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Abstract: Many practical applications including speech and audio processing, signal processing, system identifi-
cation, econometrics and time series analysis involve the problem of reconstructing a dynamic system model from
data observed with noise in all variables. We consider an important class of dynamic single-input single-output
nonlinear systems where the system model is polynomial in observations but linear in parameters, which captures
a wide range of such systems. Assuming white Gaussian measurement noise that is characterized by a magnitude
and a covariance structure, we propose a nonlinear extension to the generalized Koopmans–Levin method that can
estimate parameters of dynamic nonlinear systems with polynomial nonlinearities given a priori knowledge on the
noise covariance structure. In order to estimate noise structure, we apply a covariance matching objective function.
Combining the extended Koopmans–Levin and the covariance matching approaches, an identification algorithm to
estimate both model and noise parameters is proposed. The feasibility of the approach is demonstrated by Monte-
Carlo simulations.

Key–Words: system identification; discrete-time dynamic systems; errors-in-variables; linearizable systems; poly-
nomial eigenvalue problem; covariance matching

1 Introduction

The task of system identification is to build mathemat-
ical models from measured data. A discrete-time dy-
namic model in this context is a description of the dy-
namic behavior of a system or process over time, with
measurements taken at equally-spaced time instants.
Dynamic errors-in-variables systems where both in-
put and output variables are observed with noise are of
particular significance in applications where the quan-
titative description of the internal laws constituting the
system or constructing a system model from obser-
vations is of interest rather than predicting future be-
havior. In contrast to the conventional dynamic sys-
tem setup, where the error is solely attributed to the
output variable and is intended to address modeling
error, errors-in-variables systems have measurement
error in both variables and one is not able to access
their noise-free counterparts but is confined to con-
structing a best possible system model from noise-
contaminated observations. Applications of dynamic
errors-in-variables systems include speech and audio
processing, signal processing, system identification,
econometrics and time series analysis.

A rather general nonlinear dynamic system model
takes the form

f (θ, z0,i) = 0

where the vector

z0,i =
[
y0,i . . . y0,i−m u0,i . . . u0,i−m

]
collects a range of true input u0,i and output y0,i val-
ues, i = m + 1, . . . , N , N is the number of obser-
vations, m is the memory of the system, the vector
θ encapsulates the parameters of interest, and f rep-
resents some constraint between past and present ob-
servations. This configuration is shown in Figure 1.
We take a gray-box approach where the peculiarities
inside the system are known up to a number of free
parameters θ, i.e. the model structure determined by f
and m is already available. A usual assumption that is
satisfied in most applications is that the constraint f is
linear in θ, i.e.

θ>g (z0,i) = 0

where g is a linearization of f . Given that observa-
tions u0,i and y0,i are not directly observable but con-
taminated with noise, the actual observations ui and
yi satisfy ui = u0,i + ũi and yi = y0,i + ỹi, hence the
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f (θ)
u0,i y0,i

ũi ỹiui yi
ΣΣ

Figure 1: The basic setup for a discrete-time dynamic
errors-in-variables system.

objective is to derive estimates for θ given the noisy
observations ui and yi. The most common assump-
tion for the sequences of ũi and ỹi with i = 1, . . . , N
is Gaussian white noise, which models measurement
noise.

For the special case of identifying linear dynamic
errors-in-variables systems, where the constraint f is
linear not only in θ but also in observations z0,i, a
number of estimation schemes have been proposed.
For single-input single-output (SISO) systems, where
the system is described by the linear equation

y0,i + a1y0,i−1 + a2y0,i−2 + . . .+ amy0,i−m

= b1u0,i−1 + b2u0,i−2 + . . .+ bnu0,i−n

but neither the noise-free true input u0,i nor the
true output y0,i is observable, proposed methods
include bias-compensating least squares [17], the
Frisch scheme [2], instrumental variable [3], higher-
order statistics [12], structured total least squares [7],
frequency-domain [9] and efficient maximum likeli-
hood [15] methods, see [11] for a comprehensive sur-
vey. A recursive weighted extended least squares al-
gorithm based on the numerically robust orthogonal
Householder transformations is developed for systems
identification in a noisy environment in [10], and an
application of structured total least squares to dynamic
GNSS (Global Navigation Satellite System) position-
ing problems is discussed in [16]. Other approaches
to identification include neural networks [8] or genetic
algorithms.

