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Abstract – A projection algorithm to detect rain cloud pixels in visible and infrared satellite data is introduced in 

this work.  The algorithm is based on the angle formed by two vectors in the n-dimensional space.  This 

algorithm takes advantages of the geometrical projection principle: when two vectors are collinear the radiative 

variables of clouds used to create the vectors may exhibit similar properties, and when the vectors are 

orthogonal the radiative variables may have no elements in common.  Rain/no rain pixels are identified by using 

radar rain rate over the studied area.  Satellite data from visible and infrared channels are used to create rain and 

no rain pixel populations.  The central tendency of each population is used to generate rain and no rain 

calibration vectors.  A pixel from an independent data set is used to create a third vector, which is projected into 

the previously calibrated vectors, with the purpose of classifying the third vector in one of the two populations, 

rain or no rain.  Classification is made depending of the magnitude of the projection angle and the probability 

distribution of the visible and infrared radiation variables.  The proposed algorithm was implemented to detect 

rain clouds over a tropical area with the special purpose of developing an application to improve the Hydro-

Estimator, which is an operational and high-resolution rainfall retrieval algorithm that has been applied over the 

United States since 2002.  

Key-words -  Vector projection, classification, warm rainy clouds, rainfall detection algorithm, Hooke-Jeeves 

pattern search. 

 

1. Introduction 

The occurrence of rainfall in a given area and 

during a particular point in time can be considered as 

a sequence of rain/no rain events.  Thus, the rainfall 

detection process can be viewed as a classification 

process.  The challenge in this work is to infer the 

presence of rainfall in a pixel by looking the visual 

reflectance and the brightness temperatures obtained 

from satellite infrared (IR) channels.  This radiative 

information has been selected because data from a 

Geostationary Operational Environmental Satellite 

(GOES) are provided at high spatial and temporal 

resolution.  It is well known that for convective 

processes the presence of heavy rainfall is associated 

with cold clouds.  However, there are cold clouds 
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with no rain, and also there are heavy rains from 

warm clouds.  Thus, there is a need for an unbiased 

classification algorithm that groups a set of rain/no 

rain pixels with similar radiative properties within a 

group and rain/no rain pixels with different radiative 

properties among the groups.  Bankert et al. [1] 

pointed out that there exist different ways of 

classifying clouds (e.g, by altitude, classical types, 

physical characteristics, etc).  In addition, many 

classification methods exist and could be applied to 

achieve the most accurate and most appropriate 

classification, given the output required from the 

classifier. Depending upon the user’s needs or 

application, the classifier can be developed through 

theoretical (explicit physics) or empirical/statistical 

(implicit physics) methods.  Bankert et al. [1] 

developed two cloud classifiers: one based on 

physics and the other on statistics, using GOES-11 

radiative information.  The empirical algorithm used 

an unsupervised artificial neural network technique.  

The physical method used the physical properties of 

clouds to identify the different classes of clouds.   

Diner et al. [2] developed a cloud classification 

by using Multi-angle Imaging Spectro-Radiometer 

(MISR) data to partition clouds into categories 

distinguished by parameters such as: cloud 

elevation, angular signature, and texture or degree-

of-brokenness (e.g., stratiform vs. cumuliform).  

This theoretically-based algorithm is used to retrieve 

the cloud classification parameters of the MISR 

Level 2 Top-of-Atmosphere (TOA)/Cloud Product.   

A cloud classification scheme was also 

developed by Col and Mouchot [3] based on the 

Special Sensor Microwave Imager (SSM/I) 

measurements in association with the 

Meteorological Satellite (METEOSAT) 

classification. Before classifying SSM/I data, an 

objective technique is applied to enhance spatial 

resolution of measurements to the resolution of the 

37 GHz channel.  Different classification algorithms 

have been performed. The Fuzzy C-Mean algorithm 

seems to provide the best match with the 

METEOSAT classification, used as the ground truth. 

