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Abstract: When designing neural networks for tackling hard classification problems researchers face the trivial
problem of deciding the appropriate size of the neural network. The problem of optimizing the size of a neural
network for obtaining high classification accuracy in datasets is indeed a hard problem in the literature. Existing
studies provide theoretical upper bounds on the size of neural networks that are unrealistic to implement. Alter-
natively, optimizing empirically the neural network size may need a large number of experiments, which due to
a considerable number of free parameters may become a real hard task in time and effort to accomplish. Hard
classification problems are usually large in size datasets. Such datasets derive from collection of real world data
like from multimedia content and are usually rich in training samples and rich in features that describe each col-
lected sample. Working with neural networks and hard classification datasets will make even harder the task to
optimize the neural network size. This work highlights on a mathematical formula for a priori calculating the size
of a neural network for achieving high classification accuracy rate. The formula estimates neural networks size
based only on the number of available training samples, resulting in sizes of neural networks that are realistic to
implement. Using this formula in hard classification datasets aims to fix the size of an accurate neural network and
allows researchers to concentrate on other aspects of their experiments. The focus on this approach turns to the
number of available data for training the neural network, which is a new perspective in the neural network theory
and the characteristics of this perspective are discussed in this article for designing neural networks for tackling
hard classification problems.
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1 Introduction
Neural networks are widely used in pattern classifica-
tion. Optimizing the size of a neural network is a ma-
jor task in machine learning. The number of neurons
or circuit gates has to ensure a high generalization ca-
pability of the classifier on new unseen data. This
problem has been theoretically and experimentally in-
vestigated over a long period of time [8, 35, 37, 38].

In order for neural networks to approximate a
high classification rate, which is equivalent to low er-
ror rates, to a specific classification problem it usu-
ally requires a certain amount of adjustments, which
are apparently unavoidable in the light of the No Free
Lunch Theorems [51]. The need for tuning network
parameters when the classification accuracy is very
important may lead us to lots of experiments for es-
tablishing a high classification rate [5, 6]. A piori es-
timation of these parameters may help in reducing the
time and effort to find an appropriate neural network
for achieving high classification accuracy. An impor-
tant parameter adjustment related to neural networks

implementations is the number of hidden units (net-
work size) that should be trained in order to approx-
imate a function that best describes the training data.
The problem of finding the smallest network that can
realize an arbitrary function given a set of m vectors
in n dimensions defines the circuit complexity prob-
lem [15]. The circuit complexity problem is of great
importance in parallel processing for hardware imple-
mentations and tries to find tight bounds for the num-
ber of units used to realize an arbitrary function.

On non-seperable problems, finding the best
function for minimizing the classification error is an
NP-complete problem. Blum and Rivest [16] proved
that even for a very small network to find weights and
thresholds that learn any given set of training exam-
ples is an NP-complete problem. Höffgen and Simon
[23] deal with the problem of learning a probably al-
most optimal weight vector for a neuron, finding that
it is an NP-complete problem. Also finding an op-
timum network configuration for solving combinato-
rial optimization problems is not an easy task [53].
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Thus, establishing an optimal weight configuration of
threshold units cannot be executed in efficient time
and only approximations of optimum solutions can be
achieved.

Theoretical analysis on lower and upper bounds
on VC-dimension [48] has been performed for some
type of networks. Baum and Haussler [12, 13] show
that in a feedforward network with W weights and
N computational threshold units the VC-dimension is
bounded V C ≤ 2 · W · log2(e · N). Maas [36] has
obtained a lower bound Wlog2W for certain types
of multilayer feedforward network of threshold units.
Other tight bounds for specific type of functions have
been obtained in [10, 11, 20, 27, 28, 46, 50]; see An-
thony and Bartlett [9] for a review of the field.

Bounding VC-dimensions is a challenging task
in mathematical investigations of neural networks
which provides a number of sophisticated mathemat-
ical tools. The bounds, however, tend to be too large,
since they provide such guarantees of generalisation
for any probability distribution of training examples
and for any training algorithm that minimizes the
training error on the training examples. Therefore, the
VC-dimension is a very general theoretical measure
of pattern classification ability. The proposed bounds
are usually unrealistic and with limited practical value
for real world problems and for multimedia datasets.

