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Abstract: - A procedure for the ship dynamic positioning postoptimal analysis in Intelligent Sea Transportation System 
Optimization is proposed. The dynamic positioning control system design is based on the optimal constrained 
covariance control (OC3). In that way some disadvantages of the classical optimal control technique are avoided. When 
the sensitivity of solutions to desired system performances is performed, then it can be shown that under particular 
circumstances, a slight change of desired system performances could significantly improve the optimal solution value. 
Namely, a slight relaxation of desired system position accuracy could result with significant energy savings. The 
presented numerical example illustrates some benefits of the proposed approach. 
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1   Introduction 
Dynamic Positioning of floating vessels is a technique 
for maintaining the position and heading of the vessel 
without the use of mooring system [1,2]. The basic 
forces and motions are presented in Fig. 1. Today this 
manoeuvre technique is very important for various 
logistics facility. A Mobile Offshore Base (MOB) 
Project as a large floating platform is well-known 
example. The Mobile Offshore Base is a Science & 
Technology Program conducted by US Office of Naval 
Research to advance technologies essential for 
establishing the feasibility of building a Mobile Offshore 
Base and to determine whether the MOB concept 
represents credible system for Naval and Marine forces. 
The envisioned system would consist of three to five 
interconnected modules and would accept cargo from 
conventional take-off and landing (CTOL) aircraft, as 
well as from container ships. It will be able to project 
these resources to the shore via landing craft. 
Other key general characteristics of a MOB include: 
 

1. Length up to 2 km and width of approximately 120 
m 

2. Low ocean wave-induced motion to support CTOL 
operation of cargo aircraft up to Sea State 6 

3. High throughput, open-ocean ship to MOB, and 
MOB-to-cargo ship transfers through Sea State 3 

4. Platform survivability in any incident storm (e.g., 
hurricane and typhoon) 

5. Maintainability of 40 years between overhauls 
6. Long-term station-keeping in deep water [3]. 

 
In a conventional floating vessel the forces required to 
overcome the effects of wind, waves and current are 
provided by the mooring system. The most significant 
limitation of that solution is the difficulty of mooring in 
deep water. In fact, at some water depth the multipoint 
mooring system is totally impractical. In a dynamically 
positioned vessel the forces are provided by thrust 
devices. 
The main elements of a dynamic positioning system are 
the position reference system, the propulsion system and 
the control system. The position of the vessel can be 
measured using either an hydroacustic system (beacon), 
a taut-wire system, a micro-wave radio system, GPS or a 
combination of them. The deviation of the vessel 
heading is measured by a gyrocompass. The direction 
and magnitude of wind are measured by a wind sensor 
(anemometer). The propulsion system can be composed 
of various combinations of main engine, tunnel thrusters, 
steer able thrusters and cycloidal propellers. The control 
system receives signals of the position reference system 
and heading deviations, compares with ordered values 
and calculates the output commands for thrust magnitude 
and direction of thrust devices. In order to design an 
efficient DP control system using Kalman filtering 
approach, an accurate mathematical model of the vessel 
dynamics is required. The optimal control strategy for 
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the dynamic positioning design can be split into four 
distinct procedures, [4]: 
 
a) Find the conditional mean estimate of LF state vector 
using the Kalman filter (filter problem); 
b) Find the optimal feedback on the assumption that the 
conditional mean estimate of  the LF state vector is the 
true system state (regulator problem); 
c) The magnitude and direction of the wind are 
measured, converted to ship coordinate system, filtered 
and input into the wind feed-forward loop (feed-forward 
problem); 
d) The thruster allocation algorithm calculates thruster 
output level and azimuth angle commands to an arbitrary 
combination of working propulsion plant (contribution 
problem), [5,6]. 
 
An essential problem in DP system design is removing  
the oscillatory components on the positioning 
measurement, that the propulsion system do not respond 
to the wave motions and, consequently, reduce energy 

loss and wear of the propulsion system. In existing 
presented DP investigations the controllers were 
determined on some different ways (using classical 
Linear Quadratic Gaussian (LQG) optimal control 
technique, [7], using the pole placement technique, [8], 
using characteristic locus design method, [9], etc. The 
classical Linear Quadratic Gaussian (LQG) optimal 
control   approach is impractical in two reasons. First, 
there are not physical sense of weighting matrices Q and 
R, and second, the objectives are conflicting and no 
design exists which is best with respect to all objectives. 
Thus, a very difficult iterative design process must be 
used to determine the necessary optimal control 
performance criterion. The use of multiobjective LQG 
design has been rather limited, [10]. One reason for this 
may be the fact that multiobjective optimization is, in 
general, computationally demanding and the non-
uniqueness of the controls. The pole placement 
technique and characteristic locus design method are 
inadequate, because they are not intended for 
stabilization's problems. 

