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Abstract: A multi-objective optimum design method of the balanced Surface Acoustic Wave (SAW) filter is pro-
posed. The frequency response characteristics of the balanced SAW filters are governed primarily by their geo-
metrical structures. Besides, specifications for a balanced SAW filter is given by using several criteria. Therefore,
in order to realize desirable frequency response characteristics, the structural design of the balanced SAW filter
is formulated as a constrained multi-objective optimization problem. Then a recent Evolutionary Multi-objective
Optimization (EMO) algorithm, which is called Generalized Differential Evolution 3 (GED3), is applied to the
multi-objective optimization problem. Furthermore, in order to clarify the tradeoff relationship among the ob-
jective functions of the multi-objective optimization problem, Principal Component Analysis (PCA) is used to
assess the set of the non-dominated solutions obtained by GDE3. Finally, the proposed optimum design method is
demonstrated in the three- and the two-objective optimum design problems of a practical balanced SAW filter.
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1 Introduction

Surface Acoustic Wave (SAW) filters are small,
rugged and cost-competitive mechanical band-pass
filters with outstanding frequency response character-
istics. Therefore, SAW filters have played an impor-
tant role as a key device in various mobile and wire-
less communication systems such as personal digi-
tal assistants (PDAs) and cellular phones[1, 2]. Re-
cently, the balanced SAW filter becomes widely used
in the modern Radio Frequency (RF) circuits of cel-
lular phones. That is because the balanced SAW fil-
ter can provide not only the band-pass filtering func-
tion but also some external functions such as the
unbalance-balance signal conversion, the impedance
conversion and so on[3]. Consequently, by using the
balanced SAW filter, we can reduce the total number
of the components of the modern RF circuit, as well
as their mounted area. As a result, we can miniaturize
the modern RF circuits of cellular phones.

The frequency response characteristics of SAW
filters including balanced ones are governed primarily
by their geometrical structures, namely, the configura-
tions of Inter-Digital Transducers (IDTs) and Shorted
Metal Strip Arrays (SMSAs) reflectors fabricated on
piezoelectric substrates. Therefore, in order to re-
alize desirable frequency response characteristics of
SAW filters, we have to decide their suitable struc-

tures, which are specified by some design parameters
such as the numbers of the electrodes of IDTs.

In order to decide a suitable structure of the SAW
filter, optimum design methods that combine the opti-
mization algorithm with the computer simulation have
been reported[4, 5, 6, 7]. By the way, Evolutionary
Algorithms (EAs) such as Genetic Algorithm (GA)
are practical optimization algorithms and applied to
various optimum design problems effectively[8, 9].
Therefore, GAs have been also applied to the opti-
mum design problem of SAW filters[10, 11]. In our
previous paper[12], a recent EA called Differential
Evolution (DE)[13] was applied to the optimum de-
sign problem of a practical balanced SAW filter.

Specifications for the balanced SAW filter are de-
scribed by using several criteria. However, in our
previous optimum design method[12], the structural
design of the balanced SAW filter was formulated
as a single-objective optimization problem. Exactly
speaking, a single-objective function was defined by
the weighted sum of the several criteria of the bal-
anced SAW filter. One difficulty in our previous op-
timum design method is the choice of appropriate
weighting coefficients. Therefore, even if a very good
solution could be obtained for the single-objective op-
timization problem, we do not necessarily obtain a de-
sirable structure of the balanced SAW filter.
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In this paper, a multi-objective optimum design
method for balanced SAW filters is proposed. First of
all, in order to evaluate the performance of the bal-
anced SAW filter based on the computer simulation,
the network model of the balanced SAW filter is de-
rived from the equivalent circuit model of IDT[14].
Furthermore, several criteria of the balance and the
filter characteristics of the balanced SAW filter are
defined. Then, by using these criteria, the structural
design of the balanced SAW filter is formulated as a
constrained multi-objective optimization problem.