Although, Bankert et al. [1] Diner et al. [2] and 

Col and Mouchot [3] developed comprehensive and 

reliable algorithms for cloud classification, they are 

not directly applicable to this research effort, since 

this paper is focused on classifying cloud pixels into 

raining and non-raining pixels. 

Since radar and satellite provide high resolution 

data, a computationally fast algorithm is required for 

processing data and performing rain/no rain pixel 

detection.  The algorithm that is proposed here 

exhibits a high computational skill and is based on 

the geometric representations of two vectors in an n-

dimensional space.  The introduced algorithm is 

especially useful for identifying the rain/no rain 

pixels in a storm, where no radar is available.  

Although during the model calibration process radar 

is required.  

The second section of this paper presents the 

description of the radar and satellite data used by the 

rainfall detection algorithm (the former only for 

calibration purposes). The third section presents the 

description of the proposed projection algorithm for 

detecting rain/no rain pixels.  The fourth section 

describes a real-world application of the projection 

algorithm to identify rain/no rain clouds over a 

tropical basin.  The fifth section presents a summary 

and conclusions of the research work. 

2. Data collection 

 The data of this study are associated with a 

convective storm, and come from two sources of 

measurements: radar and satellite.  Thus, the studied 

area is limited by the coverage of the radar.  

Although the algorithm was designed for Puerto 

Rico, it is expected that the algorithm can be 

implemented in any other tropical region.  

NEXRAD data over Puerto Rico come from a 

WSR-88D unit located in Cayey (18.12°N, 

66.08°W, 886.63 m elevation).  The radar frequency 

is 2.7 GHz and the maximum horizontal range is 462 

km, and the radar scans the entire island every 6 
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minutes.  The study area covers 121x121 radar 

pixels with a grid size of   .  

Level III data for PR are available continuously 

since 2000 [4], so the Level III data were selected to 

implement the detection algorithm.  The scanning 

angle for reflectivity data was selected as 0.5 

degrees for this research in order to avoid beam 

overshoot over western PR. 

Four bands of the GOES imager are used as 

input to the rainfall detection algorithm: visible 

(0.65 µm), near infrared (3.9 µm), water vapor (6.7 

µm), and thermal IR (10.7 µm).  Two band 

differences were also calculated: the brightness 

temperature difference for 3.9µm - 10.7-µm and the 

difference for 6.7µm - 10.7µm.  In order to consider 

the cloud elevation and wind speed, an indirect 

measurement of elevation and wind effect (proxy 

variable) may be captured by computing the 

differences of two consecutives brightness 

temperature measurements from the thermal IR 

channel and two consecutive brightness temperature 

measurements from the water vapor channel.   

Cloud microphysics can be derived by studying 

the infrared channel.  Turk at al. [5] used the GOES 

8 and 9 the near infrared channel that sense radiation 

at 3.9  and the shortwave channel at 3.7  from 

the Advanced Very High Resolution Radiometer 

(AVHRR) instrument aboard the NOAA polar-

orbiting satellite systems.  In this spectral region, 

daytime satellite-observed radiances include 

contributions from both the reflected solar radiation 

and the emitted thermal emission.  In particular, 

typical stratus and fog clouds exhibit near-infrared 

emissivities less than unity, which requires special 

processing to account for the angular dependence of 

the solar reflection.  They showed a side-by-side 

comparison of time-coincident GOES- and AVHRR-

derived near-infrared cloud reflectance is carried out 

in order to demonstrate the capability of GOES-8 

and -9 in both identifying and characterizing the 

microphysics of stratus and fog clouds during the 

daytime.  They also used satellite data to retrieve 

cloud drop size distribution and effective radius over 

the coastal California during the summer of 1996. 

During the daytime the visible and IR channels 

are available; however, during the nighttime only the 

IR channels provide meaningful data since there is 

no reflected solar radiation.  Albedo was computed 

using a method presented by Lindsey and Grasso 

[6].  They developed an algorithm based on the total 

radiance of channel 2 (3.9 µm), solar irradiance, and 

the equivalent black body emitted by thermal 

radiation at 3.9 µm for a cloud at temperature T.   