 
 

 
 
 

Fig. 1. Dynamic Positioning System 
 

 

WSEAS TRANSACTIONS on SYSTEMS Sadko Mandzuka, Ivan Bosnjak, Ljupko Simunovic

ISSN: 1109-2777 804 Issue 7, Volume 8, July 2009



2   Mathematical Modeling 
The mathematical model for the vessel dynamics is 
highly nonlinear and may be derived from theory and 
can be substantiated by model test, [11,12]. It is usual to 
assume that the vessel motions are the sum of the 
outputs from the low-frequency (LF) and high-frequency 
(HF) subsystem. The low-frequency subsystem is 
controllable and has an input from the thruster control 
signal u. The high-frequency subsystem is not 
controllable via the thrusters control input. Thus, the 
motions of the vessel are the superposition of the 
horizontal manoeuvring motion in a calm sea and the 
motions induced by the high-frequency wave exciting 
forces. The non-linear differential equations of vessel LF 
motions may be expressed in the following form: 
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where: 
 
u  - Surge velocity,  
v  - Sway velocity,  
r  - Yaw velocity,  
XA  - Surge direction force,  
YA  - Sway direction force,  
NA  - Turning moment on the vessel, 
m  - Mass of vessel,  
Jzz  - Moment of inertia, 

uX
&
, vY

&
, rN

&
- Added masses and inertia,  

XH, YH, NH - Hydrodynamics forces and moment.  
 
The low-frequency linear model is obtained by 
linearizing above equations of motions. The linearized 
equations are dependent upon nominal state (current, sea 
state, propulsion etc.) and it is reasonable to assume that 
the changes in velocity and position are small. In that 
way linear model very well describes dynamics of the 
vessel.  
The high-frequency model is represented by colored 
noise model (color filter) which is obtained by 
approximation of sea spectrum in rational proper 
transfer-function model, [13]. It is assumed that. in the 
worst case, the high frequency motions of the vessel are 
not attenuated by vessel dynamics, [14]. The most 
representative mathematical models of sea waves is 
well-known Pierson-Moskowitz power spectral density 

function. It is given by the following non-rational 
expression: 
 

)exp()(
45 ωω

ω BA
S −=  

 
(2) 

 
where the values for A and B have been suggested by the 
ITTC (International Towing Tank Conference) as: 
 

2g*0.0081 A = ,  
-2
sh*3.109  B= , 

 
where: 
hs - Significant wave height,  
g  - Gravitational constant (9.81 m/sec2),  
ω  - Angular frequency (rad/s). 
 
This one-parameter spectrum is general enough to 
include many of the observations at oceans. It is also in 
agreement with theoretical prediction of high-frequency 
limit. The spectrum (2) for the sea states 5, 6 and 7 is 
shown in Fig 1. 
The value of the resonant frequency can be calculated as: 
 

5

44
0

B=ω  
 

(3) 

 
Unfortunately, the equations arising from such 
descriptions are difficult to manipulate in control theory. 
Following the linear theory, using spectral factorisation 
techniques, the sea spectrum can be modelled by transfer 
function representation (colour filter). There are at least 
two situations for modelling sea spectra by using transfer 
function methodology. First, it is necessary for digital 
simulation of the behaviour of floating vessels. The 
analysis of more complex systems on floating vessels 
and the design verification usually require simulation. 
These simulations use a computer to solve some 
algebraic and differential equations which model the 
system. Second, sea disturbances have to be defined 
adequately in the process of designing control systems 
using the modern optimal control and estimation theory. 
The traditional approach, using classical seakeeping 
methodology, is not suitable in this case. Remarkable 
progress has been made recently in the theory of 
stochastic process, not only in mathematics and physics, 
but also in communications, measuring and control 
engineering, as well as in economics and biology. 
Modern control and estimation theories are mostly based 
on linear models. 
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Fig 1. Pierson-Moskowitz spectrum 

