robot moving will be at medium speed. When 
one (or both) sensor detects one (or more) obstacle, 
at level L2 and/or R2, then the robot moving will be 
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Fig. 12. The actions of the mobile robot.

at slow speed. If one (or both) sensor detects one (or 
more) obstacle, at level L1 and/or R1, then the robot 
will turn left or right, depending on the obstacles 
position and their mission.

In case of global navigation, for control signal 
transmitting between the PC computer and the 
mobile robot, the parallel port of the PC can be 
used.

In this paper, for controlling of the displacement 
robot, the D connector pins (Data0, Data1, Data2 
and Data3) were used. These can be configured 
from the Matlab environment like the output pins.
The communication between the parallel port and 
the mobile robot can be made by wire, through IR 
communication or using radio communication.

For local navigation, the mobile robot uses their 
microcontroller (M68HC05) and the EEPROM 
memory (24C65) where a program for obstacles
avoidance is stored. Of course, the obstacles are 
detected by the two IR sensors, mounted in front of 
the robot.

6  Experimental Results
Mobile robot navigation based on images processing 
was experimentally tested in an indoor environment 
with static obstacles.

In the first version, a web camera USB PC 
Camera 305 mounted on the USB port of a PC
computer was used for environment image 
acquisition. The camera control for establish the 
image acquisition moments is realized based on a 
program named VFM (Vision For Matlab)
[8],[20],[21]. Practically, that program transfers into 
simulation environment Matlab the acquired images 
in form of three matrixes, each of these representing 
one of the primary color weight (red, green and 

blue) for every pixel from current image. The 
images resolution can be modified in five levels 
from 160×120 pixels up to 640×480 pixels. After 
their transferring into CNN domain the image 
processing for obstacles detection was made using 
the MATCNN toolbox [15].

An image acquired by the video camera, having 
the resolution 160×120 pixels is presented in Fig.
13a. That represents the gray-scale image of the real 
environment and was used for system testing. The 
binary image obtained through CNN processing is 
shown in Fig. 13b. In that image the obstacles are 
representing by black pixels and the free space are 
representing by white pixels. After the EROSION 
template was applied the image from Fig. 13c is 
obtained. Finally, by applying the DILATION 
template, the image used for path planning is shown 
in Fig. 13d.

Connection between the robot and the PC 
computer was achieved, in the first phase, by five 
wire connection. Then, a remote control based on 
unidirectional radio communication (40 MHz), was 
made. This type of communication offers a great 
flexibility so that the robot will not be disturbed by 
obstacles during its journey compared with the 
communication by wire connection.

a) b)

c) d)

Fig. 13. CNN processing of the real environment image; 
a) the gray-scale image, b) the binary image obtained by 

applying the template TRESHOLD, c) applying the 
template EROSION, d) the finally image after the 

template DILATION was used.

In the example, above presented, the target (T)
was identified situated on the column 130 and line 
20, respectively, so that the attractive potential field 
is presented in Fig. 14.

Based on the images above presented, the entire 
planned trajectory of the robot is shown in Fig. 15. 
The initial   position   of   the   robot   (R) has   the
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a) b)

d)c)

R

T

Fig. 14. Example of an artificial attractive potential field; 
a) image of the environment with obstacles, b) the 

attractive potential, c) the repulsive potential, d) shape of 
the total potential.

coordinates (20, 130) and the target point (130, 20), 
respectively.

Fig. 15. The planned trajectory of the mobile robot.

In this case, a single image of the environment 
was captured and based on that the robot can be 
controlled to reach the target position.

7   Conclusions
The paper presents an experiment for mobile robot 
navigation based on visual information given by a 
camera. For images processing the functions from 
the MATCNN toolbox [15], were used but was 
necessary, in the same time, some instructions from 
Matlab.

The total processing time can be reduced if all 
the signals processing even the signals control are 

entire realized using only the cellular neural 
networks (CNN chips). The robot can be recognized 
after their shape or based on their movement (if that 
is the single moving object from the environment) 
by using CNN. On the other hand, the target (if that 
is fixed) can be identified based on the gray-scale 
images of the workspace. Starting from these 
assumptions the camera can be set to acquire, 
directly, the gray-scale image of the environment.

The path planning based on the artificial 
potential field method has the disadvantage that the 
mobile robot can be blocked in local minima if the 
concave obstacle exists in the environment (having 
the concavities oriented toward the robot) and these 
obstacles are placed on the planned trajectory of the 
mobile robot. This problem can be resolved through 
CNN processing of the binary environment image 
which represents the concave obstacles. In this way 
the concavities can be eliminate and the potential 
field method can be applied without problems.

Another problem is the light sources position in 
the workspace. These must be distributed in order to 
provide a uniform illumination. If the environment 
illumination is not optimally, some areas from the 
free space (dark-picture portions) can be identified 
like obstacles. In the same time, the obstacle shadow 
can be interpreted like area occupied by the 
obstacles.

The environment surface is important to 
complete safety navigation because the slippage of 
the robot's wheels can be appearing. A good 
positioning of the robot can be obtained if the 
odometer sensors are used.
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