This paper deals with a nonlinear extension of
the generalized Koopmans–Levin method to estimate
model parameters of a dynamic system with given
noise structure where the linearization g is a polyno-
mial in terms of input and output observations, and
a subsequent covariance matching objective function
to estimate noise covariance structure. The types
of nonlinearities in question (i.e. system structure)
and system memory are assumed to be known. The
Koopmans–Levin method, proposed in [6], gives a

non-iterative quick estimate of the model parameters
of a linear system given a priori information on the
noise structure. The original method was generalized
in [13] to improve estimation accuracy at the cost of
increased computational complexity, incorporating as
special cases the original Koopmans–Levin method
and the maximum likelihood method. On the other
hand, a nonlinear extension to the original Koopmans
method was proposed in [14] for static systems.

The Koopmans–Levin method and its generaliza-
tion are briefly described in Section 2. Section 3 com-
bines and extends the results of [13] and [14] to non-
linear dynamic systems that comprise of polynomial
nonlinearities yet are linear in model parameters. The
outlined method assumes a preliminarily known noise
structure, Section 4 extends the estimation method so
that no such assumptions are required. In order to
demonstrate the feasibility of the method, some sim-
ulation results are presented in Section 5 before the
paper concludes with Section 6.

2 The generalized Koopmans–Levin
method

Consider the linear SISO errors-in-variables system
G(q−1) described by the autoregressive moving av-
erage (ARMA) difference equation

A(q−1)y0,i = B(q−1)u0,i (1)

where q−1 denotes the backward shift operator such
that q−1◦i = ◦i−1, in which ◦ is a generic placeholder
for a model parameter, and

A(q−1) = a0 + a1q
−1 + · · ·+ amq

−m

B(q−1) = b0 + b1q
−1 + · · ·+ bmq

−m.

Given the aforementioned system description, we may
introduce the model parameter vector θ and the ex-
tended regressor vector z

θ> =
[
a> −b>

]
a> =

[
a0 a1 . . . am

]
b> =

[
b0 b1 . . . bm

]
z>i =

[
yi . . . yi−m ui . . . ui−m

]
in which the shorthand notation zi = z[i] has been
used, such that θ>z0,i = 0 ∀i = m + 1 . . . N with
m being the memory (or order) of the model and
z̃i = zi−z0,i is the noise contribution. Notice that the
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system is linear in components yi and ui as well as in
model parameters ak and bk with 0 5 k 5 m. Fur-
thermore, introduce the observation sample and noise
covariance matrices as

D = E
(
zz>

)
≈

1
N −m

N∑
i=m+1

ziz
>
i

µC = E
(
z̃z̃>

)
≈

1
N −m

N∑
i=m+1

z̃iz̃
>
i

with µ denoting noise magnitude andC representing a
normalized noise covariance matrix, or noise (covari-
ance) structure, that expresses the relative distribution
of noise between input and output.

The essence of the Koopmans–Levin method is
that the (full-rank) sample covariance matrix D com-
prising of noisy observations can be decomposed into
a (rank-deficient) noise-free component D0 and a
noise component C:

θ>Dθ = θ>D0θ + θ>µCθ = θ>µCθ

in which θ>Dθ = θ>E
(
zz>

)
θ = E

(
θ>zz>θ

)
and

θ>D0θ = θ>E
(
z0z
>
0

)
θ = 0 so that finding θ entails

minimizing the objective function

J =
1
2
θ>Dθ

θ>Cθ
(2)

which can be effectively tackled by solving the eigen-
vector decomposition problem

(D − µC) θ = 0

or
det (D0) = det (D − µC) = 0

so that the model parameter vector is found by solv-
ing a generalized eigenvector problem on the matrix
pair (D, C). The problem may alternatively be for-
mulated using matrix notation where

Z =

 y1 · · · ym u1 · · · um
y2 · · · ym+1 u2 · · · um+1
...

...
...

...


D = Z>Z

with Z being an (N − m + 1) × 2m matrix and
C = µCρ ⊗ Im denoting the noise structure such that
the noise covariance matrix is known up to a multipli-
cation by a scalar µ representing the noise magnitude,
i.e.

µCρ = µ

[
sin2 ρ 0

0 cos2 ρ

]
=
[
σ2
y 0

0 σ2
u

]
(3)

in which we assume that the noise structure matrix Cρ
is preliminarily known.