GOES data were collected every 15 minutes and 

comes at approximately 4x4km
2
 spatial resolution.  

The collected data were organized into 15–minutes 

intervals; i.e., radar pixels were allocated to the 

closest satellite pixels in time and space.  Table 1 

shows the list of studied variables: 7 variables 

during nighttimes and 9 variables during the 

daytimes.  

Table 1.  Algorithm input variables. 

No Variable 

Name 

Variable Description 

1 Tb2 Brightness temperature from channel 2 
2 Tb3 Brightness temperature from channel 3 
3 Tb4 Brightness temperature from channel 4 
4 Tb3(t-1) Difference of two consecutives 

brightness temperature of channel 3. 
5 Tb4(t-1) Difference of two consecutives 

brightness temperature of channel 4. 
6 Tb24 Difference of Tb2 – Tb4 
7 Tb34 Difference of Tb3 – Tb4 
8 Vr Visual reflectance of channel 1 
9 Albedo Albedo of channel 2 

 

3. Projection algorithm 

 A computationally fast algorithm is 

proposed to classify rain and no rain pixels.  The 

algorithm starts by organizing the data.  Since 

satellite information is different during the day and 

night, the data are separated in two groups; data 

associated to pixels during the daytime and 

nighttime, respectively.  Each data set is also divided 
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in three parts: data for calibration, for validation and 

for detection.  The calibration data are used for 

designing the projection vectors, the validation data 

are for testing the algorithm performance and the 

detection data are for implementing the algorithm. 

The first (calibration) step of the algorithm 

requires identifying the location of rain/no rain 

pixels over the study area, and the radar rain rate 

data are used for this purpose.  The identified pixels 

are used to create the rain and no rain pixel 

populations.  The data set for calibration is used to 

calculate the central tendency of each population and 

can be used to create two vectors: the rain and no-

rain vectors.  The second (application) step of the 

projection algorithm consists of selecting a pixel 

(from the validation data) that will be classified as a 

rain/no rain pixel.  Data from this pixel will be used 

to create a third vector, which will be projected onto 

the rain and no rain vectors.  The magnitude of the 

projection angles and the probability distribution of 

radiative variables will be used to classify the pixel.  

In addition to the previous steps the projection 

algorithm includes the following subtasks: 

2.1 Pixel classification.   

The calibration data will be divided into 

eight groups as shown in Figure 1.  Groups 1-4 

correspond to no rain pixels and groups 5-8 are 

associated to rain pixels.  Groups 1 and 5 have the 

coldest pixels with  , where   is the 

brightness temperature of channel 4 in degrees 

Kelvin .  Groups 2 and 6 have semi-cold pixels with 

.  Groups 3 and 7 exhibit warm 

pixels with  and the groups 4 and 

8 show the very warm pixels, i.e., ..  

 

Fig 1  Pixel classification 

A calibration pixel is a rain/no rain pixel that 

is used for model calibration purposes.  A calibration 

rain pixel is located in the center of a square and 

surrounded by 8 rain pixels as shown in Figure 2, 

and likewise, a calibration no rain pixel is a no rain 

pixel located in the center surrounding by 8 no rain 

pixels (Figure 2).  This requirement of the same 

characteristics in all 9 pixels is intended to reduce 

potential ambiguity in the training data. 

   

   

   

 
Fig. 2.  Rain pixel 

 

2.2 Vector representation of each group 

The next step is to compute the average and 

the standard deviation for the calibration pixels.  

Although the calibration pixel is the one located in 

the center of the square, the estimation of the 

calibration pixel properties is computed by using the 

9 pixels that are shown in Figure 2.  This is done to 

reduce noise and derive a more consistent estimator 

for the pixel that is located in the center of square.  