 
Important step in identification of colored filter transfer 
function is determination of its structure (order). 
Consequently, there exists a compromise problem 
between approximation quality (accuracy) and simplicity 
(complexity) of a filter. The majority of research efforts 
in the area of sea spectrum modelling suggest the 
following structure: 
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It represents agreeable compromise solution for real 
range of sea states. The maximum slope of (4) in low-
frequency range is defined by the numerator (40 
dB/dec), while the maximum slope in high-frequency 
range is determined by difference of degrees of 

numerator and denominator (-40 dB/dec).  
More complex spectrum shapes indicate the more 
complex transfer function structure.  
The global state equations of the vessel may be derived 
in the usual form as follows: 
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where x is the n-dimensional state vector, u is the p-
dimensional input vector, y is the r-dimensional output 
vector, and w and v are Gaussian white noise with zero 
mean and covariance matrices Rw and Rv, respectively.  
The state vector may be partitioned into low- and high 
frequency sections to obtain the following combined 
equations: 
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(6) 

The first partition in (6) corresponds to the subsystem 
(A l, Bl, Cl) associated with the low-frequency vessel 
motions. This includes the effect of steady wind 
disturbances; current forces and second order (drift) 

wave forces on the vessel. The second subsystem (Ah, 
Bh, Ch) represents the high-frequency ship motions 
which are due to the first-order (oscillatory) wave forces. 
The assumption that the linear models may be employed 
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will be validated by simulation based on the nonlinear 
model of the vessel. 

 
3 General Problem Formulations 
Consider the continuous linear system described by (5). 
The required performances of the control system are 
given in the form of inequality constraints: 
 

diag( )D dx ≤ 0  
(7) 

 
where Dx is the state covariance matrix of closed loop 

system and d0 are desired upper limits for diagonal 

elements of Dx.  

The cost function (price) is given in the form: 
 

J trace( )= RDu  
(8) 

 
where Du is the control input covariance matrix of 

closed loop system and R is weighting matrix. Dx and 

Du are defined as: 
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The optimal regulator has the form: 
 

$& $ ( $ )

$
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r
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(10) 

 
where $x  is optimal estimation of x, Kf is Kalman filter 
gain and Kr is full-order static controller. The solution 
of the Kalman filter equation gives the stationary state 
estimation error covariance matrix: 
 

P x x x xx~ [ ( ) $( )][ ( ) $( )]= − −E t t t t T
 

(11) 

 
The estimation error is uncorrelated with any estimate 
of the state [15, 16].  
 

The required performances are transformed in the new 
form of inequality constraints: 
 

diag( )D P dx x$ ~+ ≤ 0  
(12) 

 
In the next procedure step, we define weighting matrix 
Q as: 
 

Q XX= T
 

(13) 

 
where X is an arbitrary matrix and Q is always 
symmetric and positive semi-definite matrix. The terms 
of X are variables in the considered optimization 
problem.   In that way, a local minimizer is defined as 
the well-known LQR problem: 
 

K LQR A B Q Rr = ( , , , )  
(14) 

 
Since innovations signal is a white noise process with 
mean zero and covariance Rv which is independent of x 
the stationary covariance matrices of the estimate and 
the input can be computed from: 
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(15) 

 
In this way, the algorithm is based on solving a 
sequence of standard linear quadratic control problems. 
This can be done with the algorithm shown in Fig 2. 
 
Without proof, it is clear that the suggested procedure 
holds the original convexity of the LQR problem. There 
is no problem to supply the SQP algorithm with the 
analytically defined gradients of the cost function (8) 
and constraints (7). Some characteristics of dynamic 
positioning control design are described in [4].  
 