One way [13] to improve the robustness of the
parameter estimation approach outlined above is by
instead of (2) minimizing the objective function

J =
1
2

1
q −m

trace
(
G>q Z

>
q

(
G>q CqGq

)−1
ZqGq

)
where Zq is an (N − q + 1)× 2q matrix obtained by
augmenting Z with q −m columns of additional past
observations for both y and u;Gq is a 2q×(q−m) ma-
trix of model parameters such that Z0,qGq = 0; and
Cq = (µCρ) ⊗ Iq is a diagonal covariance structure
matrix of size 2q × 2q, and m+ 1 5 q 5 N , i.e.

G◦ =



◦0
◦1 ◦0
... ◦1
◦m

...
. . . ◦0

◦m ◦1
. . .

...
◦m


q, q−m

Gq =
[

Gy
−Gu

]
2q, q−m

Zq,y =


y1 · · · yq
y2 · · · yq+1
...

...
yN−q+1 · · · yN



Zq,u =


u1 · · · uq
u2 · · · uq+1
...

...
uN−q+1 · · · uN


Zq =

[
Zq,y Zq,u

]
in which Z0,qGq = 0, Cq = (µCρ) ⊗ Iq is a di-
agonal covariance structure matrix of size 2q, and
m + 1 5 q 5 N . Notice that both the model pa-
rameter vector θ and the original observation matrix
Z have been extended from size m to q.

By rearranging the factors of the product within
the trace operator, the above problem can be reformu-
lated as

J =
1
2

1
q −m

trace
((

G>q CqGq

)−1
G>q DqGq

)
(4)
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which can be gradually approximated with the itera-
tion scheme

θk+1 = arg min
θ

trace
(
γ−1(θk)δ(θ)

)
trace (γ−1(θk)γ(θ))

with

δ(θ) = G>q (θ)DqGq(θ)

γ(θ) = G>q (θ)CqGq(θ)

which yields the same extreme value upon conver-
gence. To facilitate easier computation, the above
scheme is equivalent to

θk+1 = arg min
θ

θ>T>
(
γ−1(θk)⊗Dq

)
Tθ

θ>T> (γ−1(θk)⊗ Cq)Tθ
(5)

where T (a sparse matrix of zeros and ones) is cho-
sen such that vec(Gq) = Tθ. In each iteration, min-
imization w.r.t. θ is attained by solving a generalized
eigenvector decomposition problem on the matrix pair
(Q, R) with

Q = T>
((

G>q (θk)CqGq(θk)
)−1
⊗Dq

)
T

R = T>
((

G>q (θk)CqGq(θk)
)−1
⊗ Cq

)
T

where θ is the eigenvector that belongs to the smallest
eigenvalue µ.

3 A nonlinear extension

In order to further generalize the Koopmans–Levin
method to nonlinear systems, linear components yi
and ui give way to the nonlinearity terms that occur
in the model. Each nonlinearity term ti (where the
index denotes the time instant i) is a product of in-
put and output variables with every possible time shift
0 5 k 5 m, each raised to a given nonnegative integer
power, i.e.

ti =
m∏
k=0

y
py

k
i−k

m∏
k=1

u
pu

k
i−k

where pyk is the possibly zero exponent of the variable
y with time shift k in the given nonlinearity term, and
puk is defined likewise. The zero time shift in u is not
permitted to ensure a causal system.

For instance, for the nonlinearities yi, ui, u2
i and

yiui, Zq takes the form

Zq =


y1 ··· yq u1 ··· uq
y2 ··· yq+1 u2 ··· uq+1
...

...
...

...
yN−q+1 ··· yN uN−q+1 ··· uN

u2
1 ··· u2

q y1u1 ··· yquq
u2

2 ··· u2
q+1 y2u2 ··· yq+1uq+1

...
...