Thus, the average and the standard deviation for a 

calibration pixel are computed as follows:  

 

for       

 

for       

where  is the number of pixels shown in Figure 2 

(counted using i), and includes the central pixel and 

its surrounding pixels;  is the number of pixels in a 

group (counted using j), and  is the number of 
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variables in a group (counted using k).  The counter l 

refers to the 8 different pixel classes.  The central 

tendency and the standard deviation for each group 

are estimated as follows: 

 

for      

 

for      

A representative vector for each group is 

developed by including the central tendency and the 

standard deviation for each variable in a particular 

group, as follows: 

  

for      

2.3 Vector to be projected  

A validation pixel is a pixel that is located in the 

center of the square as in Figure 2 and its properties 

are estimated by using its value and the value of the 

8 surrounding pixels.  This calculation is similar to 

the validation process.  However, in this case there is 

no rainfall information about the pixels: they could 

be rain, no rain, or mixed pixels.  A validation pixel 

is extracted to determine to which group of pixels 

show similar characteristics to the calibrated pixel.  

The average and standard deviation of the validation 

pixel (nine pixels) are computed for the radiative 

variables (Table 1).  The averages and the standard 

deviations are used to create the projection vector, 

which can be represented as follows: 

 

where  and  are the average and the standard 

deviation of the validation pixel (i.e., 9 pixels) for 

. 

2.4 Compute projection angle  

The projection angle is the angle between the central 

vector ( ) and the projection vector ( .  The 

definition of the inner product is used to calculate 

the angle between vectors in the n-dimensional 

space and can be expressed as follows [7]: 

 

where  is the inner product between the  and  

vectors;  is the module of the vector  and  

is the module of the vector . 

2.5 Compute confidence interval   

Confidence intervals are computed for the mean and 

the standard deviation of each variable in each 

group.  The confidence intervals are developed 

based on the populations of means and standard 

deviations which were computed using equations (1) 

and (2).  The confidence intervals were estimated by 

computing the , ,  and  

percentiles for  and ; where  

and  are the lower and upper limits for the mean 

and  and  are the lower and upper limits for 

the standard deviation of calibration data.  The 

confidence intervals are computed in a way to 

maximize the performance of the algorithm.  The 

Hooke-Jeeves pattern search method [8] is used to 

estimate the confidence intervals for each variable in 

such a way that the index of performance is 

minimized, which is defined as follows: 

 

Thus minimizing the index implies to minimize the 

average false alarm rate ( , and maximize the 

average of probability of detection and 

maximizing the average hit rate . 
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2.6 Pixel classification   

The group  that is associated with the minimum 

projection angle is identified, where  is computed 

as follows:  

 

A validation pixel is classified in the  group if the 

majority of the variables satisfy the confidence 

interval conditions.  The  variable satisfied the 

confidence interval conditions if the average ( ) and 

the standard deviation ( ) of a validation pixel fall 

inside of the corresponding confidence intervals.  If 

the confidence interval conditions are not satisfied, 

the projection angle that falls in second ranking 

position (M) is selected.  The interval confidence 

conditions are tested again for the group associated 

with the second angle and if the confidence interval 

conditions are satisfied, the validation pixel is 

assigned to the  group; otherwise, the majority 

voting criterion is used.  The majority voting 

consists of classifying a pixel as rainy if the three 

smallest projection angles are associated with rainy 

groups; otherwise, the validation pixel is assigned to 

a no-rain pixel. 

4. Preliminary results 

During October 27-29, 2007 an African wave that 

becomes the precursor of the hurricane Noel passed 

over Puerto Rico.  This paper presents preliminary 

results associated during the first day of the storm.  

Table 2 shows the central tendency and the standard 

deviation for each variable and for each group 

during the daytimes.  These results were obtained 

using equations (3) and (4). 