Estimating the size of neural networks is impor-
tant [32] as: a) it allows us to a piori set one of the
difficult problem dependent parameters, and hence we
can focus on the rest of parameters in a complex clas-
sification problem. b) it is important in parallel pro-
cessing theory in terms of resources required to ap-
proximate best classification rates.

Hard classification datasets like multimedia
datasets usually consist of large number of samples.
Considering also a large number of desrciptive fea-
tures for each sample it implies that optimizing the
size of neural networks applied to multimedia datasets
is a hard task in time and in number of experiments
and only approximations of optimal solutions can be
achieved [31]. Providing thus a method for an a pri-
ori estimation of the number of parallel processors
needed for achieving accurate performance may be of
critical value in hardware design and implementation
of intelligent multimedia applications.

Other important applications may be in robotics
[40] for building accurate machines that need to
solve interface decision problems (automated pilots)
or solving human-computer interface problems such
as automated speech recognition, optical character
recognition, camera images classification, and face
recognition. Multimedia web mining as well as build-
ing multimedia intelligent agents for the web are also
interesting application areas for accuracy in recogniz-

ing, classifying and processing multimedia data on the
web, which is important for the semantic web and for
e-commerce applications [45].

2 Estimating Neural Network Sizes
If we consider the asymptotically optimal upper
bound of 2 · √

2n/n linear threshold gates of
unbounded fan-in for arbitrary Boolean functions
f(x1, ..., xn) proved in [34], then we obtain for
the splice-junction gene sequences database (SJGSD)
from the UCI Machine Learning Repository1 with
n = 60 · 2 = 120 in binary encoding approximately
2.1× 1017 gates. This number yields to an unrealistic
neural network implementation.

In most cases of multimedia datasets and real
world problems, the sample data provide only a tiny
fraction of the theoretically possible number of func-
tion values. The SJGSD dataset for instance has
3190 samples. Each sample in binary encoding has
length n = 120. A priori, we can argue that not all
combinations of binary inputs are feasible (or even a
small fraction only has indeed a valid interpretation).
Only a fraction of binary inputs of length n = 120
is feasible in the given context, and, moreover, only
mL = 3190 < 212 vectors out of the hypothetical
number of 2120 are provided by the SJGSD.

The 3190 vectors can be enumerated by nL = 12
bits. If we now design a classification circuit of two
main components, where the first component returns
the nL bits of the binary encoding of input vectors of
length n = 120 and the second component produces
the associated classification (we assume for a moment
for one class only), then the size of the second com-
ponent can be estimated by only 37 gates according
to 2 · √2nL/nL. Thus using the first component we
can turn our focus from the number of sample fea-
tures n = 120 to the number of bits to enumerate the
3190 available training samples. Therefore the net-
work learning capacity is now related to the number
of existing training samples instead of the number of
existing features on the samples. In this way we can
now use the existing theoretical upper bounds leading
to have classification circuits (neural networks) with
feasible to implement number of units. However, two
issues have been neglected at this point: the size of the
encoding circuit has to be added, and 2 ·√2nL/nL is
an asymptotic formula and yields for large values of
nL only. These problems have been addressed in [30],
where the empirical hypothesis

8 ·
√

2nL/nL (1)

1http:// www.ics.uci.edu/∼mlearn/MLRepository.html

WSEAS TRANSACTIONS on SYSTEMS Georgios Lappas

ISSN: 1109-2777 744 Issue 6, Volume 8, June 2009



has been established for nL =
log (size of sample set), which implies for the
SJGSD-problem a gate number of 148 . For ourdays
computers, designing neural networks that consist of
148 neurons (or else hidden units, or threshold gates,
or threshold units or gates) is not a problem, leading
indeed to feasible neural network implementations.

Equation (1) has been further analysed [2] and a
further in-depth analysis of the complexity of the en-
coding circuit and the actual classification circuit es-
tablished the following theorem in [3] for neural net-
work sizes that yield to high classification accuracy :

Theorem 1 Given a classification problem defined by
mL training samples and an overall size of sample
data m ≤ 3 ·mL/2, then there exist unbounded fan-in
threshold circuits with

d1.25 · SRe or with , d0.07 · SLe (2)

threshold gates that provide a high generalization rate
on all m sample data, where SR := 2 · √2nL + 3 and
SL := 34.8 · √2nL + 14 · nL − 11 · log2 nL + 2 for
nL = dlog2 mLe.