There is a notable difference between the standard LQG 
procedure and constrained LQG. The standard LQG 
solution is not dependent of the characteristics of the 
disturbances (w(t) and v(t)). The constrained LQG 
procedure takes into account both the process 
disturbances and the estimation solution. 
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[Kf,Px]=LQE(A,B,C,Qw,Rv)

A,B,C,Qw,Rv

Initially set X=X(1)

Kr=LQR(A,B,Q,R)

T
rxru

T
fvf

T
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Termination Test

X[k+1]=X[k]+dX, 
Q[k+1]=X[k+1]XT[k+1] 

OK

STOP

START

 
Fig. 2. OC3 Algorithm  

 

4 Control System Design  
The linearized low-frequency equations for a vessel 
may be assumed to be independent of the sea state and 
known. The high-frequency model depends upon the 
sea state, but may be assumed constant for given 
weather conditions. The covariance of the white noise 
signal feeding this high-frequency block is then fixed 
by the assumed sea spectrum Thus, the only unknown 
quantities which are required before the Kalman filter 
may be specified are the low-frequency process noise 
covariance and the measurement noise covariance. An 
estimate of the power spectral density of wl can be 
based upon the Davenport wind gust spectrum, [5]. The 
measurement noise covariance may be obtained from 
the manufacturer for the particular position 
measurement system. The high-frequency model is 
represented by colored noise model (color filter) which 
is obtained by approximation of sea spectrum in rational 
proper transfer-function model and its state space 
presentation. The signal wh is unit white noise 
uncorrelated with others. The extended Kalman filtering 
technique was first applied to dynamic positioning 
systems by [7].  It was assumed that the high frequency 
motions were purely oscillatory and could be modeled 
by a second order sinusoidal oscillator with variable 
center frequency. Some disadvantages of this approach 
are discussed [9]. It is used a fourth order wave model 
in the specification of high frequency motions. 
However, the dominant wave frequency varies with 
weather conditions and corresponding Kalman filter 
gain must therefore be switched for different operating 
conditions.  The structure of proposed optimal 
estimation algorithm is presented in Fig. 3..  
 
 

 
Fig. 3. Optimal estimation algorithm 

 
Theoretically, the problem of constrained LQG control 
design can be solved using linear LQG theory by 

iterative change of matrices Q and R in the traditional 
performance index which is given as: 
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That approach is impractical, because there is not 
physical (cause and effect) sense of weighting matrices 
Q and R (free design parameters). Thus, a very difficult 
iterative design process must be used to determine the 
necessary limitations on controlled variables and 
optimal control performance criterion.  The constrained 
LQG design procedure overcomes these problems, 
because in process control the reduction of the 
variances of a controlled variable makes it possible to 
design a control system which satisfies tighter 
specification limits, [10, 17]. In the case of dynamic 
positioning control design, the cost function is proposed 
in the form (8) and process constraints are in the form 
(7). 
 It is well-known that dynamic positioning control 
system must respond to the LF vessel motion only 
(thruster modulation will be minimized). The control 
strategies u(t) is given by: 
 

)(ˆ)( txKtu lr−=  (17) 

The stationary covariance matrices of the LF state and 
the control input can be computed by: 
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where lxD ˆ  is stationary covariance matrix of the 

estimate. We can write the estimate dynamics as: 
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where Kl and Kh are Kalman LF and HF filter gains, 
respectively. Since y~ (t) is a white noise process with 
mean zero and covariance R which is independent of 
x̂ .  
The stationary covariance matrix of the estimate can be 
computed using Lyapunov equation:  
 

0)()( ˆˆ =+−+− T
ll

T
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The stationary covariance matrix of the control input is 
computed from: 
  

T
rlxru KDKD ˆ=  (21) 

 
There is a notable difference between the standard LQG 
procedure and constrained LQG. The standard LQG 
solution is not dependent of the characteristics of the 
disturbances (w(t) and v(t)). 
 

5   Postoptimal Analysis 
When the optimization procedure is finished, the 
sensitivity of the solutions to desired system 
performances, model inaccuracies and other initial 
conditions have to be analyzed. This analysis is known 
as postoptimal analysis [20, 21, 22]. When the 
sensitivity of solutions to desired system performances 
is of our concern, then it can be shown that under 
particular circumstances, a slight change of desired 
system performances could significantly improve the 
optimal solution value. Namely, a slight relaxation of 
desired system position accuracy could result with 
significant energy savings [23]. As part of postoptimal 
analysis, the possibilities of price-performance (cost-
effectiveness) improvements can be tested. The 
optimization problem can be given in the general form 
by: 
 

,...,piθ(x)f
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where: 
 
 f 0(x) - cost (price) function, 
 f i(x) - constraint function, 
 θi     - constraint (performance) value. 
 