 
 
 
 
 
 
 
 
 

Table 2.  Central tendency for each group 

 

Varia

ble 

Group 

No rain Rain 
cold Semi 

cold 
warm Very 

warm  
cold Semi 

cold 
warm Very 

warm 

1 2 3 4 5 6 7 8 
Tb2 245 249 260 276 242 248 252 260 

Tb3 214 223 231 241 213 224 231 239 

Tb4 216 229 243 265 215 228 240 256 
Tb3(t-1) -1.0 -0.3 -0.3 0.4 -1.0 -0.8 0.4 0.5 
Tb4(t-1) -1.3 -1.6 -2.0 1.3 -0.1 -1.0 1.1 2.1 

Tb24 28 21 17 11 28 20 11 4 

Tb34 2 6 12 24 1 4 9 17 

Vr 6.34 7.04 11.41 20.61 4.38 4.76 4.50 3.76 

Albedo 0.13 0.11 0.09 0.06 0.14 0.14 0.12 0.12 

 

Table 3.  Standard deviation for each group 

 

Variab

le 

Group 

No rain Rain 
cold Semi 

cold 
warm Very 

warm 
cold Sem

i 
cold 

warm Very 
warm 

1 2 3 4 5 6 7 8 
Tb2 1.95 2.75 3.95 3.70 1.84 1.94 2.77 2.85 

Tb3 1.50 1.69 1.76 0.91 1.63 1.87 2.01 1.37 

Tb4 2.01 2.93 4.20 3.61 1.82 2.72 3.87 3.32 

Tb3(t-1) 1.70 2.23 2.25 1.20 2.94 2.73 2.79 2.60 

Tb4(t-1) 2.19 3.83 5.08 4.46 2.00 3.23 4.15 3.67 

Tb24 1.77 2.11 2.42 2.24 2.39 2.39 2.61 1.90 

Tb34 0.94 1.52 2.72 2.99 0.69 1.18 2.13 2.19 

Vr 0.89 1.48 2.76 5.11 0.49 0.61 0.90 1.35 

Albedo 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.03 

 

The performance of the algorithm is measured by the 

discrete validation scores: probability of detection 

(POD), false alarm rate (FAR), hit rate (HR) and 

bias ratio (BR).  The pixels detected by NEXRAD 

are considered as the “ground truth” values and the 

pixels detected by the HE and projection algorithm 

(PA) are considered as the estimated rain/ no rain 

pixels.  Average validation scores are presented on 

Table 4 and the individual validation score for every 

15 minutes interval are given in Figure 3.  To 

perform comparison of PA with an existing 

algorithm Table 4 and Figure 3 show validation 

results associated to Hydro-Estimator (HE) [9, 10, 

11, 12].  The HE has been the operational satellite 

rainfall algorithm of the National Environmental 

Satellite, Data, and Information Service (NESDIS) 

since 2002 and produces rainfall estimates at the full 
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spatial and temporal resolution of GOES over the 

continental area of United States and surrounding 

regions, including PR; real-time estimates are also 

produced on an experimental basis for the rest of the 

globe.  The individual validation scores presented in 

Figures 3 and 4 show that the HE during the daytime 

exhibits a strong POD, but poor performances on 

HR, and FAR.  These results are also confirmed in 

Table 4.  This table shows that on the average the 

performance of the HE and PA are very similar 

during the nighttime; however, during the daytimes 

the PA shows better results than the HE in all 

validation scores except for probability of detection. 

Table 4.  Validation results for rain / no rain 

classification during the October 27, 2007 case. 

 Daytime Results Nighttime Results 

POD FAR HR BR POD FAR HR BR 

Hydro-
Estimator 

0.97 0.71 0.35 3.56 0.77 0.59 0.73 1.90 

Projection 
algorithm 

0.65 0.59 0.66 1.61 0.81 0.58 0.73 1.96 

 

 

Fig. 3. Validation scores for the Hydro-Estimator.  
POD in blue, HR in green and FAR in red (daytime, 
October 27, 2009) 
 

 

Fig. 4.  Validation score for the Projection Algorithm 
(daytime, October 27, 2009) 

Figures 5 and 6 show the rain and no rain pixels 

detected during 15 minutes (17:45 UTC, October 27, 

2007) interval by NEXRAD and HE, respectively.  