Readers will find all the in depth analysis for the
above theorem in [3]. The resulting a priori estimation
of the complexity of classification circuits has then
been evaluated in [3] by an a posteriori analysis of
best classification results published in the literature.
The posteriori analysis showed that eq. (2) is applica-
ble to various types of networks and various artificial
neural structures. Notable that Eq. (2) is applicable
to hard (non-separable) classification problems only,
like real world problems and multimedia classifica-
tion datasets. For ”solvable problems” (linearly sepa-
rable), Eq. (2) overestimates the number of threshold
gates significantly as a ”single perceptron” can solve
the problem like in the Mushroom Dataset from the
UCI Machine Learning Repository. As Baum [14] has
shown if the sample set is linearly separable it is likely
that the perceptron algorithm will find a highly accu-
rate approximation of a solution vector in polynomial
time.

In the rest of this work it will be presented a) the
experimental background of the above formula, b) an
a posteriori evaluation of the formula on best classi-
fication results published in the literature, c) an ap-
plication of the formula for proposing neural network
sizes for achieving high classification rates in famous
benchmarking multimedia datasets d) a discussion of
the different perspective offered by this work when
working with neural network optimization.

3 Methodology
Threshold circuits consist of a single threshold gate at
the root with AND gates at the next level. The ba-
sic computing unit is the threshold logic unit which
was introduced by McCullogh and Pitts in 1943
[39]. The threshold unit forms the sum of the inner
product between the input pattern, which represents
X1, X2, ..., Xn features, and the connection strengths
w1, .., wn. The sum is compared to a threshold θ,
and the threshold unit outputs only one of two val-
ues, which is either 0,1 or -1,+1. The threshold unit
together with the perceptron learning algorithm can
learn two classes, if they are linearly separable. Non-
linearly separable classes, which are the most frequent
in real world problems, require more complex deci-
sion surfaces and can be solved by threshold circuits
of a more complex nature.

The experimental analysis that led us to Eq. (2)
was performed by using the LSA machine [4, 7]. LSA
machine is a neural network that combines the classi-
cal perceptron algorithm [43] with a specific type of
simulated annealing [21] as the stochastic local search
procedure for finding threshold gates of a classifica-
tion circuit. Simulated annealing is an established
method for searching near oprimal solutions [33]. The
simulated annealing procedure employs a logarithmic
cooling schedule c(k) = Φ/ ln (k + 2) search strat-
egy where the “temperature” decreases at each step.
The simulated annealing-based extension of the per-
ceptron algorithm is activated when the number of
misclassified examples increases for the new hypoth-
esis compared to the previous one. In this case, a ran-
dom decision is made according to the rules of sim-
ulated annealing. If the new hypothesis is rejected, a
random choice is made among the misclassified ex-
amples for the calculation of the next hypothesis. A
detailed description on the LSA machine can be found
in [4, 7].

For our experiments we used depth-two circuits
where depth-one consists of computational units Pt

and depth-two of a voting function that decides the
output class (Figure 1). The size of this neural net-
work is S = t + 1. Following notations from the cir-
cuit complexity theory we don’t count the input layer
X as a depth-one layer. Therefore a depth-one thresh-
old circuit is considered as a depth-two neural network
with one hidden unit based on the neural model. Thus,
(Figure 1) is a depth-3 neural network with t hidden
units.

The output gate at the depth-2 calculates |{j :
fj(~x) = 1|/t where t is the number of threshold units
at depth-1 and |{j : fj(~x) = 1| denotes the total num-
ber of threshold units at depth-1 that decide for a pos-
itive example. Therefore, outputs at depth-1 are col-
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Figure 1: Depth 2 circuit with t + 1 threshold gates.

lected and the class decision is finally denoted by the
voting function at depth-2.

Depth-four networks (Figure 2) with special pro-
cedures to train gates at larger depths have been
also analyzed with the LSA machine leading approxi-
mately to the same size of networks for achieving low
error rates [30]. The circle in (Figure 2) is the equiv-
alent newtork as shown in (Figure 1) and has been
drawn to compare the network sizes between Figure 1
and Figure 2. In these larger depth networks train-
ing is performed at odd depths (depth-1 and depth-3),
whereas at even depths outputs generate new samples
for training next depth gates. Details on the training
procedure and the generation of new samples for train-
ing next depth gates is provided in [30].