In order to obtain various Pareto-optimal solu-
tions for the above multi-objective optimization prob-
lem, a recent Evolutionary Multi-objective Optimiza-
tion (EMO) algorithm, which is called Generalized
Differential Evolution 3 (GED3)[15], is employed.
GDE3 is an extension of DE[13] for global optimiza-
tion with an arbitrary number of objectives and con-
straints over continuous space. However, the design
parameters of the balanced SAW filter take not only
continuous values but also discrete values. Therefore,
in order to apply GED3 to the optimum design prob-
lem of the balanced SAW filter, we employ a tech-
nique that represents various design parameters by us-
ing only real-parameters[12]. Furthermore, Principal
Component Analysis (PCA) is used to assess the set
of the non-dominated solutions obtained by GDE3.

Finally, the proposed multi-objective optimum
design method is demonstrated on the structural de-
sign of a practical balanced SAW filter. In the op-
timum design problem of the balanced SAW filter,
three objective functions about the filter character-
istics are defined respectively within three different
bandwidths. Furthermore, besides the boundary con-
straints on the design parameters, six non-linear con-
straints are considered. GDE3 is applied successfully
to the three-objective optimization problem. As a re-
sult of PCA, it is found that two of the three objective
functions are in the tradeoff relationship but one of
them is redundant. Therefore, the redundant objec-
tive is converted into a new constraint. Then GDE3 is
applied again to the revised optimum design problem
with two objectives and seven non-linear constraints.

2 Balanced SAW Filter

2.1 Structure and Principle
The balanced SAW filter consists of several compo-
nents, namely, Inter-Digital Transducers (IDTs) and
Shorted Metal Strip Array (SMSA) reflectors fabri-
cated on a piezoelectric substrate. Figure 1 illus-
trates a typical structure of the balanced SAW fil-
ter that consists of nine components: one transmit-
ter IDT (IDT-T), two receiver IDTs (IDT-Rs), pitch-

IDT-T SMSASMSA

port-1

IDT-RIDT-R
port-2 port-3

Figure 1: Balanced SAW filter

modulated IDTs between IDT-T and IDT-R, and two
SMSA reflectors[16]. In the balanced SAW filter in
Fig. 1, port-1 is an unbalanced input-port, while a
pair of port-2 and port-3 is a balanced output-port.

2.2 Network Model of SAW Filter
In order to analyze the frequency response character-
istics of balanced SAW filters based on the computer
simulation, a numerical model of them is derived.

First of all, Fig. 2 illustrates two types of the con-
figurations of IDTs with N -pair of fingers. The be-
havior of both types of IDTs can be analyzed by using
a three-port circuit model shown in Fig. 3: port-A
and port-B are acoustic-signal ports, while port-C is
an electric-signal port[14]. Circuit elements included
in the circuit model of IDT are given as follows.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(
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η
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K

(
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(
η
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(1)

where, the dual sign (∓) means that the minus (−)
is for 2N being an even number, while the plus (+)
is for 2N being an odd number. R0 denotes charac-
teristic impedance. Fs is image admittance and γs is
image transfer constant. K(z) is the complete elliptic
integral of the first kind of a real number z ∈ IR.

Besides, shorting the electric port (port-C) of the
equivalent circuit model of IDT in Fig. 3, the equiva-
lent circuit model of SMSA reflector is obtained[14].
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N = 5 (integer) N = 5.5 (half-integer)

Figure 2: Configuration of N -pair of IDT
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Figure 3: Equivalent circuit model of IDT

Since the components of the balanced SAW filter
in Fig. 1 are connected acoustically in cascade on a
piezoelectric substrate, the equivalent circuit model of
the balanced SAW filter can be composed from their
components’ circuit models. Then the equivalent cir-
cuit model of the balanced SAW filter is represented
by an admittance matrix Y = [ypq] as follows.