...
...


where Zq is an (N − q + 1)× nq matrix, n being the
number of nonlinear components (in our case, n = 4),
and the general form for the matrix Gq becomes

Gq =


G1
q

G2
q

...
Gnq


nq, q−m

withGkq encapsulating the parameters for the kth non-
linearity. Notice that the matrix product Zq,0Gq en-
tails that the system is still linear in parameters. How-
ever, the covariance matrix structure Cq is no longer
a single diagonal matrix but is replaced by a matrix
polynomial

Cq(µ) = µC(1)
q + µ2C(2)

q + . . .+ µpC(p)
q

in which C(k)
q is the kth coefficient of the matrix poly-

nomial Cq(µ). One can use the following identities in
deriving Cq:

E (xpi ) = E (x0,i + ni)
p

E
(
n2p
i

)
= (2p− 1)(2p− 3) . . . 1σ2p

E
(
n2p−1
i

)
= 0

E (xi) ≈ x̄ =
1
N

N∑
i=1

xi

E (xixi−τ ) = E (xi) E (xi−τ )

in which ni is the value of a zero-mean σ2-variance
normally distributed random variable at time instant i.
For example,
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µ



σ2
y 0 0 0 ȳσ2

u ȳσ2
u ūσ2

y 0
0 σ2

y 0 0 ȳσ2
u ȳσ2

u 0 ūσ2
y

0 0 σ2
u 0 3ūσ2

u ūσ2
u ȳσ2

u 0
0 0 0 σ2

u ūσ2
u 3ūσ2

u 0 ȳσ2
u

ȳσ2
u ȳσ2

u 3ūσ2
u ūσ2

u 6σ2
uū

2 2σ2
uū

2 3ȳūσ2
u ȳūσ2

u

ȳσ2
u ȳσ2

u ūσ2
u 3ūσ2

u 2σ2
uū

2 6σ2
uū

2 ȳūσ2
u 3ȳūσ2

u

ūσ2
y 0 ȳσ2

u 0 3ȳūσ2
u ȳūσ2

u ȳ2σ2
u + σ2

yū
2 0

0 ūσ2
y 0 ȳσ2

u ȳūσ2
u 3ȳūσ2

u 0 ȳ2σ2
u + σ2

yū
2


− µ2



· · · 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3σ4
u σ4

u 0 0
σ4

u 3σ4
u 0 0

0 0 σ2
yσ

2
u 0

· · · 0 0 0 σ2
yσ

2
u


Figure 2: Example covariance matrix polynomial for the nonlinear components yi, ui, u2

i and yiui with q = 2.
Entries not shown take a value of zero.

Ex2 = E(x0 + x̃)2

= Ex2
0 + 2Ex0x̃+ Ex̃2 = Ex2

0 + σ2

Ex4 = E(x0 + x̃)4

= Ex4
0 + 4Ex3

0x̃+ 6Ex2
0x̃

2 + 4Ex0x̃
3 + Ex̃4

= Ex4
0 + 6Ex2

0x̃
2 + 3σ4

= Ex4
0 + 6

(
Ex2 − σ2

)
σ2 + 3σ4

= Ex4
0 + 6σ2Ex2 − 3σ4

and for terms with different time delays,

E (xk+1)
(
x4
k−τ
)

=
= Ex0,k+1

(
Ex4

0,k−τ + 6σ2Ex2
0,k−τ + 3σ4

)
= Ex0,k+1

(
Ex4

0,k−τ + 6σ2Ex2
k−τ − 3σ4

)
= Ex0,k+1Ex4

0,k−τ +

+6σ2Exk+1Ex2
k−τ − 3σ4Exk+1

≈ Ex0,k+1Ex4
0,k−τ + 6σ2x̄3 − 3σ4x̄.

A detailed description as well as a more comprehen-
sive example on how to derive these terms is discussed
in [14]. Figure 2 shows a sample covariance polyno-
mial for q = 2. Observe that the matrix entries usu-
ally depend not only on noise parameters σu and σy
but also on (means of) the observations themselves.

The use of covariance matrix polynomials instead
of regular covariance matrices necessitates some mod-
ifications to the objective function (4) as well as the it-
eration scheme (5). By including the noise magnitude
within the trace operator in (4) yielding

trace
((

G>q µCqGq

)−1
G>q DqGq

)
,

it is apparent that the matrix product approaches the
unit matrix should the best possible model parameters
and noise covariance matrix be used. In this spirit, (4)
can be reformulated as

J =
(

trace
((

G>q µCqGq

)−1
G>q DqGq

)
− d
)2

(6)

with d = q − m and m being the the order of the
dynamic model to estimate where the minimum of
J is attained when both model and noise magnitude
estimates best match observations. Substituting the
noise covariance polynomial Cq(µ) into (6), we get
a parameter estimation scheme for nonlinear systems.
Thus, we propose the following differentiable objec-
tive function:

J =
(
trace

(
γ−1δ

)
− d
)2 (7)

where

δ(θ) = G>q (θ)DqGq(θ)

γ(θ, µ) = G>q (θ)Cq(µ)Gq(θ).