Figure 2: Regular structure of depth 4 circuits.

4 Experiments
For the experiments we chose two datasets
from the UCI Machine Learning Repository
(http://www.ics.uci.edu/̃ mlearn/MLRepository.html),
where one of the datasets induces three classes, lead-
ing us with a total of four datasets for our experiments.
These datasets have been widely used as benchmark

datasets.
a) Splice-junction Gene Sequences Database

(SJGSD) Splice junctions are points on a DNA se-
quence at which “superfluous” DNA is removed dur-
ing the process of protein creation in higher organ-
isms. The problem posed in this dataset is to recog-
nize, given a sequence of DNA, the boundaries be-
tween exons (the parts of the DNA sequence retained
after splicing) and introns (the parts of the DNA se-
quence that are spliced out). This problem consists
of two subtasks: recognizing exon/intron boundaries
(referred to as EI sites), and recognizing intron/exon
boundaries (IE sites). Additionally, a third class is in-
troduced which is referred to as “Neither”. Given a
position in the middle of a sequence window, 60 DNA
sequence elements are used to decide if this is an IE,
EI, or “Neither” class. The database consists of 3190
vectors representing 60 attributes. The class distribu-
tion is: 25% for IE (767 instances); 25% for EI (768
instances); and 50% for “Neither” (1655 instances).

In order to discriminate between the three classes,
we introduce three databases, each related to a single
class as positive examples: the “IE database” consists
of 767 positive examples (IE class) and 2423 nega-
tive examples (union of EI class and “Neither” class);
the “EI database” consists of 768 positive examples
and 2422 negative examples; the “Neither database”
consists of 1655 positive examples and 1535 negative
examples.

b) Wisconsin Breast Cancer Database (WBCD)
The WBCD database is the result of efforts made at
the University of Wisconsin Hospital for accurately
diagnosing breast masses based solely on a Fine Nee-
dle Aspiration (FNA) test. WBCD is a binary classi-
fication problem where each vector represents 9 fea-
tures. The output indicates either a benign case (posi-
tive example) or a malignant case (negative example).
The data set consists of 699 samples, where 16 sam-
ples have missing values which are discarded in a pre-
processing step. The remaining 683 data are divided
into 444 benign and 239 malignant cases. Many re-
searchers have tackled this dataset with reported re-
sults ranging from 96% to about 99%; cf. [42, 44, 52].
The combination of the classical perceptron algorithm
with logarithm simulated annealing [4] results in ≈
98.8% correct classification.

In our experiments the dataset m of a classifica-
tion problem is divided into two disjoint sets of data:
a) the training dataset |mL| = 2|m|/3 for training the
neurons and b) the testing dataset |mT | = |m|/3 for
evaluating the classification accuracy of the network.

The partition of the dataset into 2/3 of the data to
be in the training set mL, and the rest 1/3 of the data
to be in the test set mT for estimating the classifica-
tion accuracy is a common pattern in machine learning
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[41]. The same partition of data is used for the SJGSD
datasets by Rampone in [41].

Each neuron at depth-one is trained by a sample
set of size p randomly drawn from the available train-
ing data set mL. In order to train a neuron j, i.e. to
calculate a function of the type fj =

∑
wi · xi ≥ ϑ,

where i = 1, .., n is the number of input gates in
threshold unit j, and j = 1, .., t, we use a sample set
mj

L, which is randomly sampled from mL, associated
with threshold unit j. The sample size p is a parameter
in our experiments. The parameter p is experimentally
determined in our approach. The experimental deter-
mination of p is a usual method used by researchers
for approximating values of p that provide high clas-
sification accuracy [47].

According to the No-Free-Lunch-Theorems [51],
the performance of learning algorithms is problem-
dependent. Four problem-dependent parameters, the
network size, the sample size p, the length of inho-
mogeneous Markov chain k and the constant Φ of the
simulated annealing cooling schedule, are required for
our experiments with the LSA machine. A large num-
ber of experiments have been carried out to fine-tune
the values of the problem-dependent parameters p, k
and Φ for each dataset.