⎡
⎢⎣ I1

I2

I3

⎤
⎥⎦ =

⎡
⎢⎣ y11 y12 y13

y21 y22 y23

y31 y32 y33

⎤
⎥⎦
⎡
⎢⎣ V1

V2

V3

⎤
⎥⎦ (2)

where, Vp and Ip denote the electric current and the
voltage of the port-p (p = 1, 2, 3) in Fig. 1.

Furthermore, considering the impedances of the
input-port Zin and the output-port Zout, the admit-
tance matrix Y shown in (2) can be transformed into
a scattering matrix S = [spq] as follows[12].

⎡
⎢⎣ b1

b2

b3

⎤
⎥⎦ =

⎡
⎢⎣ s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤
⎥⎦
⎡
⎢⎣ a1

a2

a3

⎤
⎥⎦ (3)

where, S = BA−1; A and B are given as follows.

A =

⎡
⎢⎣ 1 + Zin y11 Zin y12 Zin y13

− Zout y21 1 + Zout y22 − Zout y23

− Zout y31 − Zout y32 1 + Zout y33

⎤
⎥⎦

B =

⎡
⎢⎣ 1 − Zin y11 − Zin y12 − Zin y13

Zout y21 1 + Zout y22 Zout y23

Zout y31 Zout y32 1 + Zout y33

⎤
⎥⎦

From the scattering matrix S in (3), the network
model of the balanced SAW filter in Fig. 1 can be
represented graphically as shown in Fig. 4. In the
network model, nodes aq (q = 1, 2, 3) denote the
input signals of the balanced SAW filter, while nodes
bp (p = 1, 2, 3) denote the output signals. Scattering
parameters spq labeled on edges provide the transition
characteristics from input signals aq to output signals
bp. Furthermore, a pair of port-2 and port-3 of the net-
work model corresponds to the balanced output-port
of the balanced SAW filter shown in Fig. 1, while
port-1 corresponds to the unbalanced input-port.

2.3 Criteria of Balance Characteristics
In the balanced SAW filer, it is desirable that the out-
put signals b2 and b3 from the balanced output-port,
namely, a pair of port-2 and port-3 of the network
model in Fig. 4, have the same amplitude and 180
degrees phase difference through the pass-band. In
order to evaluate those balance characteristics, we em-
ploy two criteria that should be restricted to small
values[4]. The amplitude balance of the balanced
SAW filter is evaluated with criterion E1 in (4). On the
other hand, the phase balance of the balanced SAW
filter is evaluated with criterion E2 in (5).

E1 = 20 log10(|s21|) − 20 log10(|s31|) (4)

E2 = ϕ(s21) − ϕ(s31) + 180 (5)

where, ϕ(spq) denotes the phase angle of spq.

2.4 Criteria of Filter Characteristics
In order to evaluate the band-pass filer characteristics
of the balanced SAW filter strictly, we have to seg-
regate the differential mode signal from the common
mode signal in the network model in Fig. 4. There-
fore, according to the balanced network theory[17],
the differential mode signals ad and bd are derived
from aq (q = 2, 3) and bp (p = 2, 3) as shown in
(6). Similarly, the common mode signals ac and bc

are also derived from them as shown in (7).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ad =
1√
2

(a2 − a3)

bd =
1√
2

(b2 − b3)
(6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ac =
1√
2

(a2 + a3)

bc =
1√
2

(b2 + b3)
(7)

From (6) and (7), the matrix S of conventional
scattering parameters in (3) can be converted into the
matrix Smix of mix-mode ones as follows.

WSEAS TRANSACTIONS on SYSTEMS Kiyoharu Tagawa

ISSN: 1109-2777 925 Issue 8, Volume 8, August 2009



a1 b1

b2

a2 b3

a3

s11

s21

s22

s32

s33

s13

s23

s31

s12

port-1

po
rt-

3port-2

Figure 4: Network model of balanced SAW filter

Smix = TST−1 =

⎡
⎢⎣ s11 s1d s1c

sd1 sdd sdc

sc1 scd scc

⎤
⎥⎦ (8)

where, matrix T is given as follows.