As the function (7) is differentiable, a direct search
utilizing the Levenberg-Marquardt method yields
model parameter and noise magnitude estimates.
However, the Levenberg-Marquardt method finds
only local minima, making the scheme sensitive to ini-
tial values.

Iterative schemes are more robust against local
minima. Modifying (5) to incorporate the covariance
polynomial Cq(µ) we get

θ̄k+1 = arg min
θ,µ

θ>T>
(
γ−1(θk, µk)⊗Dq

)
Tθ

θ>T> (γ−1(θk, µk)⊗ Cq(µ))Tθ
(8)

where θ̄ =
[
θ µ

]
needs the solution of a polyno-

mial eigenvalue decomposition problem

Ψ(µ)θ =
(
Q− µR1 − µ2R2 − . . .− µpRp

)
θ = 0

(9)
with

Q = T>
(
γ−1(θk, µk)⊗Dq

)
T

Ri = T>
(
γ−1(θk, µk)⊗ C(i)

q

)
T.

Further reduction in the computational space is pos-
sible if a priori knowledge of the equality of cer-
tain parameters is available. Introducing the struc-
tural constraint matrix S with 0 and 1 entries such
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that Sθ = θR, it is possible to augment the above
equations to yield

Q = S>T>
(
γ−1(θk, µk)⊗Dq

)
TS

Ri = S>T>
(
γ−1(θk, µk)⊗ C(i)

q

)
TS

and restrict the search for parameter estimates in θR
with dim θR 5 dim θ. For example, given the (non-
controllable) nonlinear system

ax0,k+1x
p
0,k−τ + bx0,kx

p
0,k−τ +

+ax0,k+1 + bx0,k + cx0,k−τ = 0

with parameters a, b and c

S> =

 1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

 .
One way to solve a polynomial eigenvector de-

composition problem is by linearization. As a result
of linearization, the polynomial eigenvalue problem
reduces to a generalized eigenvalue problem. In par-
ticular, (9), when subject to symmetry-preserving lin-
earization [1] becomes for even p

ψ(µ) = diag
([

0 I
I R1

]
,

[
0 I
I R3

]
, . . . ,

. . . ,

[
0 I
I Rp−1

])
− µdiag

(
Q−1,

[
−R2 I
I 0

]
, . . .

. . . ,

[
−Rp−2 I
I 0

]
,−Rp

)
and for odd p

ψ(µ) = diag
(
Q,

[
0 I
I R2

]
,

[
0 I
I R4

]
, . . .

)

−µdiag
([
−R1 I
I 0

]
,

[
−R3 I
I 0

]
, . . . , −Rp

)
where the operator diag aligns its arguments to bring
forth a block diagonal matrix. As the linearized prob-
lem has eigenvectors of dimension mp rather than m,
the true polynomial eigenvector that belongs to the
eigenvalue µ becomes the portion vk of the linearized
eigenvector ψ(µ)x = 0 that gives the smallest nor-
malized residual, i.e.

vk = arg min
vk

∑
k |(Ψ(µ)v)k|∑

k |vk|
.

With the iterative scheme (8) at hand, a few ini-
tial iterations can be used to seed the Levenberg-
Marquardt search with appropriate initial values re-
ducing the likelihood of (7) getting stuck in a local
minimum.

4 Simultaneous model and noise pa-
rameter estimation

Contrary to the hidden assumption in the previous sec-
tion, in a real-world scenario, the true noise structure
Cρ (or equivalently, a noise direction ρ that determines
the ratio of input and output noise variances for a unit
magnitude noise) is seldom at our disposal. As the fi-
nal step of the parameter estimation method, we pro-
pose means to estimate Cρ for white noise.

One way to parametrize noise variances, as in (3),
is by writing σ2

u = µ cos2 ρ and σ2
y = µ sin2 ρ such

that Cq = Cq(µ, ρ). Let θ̂ denote (unit-normalized)
estimates obtained with a particular assumption of ρ
using (8). Introduce the notations

δ̂ = G>q (θ̂)DqGq(θ̂)

γ̂ = G>q (θ̂)Cq(µ̂, ρ)Gq(θ̂).