Parameter k determines the number of steps when
searching for better solutions in the simulated anneal-
ing process. Experimental results from [1] suggest
k ≤ (h/δ)Γ for the number of transitions in the lo-
cal search procedure, where 1 − δ is a confidence
parameter, i.e. after k steps the probability to be in an
optimum solution is at least 1 − δ, and h is the size
of neighbourhoods. However, this might result to ex-
tremely high values for k, even for small values of Γ
and thus is a parameter in our experiments. The con-
stant Φ determines an escape from local minima in
the simulated annnealing process and is expressed in
terms of a percentage of the size p, i.e. Φ = G · p,
where G ∈ (0, 1) .

As demonstrated in [30], the results on these
datasets for various sets of parameters led to the con-
clusion that depth-two and depth-four classification
circuits provide approximately the same generaliza-
tion results if the number of neurons is approximately
the same and close to 8 · √

2nL/nL in both types of
circuits. The reader may the experimental analysis for
the upper bound 8 ·√2nL/nL in [30].

We tested neural network sizes of S = 8 ·√
2nL/nL against half and double size of S on the

following datasets from the UCI Machine Learning
Repository using the LSA Machine [4, 7]:
a) Hayes-Roth Datasets (Hayes): Barbara and Freder-
ick Hayes-Roth [22] created this dataset for recogni-
tion and classification of exemplars. The Hayes-Roth

datasets contains three classes Hayes-1, Hayes-2 and
Hayes-3. The class Hayes-3 is linearly separable and
therefore our focus is on Hayes-1 and Hayes-2. For
each of the two classes, the data from the UCI Repos-
itory consist of 132 samples and 28 test samples. We
merged the two files and used 2/3 of the data for train-
ing (i.e mL = 106 and nL = 7) in both Hayes-1 and
Hayes-2, and 1/3 of the data for testing. The original
28 test samples were part of the test set.
b) Iris Plant Datasets (Iris): R.A. Fishers [6] Iris Plant
Dataset is the oldest and perhaps the most frequently
used dataset in machine learning with innumerable
publications of results in the pattern classification lit-
erature. The set consists of 3 classes of 50 instances
each, where each class refers to a type of iris plant.
One class is linearly separable from the other two; the
latter are not linearly separable from each other. We
denote the three classification problems, as Iris-1, Iris-
2 and Iris-3, and we will focus on the non-seperable
Iris-2 and Iris-3 classification problems. In our exper-
iment we used mL = 100 randomly selected training
examples and 50 examples for calculating the classifi-
cation error.
c) US Congressional Voting Records Database
(Votes): The US Congressional Voting Records
(Votes) dataset includes votes for each of the U.S.
House of Representatives Congressmen on 16 key is-
sues (attributes) identified by the Congressional Quar-
terly Almanaco (CGA) in 1984. The dataset consists
of 435 samples of two classes (267 Democrats, 168
Republicans).
d) Waveform Datasets (Wave): The Waveform
Dataset consists of three classes, i.e. introducing three
binary dataset (Waveform 1, Waveform 2, Waveform
3), where each class is a wave generated from a com-
bination of 2 out of 3 base waves. Each of the three
datasets contains 5, 000 samples representing 21 at-
tributes with continuous values between 0.0 and 6.0.
We emphasize that the binary encoding of continuous
values does not affect the complexity bound, since the
bound depends only on the enumeration of samples.
The distribution of positive and negative examples is
approximately 1:2 in all three datasets.

In Table 1 we compare the size S = 8 ·√2nL/nL

to half of circuit sizes and double circuit sizes with
respect to fine-tuned parameters p, k, Φ. The error on
test data eT is reported for all datasets.

The comparison shows that the upper bound 8 ·√
2nL/nL for estimating the circuit size S does in-

deed imply the highest classification rates. Except for
the ‘Hayes-Roth 2’ dataset, where a 10.4 classifica-
tion rate is obtained for double circuit size, the highest
classification rate is obtained for S = 8 ·√2nL/nL.