T =
1√
2

⎡
⎢⎣

√
2 0 0

0 1 −1
0 1 1

⎤
⎥⎦

By using the above mix-mode scattering param-
eters instead of conventional ones, we evaluate the
band-pass filter characteristics of the balanced SAW
filter in the same way with the unbalanced one[7].
Therefore, the standing wave ratios of the input-port
E3 and the output-port E4 can be defined by (9) and
(10). The attenuation E5 between the input-port and
the output-port is also defined as shown in (11).

E3 =
1 + |s11|
1 − |s11| (9)

E4 =
1 + |sdd|
1 − |sdd| (10)

E5 = 20 log10(|sd1|) (11)

3 Problem Formulation

3.1 Design Parameters
In order to describe a suitable structure of the balanced
SAW filter, we have to select appropriate design pa-
rameters such as the numbers of fingers for IDTs, the
number of strips for SMSA, the width and the length
of electrodes, and so on. Therefore, the design param-
eters of the balanced SAW filter usually take not only
continuous values but also discrete values.

We represent the design parameters of the bal-
anced SAW filter as x = (x1, · · · , xD). Besides,

we specify the upper xU
j and the lower xL

j bounds for
each of the design parameters xj ∈ x as follows.

xL
j ≤ xj ≤ xU

j , j = 1, · · · , D. (12)

3.2 Optimum Design Problem
By using the criteria Eh (h = 1, · · · , 5) described in
the previous section, we define M objective functions
fm(x) (m = 1, · · · , M) and K constraints gk(x)
(k = 1, · · · , K). Then we formulate the structural
design of the balanced SAW filter as a constrained
multi-objective optimization problem in (13).

⎡
⎢⎢⎣

minimize { f1(x), · · · , fM(x) }
subject to gk(x) ≤ 0, k = 1, · · · , K.

xL
j ≤ xj ≤ xU

j , j = 1, · · · , D.

(13)

4 Differential Evolution (GDE3)

4.1 Overview of GDE3
Differential Evolution (DE)[13] is one of the most re-
cent Evolutionary Algorithms (EAs) for solving real-
parameter optimization problems. DE exhibits an
overall excellent performance for a wide range of
benchmark problems. Furthermore, because of its
simple but powerful searching capability, DE has got
numerous real-world applications[18]. Recently, due
to this success, DE has been extended to other types of
problems, such as multi-objective optimization[19].

Non-dominated Sorting Genetic Algorithm-II
(NSGA-II)[20] proposed by Deb et al. is one of the
most famous Evolutionary Multi-objective Optimiza-
tion (EMO) algorithms. In order to obtain a set of
various Pareto optimal solutions, the non-dominated
sorting, ranking, and elitism techniques are utilized in
the survival selection of NSGA-II. Therefore, some of
the multi-objective DEs have combined the effective
searching strategy of DE with the survival selection
of NSGA-II. For example, Iorio and Li[21] have pro-
posed Non-dominated Sorting DE (NSDE).

Generalized DE 3 (GDE3)[15] is an extended ver-
sion of the basic DE for constrained multi-objective
optimization. The selection mechanism in GDE3 con-
siders Pareto dominance when comparing feasible so-
lutions, and weak dominance when comparing infea-
sible solutions. Feasible solutions are always pre-
ferred over infeasible ones, regardless of Pareto dom-
inance. Furthermore, the survival selection based on
non-dominated sorting and crowding distance, which
have been contrived originally for NSGA-II[20], are
also adopted in GDE3. GDE3 is tested with a set
of various types of benchmark problems and results
show an improved diversity of the final solutions over
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NSGA-II as well as demonstrating a reduction in the
number of needed function evaluations[15].