The pixels shown in these figures are limited to the 

area covered by NEXRAD.  The blue area represents 

no rain pixels and red area represents rain pixels.  

These figures imply that the HE exhibits a 

significant overestimation of rainy pixels, consistent 

with the bias ratio of 3.56 in Table 4.   

The PA classifies the pixels into 8 categories 

at 15-minute intervals (October 27, 17:45 UTC) and 

the results are shown in Figure 7.  This figure shows 

few dark blue pixels inside of the circle indicate the 

possible presence of very cold pixels with no rain.  

Most of these pixels coincide with no rain as shown 

by radar in Figure 5; however, a few pixels under 

this group do not meet the confidence interval 

criterion and they are assigned to cold rain pixels, 

and the final results of rain/no rain classification are 

given in Figure 8.  Light blue and green colors 

indicate no rain pixels, and most of these pixels are 

in agreement with actual no rain pixels detected by 

the radar (Figure 5).  The yellow pixels shown in 

Figure 7 indicate the presence of very cold clouds 

with rain pixels and some of these pixels are in 

agreement with radar rainfall detection, and some 

pixels represent false alarms.  The orange color 

indicates semi-cold rain pixels and some of these 
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pixels are also in agreement with radar detection; 

however, some of these pixels are false alarms.  The 

red color indicates warm rain pixels and the dark red 

color indicates very warm rain pixels.  Most of these 

red pixels are changed to no rain pixels since they do 

not meet the confidence interval criterion. 

These preliminary results show that during 

the nighttime the PA provides similar results to the 

HE.  However, during the daytime the PA 

outperforms the HE, and these results may occur 

because of the inclusion of visual reflectance and 

albedo from channel 2.  It has been shown that the 

reflection function at a water (or ice) absorbing 

channel in the near-infrared is primarily a function 

of cloud particle size [13].  The reflection function 

represents the albedo of the medium that would be 

obtained from a directional reflectance 

measurement.   

 

Fig 5.  Detected rain/no rain pixel by NEXRAD 

(“ground truth” of rainfall events) (17:45 UTC, 

October 27, 2007) 

 

Fig. 6.  Estimated rain/no rain pixels by the Hydro-

Estimator. (17:45 UTC, October 27, 2007). 

 

 

Fig. 7.  Classification of pixels into eight different 

groups. (17:45 UTC, October 27, 2007). 

 

The PA has been based only on radiative 

cloud properties, i.e., there may be some detection 

improvements after including atmospheric variables 

obtained from a numerical weather prediction 

model.  The inclusion of satellite microwave 

information may also improve the detection skill of 

the PA.   
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Fig. 8.  Estimated rain/no rain pixels by the 

projection algorithm. (17:45 UTC, October 27, 

2007). 

 

5. Conclusions 

The PA is a computationally fast algorithm to 

determine the rain/no rain pixel in tropical 

convective storms.  The PA is based on the 

geometric representation of a set of information.  

The PA organizes the radiative properties of clouds 

into eight different groups, and each group is 

represented by the central tendency of the radiative 

properties of the included pixels.  An unknown pixel 

is classified into one of the eight groups.  The 

classification is accomplished by using the radiative 

properties of an unknown pixel.  The radiative 

properties of the central and surrounding 8 pixels are 

used to generate a vector, which is projected into the 

central vectors, and the magnitude of the three 

smallest angles and the confidences intervals of the 

involved radiative variables are used to determine 

the group that should be assigned, and finally the 

pixel is classified as a rain / no rain pixel.   

 More experimental work is required to 

establish a conclusive statement about the 

advantages of the PA.  However, preliminary results 

indicate that the PA provides a potential 

improvement of the HE especially during the 

daytimes.  An ongoing project is exploring the 

possibility of applying this improvement to the 

operational version of the HE.   
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