It is also notable that LSA machine is very com-
petative to existing classification methods as almost
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Dataset eT for S eT for S/2 eT for 2 · S
Hayes-Roth 1 11.1% 11.9% 11.1%
Hayes-Roth 2 11.1% 11.9% 10.4%
Iris 2 0.7% 0.7% 0.7%
Iris 3 0.7% 0.7% 0.7%
Votes 3.2% 3.4% 3.3%
Waveform 1 14.4% 14.7% 14.8%
Waveform 2 11.2% 11.7% 11.4%
Waveform 3 11.4% 11.6% 11.4%

Table 1: Classification Errors eT on the Test dataset
for S, S/2, and 2 · S, (Depth-two Circuits).

all classification results on the above datasets are at
least as good to those reported in the literature or even
outperform them [30, 31].

5 Evaluation on Multimedia
Datasets

An in-depth analysis by using existing theory and ex-
perimental results from all the above 12 datasets (3
SJGSD, WBCD, 3 Waveform, 2 Hayes-Roth, 2 Iris
and Votes) led [3] to a more accurate result as de-
scribed by Theorem 1 and equation (2). As shown
in [3] both estimations d1.25 · SRe and d0.07 · SLe
could be used to estimate a priori the size of neural
networks that is sufficient to achieve a high rate of
correct classification.

Evaluation of equation (2) has been a posteriori
carried out by performing analysis of best classifica-
tion results published in the literature. The following
multimedia datasets where used:
a) Traffic Sign Recognition Dataset (TSRD). Used in
[49] for the study of different classification techniques
applied to the traffic sign recognition problem. The
data consist of eight types of circular traffic signs
well known from the international traffic code. The
data have been collected by a video sequence and are
initially recognised as images of signs called blob.
There are 235 blobs of 3030 pixels each, where each
pixel has information about three colours. Therefore
each sample consists of 2,700 attributes. The authors
provide results for gate numbers ranging from 10 to
82 in Multi-layer Perceptron Networks (MLPNs).
b) High Range Resolution Radar Datasets (HR3D):
Used in [18] for evaluating various neural networks
applied to the Automatic Target Recognition problem,
where one has to classify patterns that belong to six
classes of high range resolution radar profiles. Each
of the six classes corresponds to a specific type of
aircraft. The dataset has 1, 071 samples with 128
input variables for each aircraft, i.e. there are 6, 426
samples available. Results are provided by authors

Dataset mexp
L nL Sexp d1.25 · SRe d0.07 · SLe

TSRD 157 8 42 44 45
HR3D (RBF) 1200 11 120 118 119
DNS 120 7 25 33 33
FLLD 115 7 18 33 33

Table 2: Comparing Results in the Literature with the
Estimated Size of Neural Networks

for MLPNs trained with the Levenberg-Marquardt
algorithm and for Radial Basis Function (RBF)
networks.
c) Detection of Neonatal Seizures (DNS) Used in [26]
and consists of 240 feature vectors extracted from the
same number of video recordings (taken altogether
from 54 patients). The underlying model are RBF
networks, with a modified training algorithm.
d) Focal Liver Lesions Detection (FLLD): The
task is to detect focal liver lesions from computed
tomography images [19]. The dataset consists of 147
images, and 115 images are used for training a neural
network with 18 hidden units, i.e. we have mL = 115
and nL = 7.

Table 2 provides the comparison of best classi-
fication results Sexp achieved by the authors in the
corresponding multimedia datasets, where mexp

L is the
size of the training data used by the authors in their
experiments. Table 2 presents also the estimated by
equation (2) neural network size by using the same
mexp

L .
Equation (2) estimates neural network sizes that

are either very close to the size of best classifiers used
by authors, or in-between the gate number for the best
two results found by the authors. Equation (2) works
impressively very well for TSRD and HR3D. The es-
timations on DNS are close to the number of 25 basic
units used in [18], particularly if we take into account
that the same classification error is reported in [18] for
30 basic units. On the FLLD dataset, we overestimate
the number of basic units, but the test set consists of
≈ 22% of the entire dataset only, i.e. for a larger test
set one might expect a larger number of basic units
necessary to achieve a better generalization rate [24].