4.2 Representation of Solution
GDE3 is usually used to solve the constrained multi-
objective optimization problem over the D (D ≥ 1)
dimensional real-parameters. GDE3 holds NP in-
dividuals, or the candidate solutions of the multi-
objective optimization problem, in the population. As
well as conventional real-coded GAs[22], every indi-
vidual of GDE3 is coded as a D-dimensional real-
parameter vector. Therefore, the i-th individual xG

i
(i = 1, · · · , NP ) included in the population of the
generation G (G ≥ 0) is represented as follows.

xG
i = (xG

1,i, · · · , xG
j,i, · · · , xG

D,i) (14)

where, 0 ≤ xG
j,i ≤ 1 (j = 1, · · · , D).

Each design parameter xj ∈ x used to describe
the structure of the balanced SAW filter takes either
a continuous value or a discrete value. Therefore, in
order to apply GDE3 to the optimum design problem
of the balanced SAW filter formulated in (13), we em-
ploy the following technique that converts an individ-
ual xG

i into the corresponding solution x[12].
In the regularized continuous search space of

GDE3, each element of the individual xG
j,i ∈ xG

i is re-
stricted within the range between 0 and 1 as shown in
(14). Therefore, each element xG

j,i ∈ xG
i is converted

into the corresponding design parameter xj ∈ x when
the values of the objective functions fm(x) and/or the
constraints gk(x) are evaluated. If a design param-
eter xj ∈ x takes a continuous value originally, the
corresponding xG

j,i ∈ xG
i is converted into the design

parameter as shown in (15). On the other hand, if a de-
sign parameter xj ∈ x takes a discrete value with an
interval ej , the corresponding xG

j,i ∈ xG
i is converted

into the design parameter as shown in (16).

xj = (xU
j − xL

j )xG
j,i + xL

j (15)

xj = round

(
(xU

j − xL
j )xG

j,i

ej

)
ei + xL

j (16)

where, round(z) rounds z ∈ IR to the nearest integer.

4.3 Procedure of GDE3
In the beginning of the procedure of GDE3, a set of
individuals xG

i (i = 1, · · · , NP ) are generated ran-
domly as an initial population xG

i ∈ PG (G = 0).
Then, in each generation G (G = 0, · · · , Gmax),

GDE3 goes through each individual xG
i ∈ PG, which

is called the target vector, and generates trial vectors
uG

i from xG
i with the genetic operator in (17). The

genetic operator in (17) is equivalent to the strategy
of DE called“DE/rand/1/bin”[13]. Therefore, three
individuals xG

r1, xG
r2 and xG

r3 (r1 �= r2 �= r3 �= i) are
selected randomly from the population PG.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

jrand = rand[1, D]
for(j = 1; j ≤ D; j = j + 1){

if(rand[0, 1] < CR ∨ j = jrand){
uG

j,i = xG
j,r1 + SF (xG

j,r2 − xG
j,r3)

}else{
uG

j,i = xG
j,i

}
}

(17)

where, the subscript jr ∈ [1, D] is selected randomly.
The scale factor SF ∈ (0, 1+] and the crossover rate
CR ∈ [0, 1] are user-defined control parameters.

Before we describe the survival selection of
GDE3, we will explain the dominance relationship be-
tween the trial vector uG

i and the target vector xG
i .

Weak dominance relation between two vectors is de-
fined such that uG

i weakly dominates xG
i iff ∀m :

fm(uG
i ) ≤ fm(xG

i ). Dominance relation between
two vectors is also defined such that uG

i dominates
xG

i iff ∀m : fm(uG
i ) < fm(xG

i ). The dominance re-
lationship can be extended to take into consideration
constraint values besides objective values[15].

Each trial vector uG
i (i = 1, · · · , NP ) is com-

pared with the corresponding target vector xG
i . Then,

according to the following rules, either the trial vector
uG

i or the target vector xG
i is selected as the member

of the next population PG+1 for the time being[15].

◦ If both vectors are infeasible, then the trial vector
uG

i is selected if it weakly dominates xG
i in the con-

straint violation space. Otherwise xG
i is selected.

◦ If one vector is feasible and the other is infeasible,
then the feasible vector is selected.