Varying ρ in the range from 0 to π
2 , one can discover

the “true” value by minimizing the loss function

J(ρ) =
∥∥∥δ̂ − γ̂∥∥∥

F
(10)

where ‖·‖F denotes the Frobenius norm (a technique
called covariance matching in [15]) or the “inverted”
loss function

J(ρ) = trace
(
δ̂−1γ̂

)
(11)

or the so-called Itakura–Saito divergence

J(ρ) = trace(γδ−1)− log(det(γδ−1))− n (12)

where n is the dimension of the square matrices in-
volved. The minimum value for J in the above equa-
tions yields the optimal value for ρ.

As an alternative to the two-stage estimation pro-
cedure outlined above, a single-stage strategy might
theoretically also be employed. Let

δ(θ) = G>q (θ)DqGq(θ)

γ(θ, µ, ρ) = G>q (θ)Cq(µ, ρ)Gq(θ)
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and introduce the objective functions J1, J2 and J3

J1 =
(
trace

(
γ−1(θ, µ, ρ)δ(θ)

)
− (q −m)

)2
J2 =

(
trace

(
δ−1(θ)γ(θ, µ, ρ)

)
− (q −m)

)2
J3 = ‖Jd‖2F = trace

(
J>d Jd

)
Jd = (δ(θ)− γ(θ, µ, ρ)) .

Notice that all are functions of θ, µ as well as ρ simul-
taneously. Due to their nonlinearity, they are likely to
exhibit convergence to local minima if started with the
wrong initial values.

5 Simulation results

In order to demonstrate the feasibility of the outlined
approach, in this section we show simulation results.
However, before we present the actual results, we
briefly describe the simulation environment in which
the data were generated.

5.1 Simulation environment

In order to produce simulation data, we used
Fræser [4], an extensible object-oriented graphi-
cal framework for estimating errors-in-variables sys-
tems. Estimation algorithms it supports include
maximum likelihood, approximated maximum like-
lihood, Koopmans and instrumental variable meth-
ods for static systems, as well as bias-compensating,
extended instrumental variable methods, the Frisch
scheme, and linear and nonlinear, regular and gen-
eralized Koopmans–Levin methods for dynamic sys-
tems. The framework is implemented in MatLab with
performance-critical operations optionally performed
by external C routines and rich graphical capabilities
provided by Java Swing classes. It supports defining
a system setup interactively with a property editor and
investigating system behavior with charts and plots.
System setups can be loaded and saved as M-files,
while simulation results can be exported to a spread-
sheet or to LATEX. Apart from the graphical front-end,
it exposes both a true object-oriented (with new-style
MatLab classes) as well as a functional-style program-
ming interface.

From a design point of view, the framework en-
compasses a general data flow model to generate data,
feed the data to a linear or nonlinear static system or
a dynamic process, contaminate the data with noise,
and hand over noisy observations to an estimator to

derive model and optionally noise parameters. The
general data flow model is customized by plugging in
the desired data generator, static or dynamic system,
noise model and estimator algorithm. The pluggable
components realize a common base class that provides
fundamental metadata services to facilitate presenta-
tion over the user interface. The framework includes
several examples on usage, including the system and
estimation scheme setup that is discussed in the fol-
lowing section. The noise covariance matrix polyno-
mials that are necessary for covariance-based methods
are automatically generated using a built-in symbolic
polynomial manipulator and written into an M-file for
faster execution.

5.2 Results for a polynomial system

Let us draw our attention to an artificial yet relatively
complex process described by the nonlinear relation-
ship

y0,i = p1y0,i−1 + p2y0,i−2 + p3u0,i−1 +
+ p4u

2
0,i−1 + p5y0,i−1y0,i−2

+ p6u0,i−1y0,i−1

comprising of both linear and polynomial terms as
well as cross-correlating terms. The true parameter
values are set to

p1 = 1.5 p2 = −0.7 p3 = 1
p4 = −0.3 p5 = −0.05 p6 = 0.1

Using the outlined nonlinear extension to the gener-
alized Koopmans–Levin method, a simulation exam-
ple of N = 500 samples, q = 6, σu = 0.01 and
σy = 0.01 has been carried out to produce signals
with signal-to-noise ratios of 21dB and 36dB, respec-
tively, where

SNRu[dB] = 10 log10

1
N

∑N
i=1 u

2
0

1
N

∑N
i=1(u− u0)2

.

The parameter estimates that have been obtained with
the simulation are shown in Table 1 to be rather close
to their true value.