The above optimization is easy to explain. The cost 
function represents the price of realization (such as 
energy consumption), while the constraint function 
represents the desired technical performances of our 
system (such as desired position accuracy). The 
corresponding augmented Lagrange function is: 
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Assuming that Slater's condition [22] is valid for some 
point x* and Θ*, then: 
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Equation (24) can be interpreted as the shadow price. 
This term is often used in economics when the optimal 
solutions are sought. It gives the relation for the 
sensitivity of solution to small change of constrained 
value (22). A small (or zero) value of Lagrange 
multiplier indicates that a slight change in this 
constraint does not have influence on the cost function. 
On the other hand, a large value of Lagrange multiplier 
indicates that the corresponding optimal value of the 
cost function is more susceptible to changes in this 
constraint. The shadow price is important for the 
following reasons: 
a) To identify which constraints might be the most 

beneficially changed, and to initiate these changes  
as a fundamental means to improve the solution. 

b) To react appropriately when external circumstances 
create opportunities or threats to change the 
constraints, [21]. 

In the case of OC3 design, equation (13) expresses the 
cost sensitivity related to the slight change of control 
system accuracy performances. However, sometimes 
the normed equation is preferred [23], and is given by: 
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Here the relative change of the cost function optimal 
value and constrained values are used.  
 

6   Example 
The proposed method of a postoptimal analysis is 
applied to the dynamic positioning of the floating 
vessel, given in [8]. Only the sway motion is analyzed. 
The LF subsystem of mathematical model is given by: 
 

[ ]
56 1010*5.1984

010

0

0

0.5435

1.55

0

0

1.5500

001

0.543500.0546

−− ==

=

















=
















=

















−

−
=

vw RQ

C

GB

A

 

 
In this demonstrative example only low-frequency part 
of the system is analysed. The response of free floating 
vessel to random disturbance is presented in Fig. 4. 
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Fig. 4. Response of free floating vessel to random disturbance 
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Kalman filter gain matrix (Kf) and the corresponding 
error covariance matrix for LF subsystem (Px~ ) are: 
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The solution of the Kalman filter equation gives the 
stationary state estimation error covariance matrix in 
the form (11). 
The estimation error is uncorrelated with any estimate 
of the state. The required performances are transformed 
in the new form of inequality constraints (22). 
 
The response of controlled floating vessel to random 
disturbance is presented in Fig. 4. 
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Fig. 4. Response of controlled floating vessel to random disturbance 

 
The cost function in the postoptimal analysis was 
chosen to represent the total energy consumption, while 
the constraint function represents the positioning error. 
The results of the postoptimal analysis are given in Fig. 
6. It can be seen from Fig.6. that the shadow price 
parameter si is approximately one until the positioning 
error dispersion becomes 2 meters. After that the 

shadow price value steeply rises. The interpretation of 
this example from the economic aspect is that there is 
the price to be paid if we insist to have the positioning 
accuracy better than 2 meters. Subsequent techno-
economical analysis must establish justification for 
accuracy improvement below 2 meters. 
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Fig. 5. Shadow price function 

 
 

7   Conclusion 
The main motivation for use Optimal Constrained 
Covariance Control Theory (OC3) is that many real 
control systems have performance requirements 
naturally stated in the terms of the root-mean-square 
(RMS) values. These requirements are usually given in 
the form of inequality constraints. The optimal control 
problem is characterized by compromises and tradeoffs, 
with performance requirements and magnitude of the 
input energy. For example, the objective of a dynamic 
positioning system is to maintain the position and 
heading of a vessel at reference values with acceptable 
accuracy. The design of the systems involves a 
compromise between the accuracy of holding a position 
and the need to suppress excessive thruster response.  
When the sensitivity of solutions to desired system 
performances is of our concern, then it can be shown that 
under particular circumstances, a slight change of 
desired system performances could significantly improve 
the optimal solution value. Namely, a slight relaxation of 
desired system position accuracy could result with 
significant energy savings. 
The proposed method provides a means for the analysis 
of desired performance, set by the designer, for the 
intelligent control system, according to the total cost 
(energy consumption), [24]. Sometimes it can be 
concluded that a slight relaxation of desired accuracy 
specifications (if technically sound) can result in 
significant total energy savings. Future research should 
investigate interdependence between parameters of 

shadow price and robustness of the nonlinear control 
system [25]. A preliminary analysis shows that some 
form of interdependence exists, because with significant 
growth of the shadow price, the robustness of the control 
system deteriorates. 
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