◦ In the case that both vectors are feasible, then the
trial vector uG

i is selected if it weakly dominates xG
i

in the objective function space. On the other hand,
if xG

i dominates uG
i , then xG

i is selected. If neither
vector dominates each other in the objective func-
tion space, then both vectors are selected.

After the above selection in each generation, the
size of the next population PG+1 may have increased
over the original size NP . If that is the case, the
size of the population PG+1 is decreased back to the
original size based on a similar selection approach
used in NSGA-II[20]. Exactly speaking, the individ-
uals of the population PG+1 are sorted based on non-
dominance and crowdedness. Then the inferior indi-
viduals according to these measurements are removed
from PG+1 to decrease the size of PG+1 to NP .
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Table 1: Design parameters of balanced SAW filter

xj [ xL
j , xU

j ] ej design parameter

x1 [200, 400] – overlap between electrodes
x2 [10.0, 40.0] 0.5 number of fingers of IDT-R
x3 [10.5, 40.5] 1.0 ditto of IDT-T
x4 [1.0, 4.0] 1.0 ditto of modulated IDT
x5 [50.0, 300.0] 10.0 number of strips of SMSA
x6 [0.2, 0.8] – metallization ratio of IDT
x7 [0.2, 0.8] – ditto of SMSA
x8 [1.0, 1.1] – pitch ratio of SMSA
x9 [0.9, 1.0] – ditto of modulated IDT
x10 [1.9, 2.1] – finger pitch of IDT
x11 [3900, 4000] – thickness of electrode

5 Three-objective Design Problem

5.1 Design Parameters
In order to describe the structure of the balanced SAW
filter in Fig. 1, we have selected D = 11 design pa-
rameters xj ∈ x (j = 1, · · · , D) as shown in Table 1.
Besides the design parameters xj ∈ x, Table 1 shows
their upper xU

j and lower xL
j bounds. Furthermore,

the intervals ej ∈ IR of design parameters xj ∈ x
are also described in Table 1 if corresponding design
parameters xj have to take discrete values.

5.2 Objectives and Constraints
We formulate the structural design of the balanced
SAW filter shown in Fig. 1 as a three-objective op-
timization problem with six non-linear constraints.

First of all, the values of the criteria Eh for the
balanced SAW filter depend on both the frequency ω
and the design parameters x. Therefore, we choose a
set of sample points ω ∈ ΩP from the pass-band of the
balanced SAW filter. Similarly, we choose two sets of
sample points ω ∈ ΩL and ω ∈ ΩH respectively from
the lower and the higher stop-bands.

Because the balanced SAW filter works as a band-
pass filter, by using the attenuation E5 = E5(x, ω) in
(11), we define the following three objective functions
fm(x) (m = 1, 2, 3) to be minimized. The attenu-
ation of the balanced SAW to be optimized by using
three objective functions is illustrated in Fig. 5.

f1(x) =
∑

ω∈ΩL

E5(x, ω)
|ΩL| (18)

f2(x) =
∑

ω∈ΩH

E5(x, ω)
|ΩH | (19)

f3(x) = −
⎛
⎝ ∑

ω∈ΩP

E5(x, ω)
|ΩP |

⎞
⎠ (20)

lower stop-band higher stop-bandpass-band
frequency [MHz]

0

at
te

nu
at

io
n 

[d
B

]

LΩ PΩ HΩ

minimizeminimize maximize

Figure 5: Three objectives for attenuation

We specify the upper Uh(ω) and the lower Lh(ω)
bounds for the other criteria Eh(ω, x). Then the four
of the six constraints gk(x) ≤ 0 (k = 1, · · · , 4) are
given as shown in (21). The rest two constraints are
given respectively as shown in (22) and (23).

gk(x) =
∑

ω∈ΩP

Ek(x, ω) − Uk(ω)
|ΩP | ≤ 0 (21)

g5(x) =
∑

ω∈ΩP

L1(ω) − E1(x, ω)
|ΩP | ≤ 0 (22)

g6(x) =
∑

ω∈ΩP

L2(ω) − E2(x, ω)
|ΩP | ≤ 0 (23)

5.3 Optimum Design Problem
From (18) ∼ (23), we formulate the structural design
of the balanced SAW filter as a constrained multi-
objective optimization problem shown in (24).