In order to illustrate the consistency of the estima-
tion scheme, a Monte-Carlo simulation of M = 100
runs has been carried out. The mean values and vari-
ances of parameters thus obtained are shown in Ta-
ble 2. Table 3 shows how the variance of estimates
decreases as the model order q is increased. How-
ever, Tables 1, 2 and 3 assume that a noise covari-
ance structure is preliminarily given. Figure 3 shows
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term with constraints without constraints
y0,i 1.0000 ± 0.0000 1.0000 ± 0.0000
y0,i−1 -1.4996 ± 0.0028 -1.4998 ± 0.0035
y0,i−2 0.6996 ± 0.0027 0.6999 ± 0.0029
u0,i 0.0000 ± 0.0034 0.0006 ± 0.0122
u0,i−1 -1.0005 ± 0.0075 -0.9990 ± 0.0193
u0,i−2 0.0000 ± 0.0034 -0.0010 ± 0.0150
u2

0,i 0.0000 ± 0.0034 -0.0008 ± 0.0617
u2

0,i−1 0.3019 ± 0.0409 0.3109 ± 0.0934
u2

0,i−2 0.0000 ± 0.0034 0.0056 ± 0.0810
y0,iy0,i−1 0.0000 ± 0.0034 -0.0009 ± 0.0063
y0,i−1y0,i−2 0.0499 ± 0.0061 0.0515 ± 0.0087
y0,i−2y0,i−3 0.0000 ± 0.0034 -0.0005 ± 0.0041
u0,iy0,i 0.0000 ± 0.0034 0.0009 ± 0.0203

u0,i−1y0,i−1 -0.1008 ± 0.0115 -0.1003 ± 0.0317
u0,i−2y0,i−2 0.0000 ± 0.0034 -0.0009 ± 0.0237

Table 1: Comparison of the effectiveness of NGKL parameter estimates with a known noise structure with and
without parameter equality constraints.

how to discover noise covariance structure (i.e. the
noise “direction” ρ) by minimizing the distance or di-
vergence metrics (10) and (12) over an interval to ar-
rive at estimates for all parameters. Finally, Table 4
shows results of a comprehensive simulation in which
all model and noise parameters are estimated simul-
taneously using the two-stage estimation scheme dis-
cussed in Section 4.

For the sake of comparison, an instrumental vari-
able scheme, based on the bias-compensating least-
squares technique for nonlinear polynomial systems
(PBCLS) has been included in the table. The scheme
minimizes the objective function [5]

J =
∥∥dIV − cIV − (DIV − CIV )θ̄

∥∥ (13)

where

θ̄ = (DIV − CIV )†(dIV − cIV )

with DIV and dIV being the (rectangular) covari-
ance matrices of the regressor vector and the out-
put vector, respectively, w.r.t. so-called instruments
and CIV (µ, ρ) and cIV (µ, ρ) being the correspond-
ing computed (rectangular) noise covariance matrices.
Instruments include the regressor vector as well as
past observations not in the system model. The nota-
tion M † stands for the Moore-Penrose pseudoinverse(
M>M

)−1
M>.
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 e

rr
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Figure 3: Discovering noise direction by successive
estimation over an angle range. The Frobenius metric
(10) is shown with continuous line, the Itakura–Saito
metric (12) with dashed line. The vertical axis is nor-
malized to the [0, 1] range for the two metrics inde-
pendently.
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6 Conclusion

After a brief description of the generalized Koop-
mans–Levin method for linear systems, we have in-
troduced a nonlinear extension by augmenting the ob-
servation matrix Zq with blocks that stand for non-
linear terms. The extension has propagated to the
noise covariance matrix Cq, which would become a
matrix polynomial in terms of the noise magnitude
µ. A new objective function and an iteration scheme
have been proposed, whose dependency on the model
parameters θ inherited from the GKL method for lin-
ear systems has been extended with dependency on
the noise magnitude µ. Consequently, the problem
is tackled efficiently by solving a polynomial rather
than a generalized eigenvector decomposition prob-
lem. Next, an optimization scheme for minimizing an
error term over a bounded variable representing noise
“direction” has been shown to yield a noise structure
estimate. Combining these two, we have obtained
a method that yields estimates for both model and
noise parameters of a discrete-time dynamic errors-
in-variables system that is polynomial in terms of ob-
servations. The applicability of the method has been
demonstrated with simulation results.
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