⎡
⎢⎢⎣

minimize { f1(x), f2(x), f3(x) }
subject to gk(x) ≤ 0, k = 1, · · · , 6.

xL
j ≤ xj ≤ xU

j , j = 1, · · · , D.

(24)

The objective functions fm(x) and the constraints
gk(x) shown in (24) are evaluated at 401 sample
points ω ∈ ΩL ∪ ΩP ∪ ΩU within the range between
850[MHz] and 1080[MHz]. The pass-band is selected
to the range between 950[MHz] and 980[MHz].

5.4 Experiment and Result
We applied GDE3 to the three-objective optimization
problem in (24). As the stopping condition of GDE3,
the maximum generation was limited to Gmax = 800.
The control parameters of GDE3 were given as fol-
lows: the population size NP = 200, the scale factor
SF = 0.9 and the crossover rate CR = 0.9. These val-
ues were decided considering the result of the empiri-
cal study about the control parameters of GDE3[23].
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(c) generation: G = 800

Figure 6: Progress of the population in three-objective
function space (population size: NP = 200)

Table 2: Result of PCA

ζ1 ζ2 ζ3

f1 −0.615 −0.524 +0.588
f2 −0.229 −0.833 +0.502
f3 +0.754 −0.174 +0.633
αm 0.506 0.918 1.00

Incidentally, the program of GDE3 including the
simulator for the balanced SAW filter shown in Fig. 1
is coded by MATLAB. The program spends about one
hour for one run on a PC (CPU: Intel(R) Core 2).

Figure 6 depicts all individuals of the popula-
tions of different generations in the objective function
space. In Fig. 6, infeasible individuals are denoted by
cross symbol (×), while feasible ones are denoted by
circle symbol (◦). Furthermore, non-dominated feasi-
ble individuals are denoted by blue circle, while dom-
inated feasible ones are denoted by red circle.

Comparing three populations achieved at respec-
tive generations, we can see that the great progress of
the multi-objective search has been made by GDE3.
First of all, randomly generated individuals of the ini-
tial population (G = 0) are worse and infeasible.
However, the objective function values of all individ-
uals are improved and a lot of feasible individuals are
found after G = 200 generations. Finally, at the maxi-
mum generation Gmax = 800, all individuals become
feasible and they are non-dominated each other.

5.5 Analysis and Discussion

As you can see in Fig. 6, it is difficult to understand
the relationship among objectives graphically if there
are more than three objectives. Therefore, Principal
Component Analysis (PCA) has been used success-
fully to assess a set of the Pareto-optimal solutions ob-
tained by EMO algorithms[24, 25]. In order to clarify
the tradeoff relationship among the three objectives in
Fig. 6 (c), we have also applied PCA to the set of the
non-dominated solutions obtained by GDE3.

Table 2 shows the result of PCA in which eigen-
vectors ζm (m = 1, 2, 3) and accumulated propor-
tions αm are listed. Because α2 > 90[%] holds in
Table 2, we may pay attention only to the first and
the second principal components. Furthermore, con-
sidering the objective functions corresponding to the
most positive and the most negative element of the
first principal component ζ1, we can say that f1(x)
and f3(x) are the two most critically conflicting ob-
jectives. Besides, f2(x) seems to be redundant for the
three-objective optimization problem in (24).
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6 Two-objective Design Problem

6.1 Objectives and Constraints
From the result of PCA about the three-objective op-
timization problem in (24), we could find that the at-
tenuation E5(x, ω) within the higher stop-band (ω ∈
ΩH) should not be selected as the objective func-
tion. Therefore, we will move it from the objective
to the constraint by specifying its upper bound U5(ω)
(ω ∈ ΩH). Then we formulate the structural design
of the balanced SAW filter shown in Fig. 1 as a con-
strained two-objective optimization problem.

First of all, we consider the same design param-
eters with those of the three-objective optimization
problem shown in Table 1. By using the attenuation
E5(x, ω), we define the following two objective func-
tions f̂m(x) (m = 1, 2) to be minimized. The atten-
uation of the balanced SAW filter compelled by two
objectives and one constraint is shown in Fig. 7.

f̂1(x) = −
⎛
⎝ ∑

ω∈ΩP

E5(x, ω)
|ΩP |

⎞
⎠ (25)

f̂2(x) =
∑

ω∈ΩL

E5(x, ω)
|ΩL| (26)

We specify the upper Uh(ω) and the lower Lh(ω)
bounds for the other criteria Eh(ω, x). Then the four
of the seven constraints gk(x) ≤ 0 (k = 1, · · · , 4)
are given by (27). The rest three constraints are given
respectively as shown in (28), (29) and (30).

gk(x) =
∑

ω∈ΩP

Ek(x, ω) − Uk(ω)
|ΩP | ≤ 0 (27)

g5(x) =
∑

ω∈ΩP

L1(ω) − E1(x, ω)
|ΩP | ≤ 0 (28)

g6(x) =
∑

ω∈ΩP

L2(ω) − E2(x, ω)
|ΩP | ≤ 0 (29)

g7(x) =
∑

ω∈ΩH

E5(x, ω) − U5(ω)
|ΩH | ≤ 0 (30)

6.2 Optimum Design Problem
From (25) ∼ (30), we formulate the structural de-
sign of the balanced SAW filter as a constrained two-
objective optimization problem shown in (31).⎡
⎢⎢⎢⎣

minimize { f̂1(x), f̂2(x) }
subject to gk(x) ≤ 0, k = 1, · · · , 7.

xL
j ≤ xj ≤ xU

j , j = 1, · · · , D.

(31)

lower stop-band higher stop-bandpass-band
frequency [MHz]

0

at
te

nu
at

io
n 

[d
B

]

LΩ PΩ HΩ

upper bound
minimize maximize

Figure 7: Two objectives for attenuation

6.3 Experiment and Result
We applied GDE3 to the two-objective optimization
problem in (31). As the stopping condition of GDE3,
the maximum generation was limited to Gmax = 500.
The control parameters of GDE3 were given as fol-
lows: the population size NP = 100, the scale factor
SF = 0.9 and the crossover rate CR = 0.9.

Figure 8 depicts all individuals of the populations
of different generations in the same way with Fig.
6. Comparing the populations achieved at respective
generations, we can observe the great progress of the
multi-objective search. Besides, we can clearly con-
firm the tradeoff relationship between two objectives
at the maximum generation (Gmax = 500).

Applying GDE3 to the two-objective optimiza-
tion problem in (31), we could obtain 26 non-
dominated feasible solutions denoted by blue circle
in Fig. 8 (c). In order to verify the qualities of these
final solutions, we have taken two samples from them.
Figure 9 shows the attenuations E5(x, ω) and the ob-
jective values (f̂1(x), f̂2(x)) of the two solutions.

7 Conclusion
A multi-objective optimum design method for bal-
anced SAW filters was proposed. First of all, the
structural design of the balanced SAW filter was for-
mulated as a constrained three-objective optimization
problem. Then GED3 was applied to the optimiza-
tion problem. In order to assess the set of the non-
dominated solutions obtained by GDE3, PCA was
employed. As a result, we could find that the two
of the three objective functions were clearly conflict-
ing but one of them is redundant. Therefore, two-
objective optimization problem was formulated and
GDE3 was applied to the optimization problem again.

Future work will focus on the further investiga-
tion of the set of the Pareto-optimal solutions in the
design parameter space. Thereby we would like to
clarify the relationship between the structure and the
frequency response of the balanced SAW filter.
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Figure 8: Progress of the population in two-objective
function space (population size: NP = 100)
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Figure 9: Attenuations of final solutions
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