6 Estimating Neural Networks Sizes
for Tackling Multimedia Datasets

In this section we use equation (2) to calculate the
size of neural networks in a number of well known
multimedia datasets from the UCI Machine Learning
Repository and proposing to use neural networks of
sizes that are shown in Table 3. We denote that in
this Table we use |mL| = 2|m|/3. If the number of
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Dataset mL nL d1.25 · SRe d0.07 · SLe
Arcene 600 10 84 86
Artificial Charact. 4000 12 164 166
Australian Sign 4433 13 231 231
Language signs
Australian Sign 1710 11 117 119
Language signs HQ
CMU Face Images 427 9 61 62
Covertype 387341 19 1814 1780
Gisete 9000 14 324 323
Image Segmentation 1540 11 117 119
Internet Advert. 2186 12 164 166
Japanese Vowels 427 9 61 62
Optical Recogn. 3747 12 164 166
Handwritten Digits
Pen-based Recogn. 7328 13 231 231
Handwritten Digits
Vehicle Silhouettes 631 10 84 86

Table 3: Estimated Size of Neural Networks in Multi-
media Datasets for High Classification Accuracy

samples mL used in the training phase of the network
should follow a different distribution pattern, then new
estimations of neural network sizes using equation (2)
should be carried out.

Our study provides a new perspective when
choosing neural network sizes for tackling hard clas-
sification problems. So far unrealistic bounds of net-
work sizes exist in the literature for implementing
neural networks. Rule of thumbs are used in [17]
whereas the size complexity issue has a long discus-
sion on related forums on the web due to the lack of
guidelines in estimating realistic neural network sizes.
So far in the literature the size is estimated according
to the attributes X1, X2, ...., Xn of the samples and/or
the number of weights W resulting to upper bounds
that lead to unrealistic to implement neural neworks.
A distinguished feature of our approach is that the fo-
cus on estimating neural networks turns to the number
of available training data and the required number of
bits to enumerate them. Thus, to estimate the size of
a neural network one only needs to know the number
of samples that will train the network.

Figure 1 and Figure 2 illustrate the differences
between the existing studies and our approach when
tackling problems with 300 and 3000 sample data
having 120 input features. Existing studies use the
120 features to calculate unrealistic size of neural net-
works, which sizes are the same for both 300 and 3000
datasets. Our study implies that the learning capac-
ity of the neural network is related to the number of
available training data, thus it will be different for the
300 and 3000 datasets. It seems feasible for the learn-
ing capacity of a neural network that the more data
(samples) a dataset has, the larger neural network is

Figure 3: Learning capacity of Neural Networks with
mL = 300 samples and n = 120 features.

required, whereas existing studies do not consider the
number of available data for determining the neural
network size.

Our appoach works well with any data representa-
tion. The binary encoding of attributes (input vectors)
does not affect the complexity bounds of Equation (2)
since the bounds depend only on the enumeration of
samples.

Figure 4: Learning capacity of Neural Networks with
mL = 3000 samples and n = 120 features.

Another important feature of our approach de-
rived by the a posteriori evaluation of the complexity
estimation. The evaluation was carried out for clas-
sifier systems consisting of different types of basic
units, therefore our approach does not depend on any
neural network architecture or training method used.
Thus it can be used with any training method or any
neural network architecture.

A third feature of our approach is related to the
depth vs size problem, which is one of the hardest
problems in theoretical computing, with very little
process over the past decades. The debate about the
relevance of Kolmogorov’s theorem [29] to neural net-
works has been used to justify the focus on universal
depth-three classifiers. Judd’s work [25] gives also
some preference to shallow depths, mainly due to sim-
plicity in topology as moving to larger depths, a num-
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ber of questions arise of how to construct higher lay-
ers, what data should be used, what learning algorithm
should be used, and what will be the size of layers,
which all increases the overall complexity of the depth
vs size problem. In our approach we extended in depth
the LSA machine and investigated the performance
achieved by two types of LSA machines, a depth-two
LSA machine and a depth-four LSA machine. To do
so, a new learning approach was introduced for recur-
sively creating and learning the training sets for fur-
ther depths [30]. This novel approach gives future di-
rections for how to treat higher levels of depth. Our
approach showed that we approximate the same high
classification accuracy by using the same number of
training nodes for sizes of 8 ·

√
2n

L/nL threshold gates
in depth-2 and depth-4 networks. Therefore what mat-
ters is the number of neurons used instead of what
topology will be used, which may be considered as
experimental evidence on preference to swallow depth
neural networks.

Equation (2) may then assist researchers that are
using the datasets of Table 3 to choose with confi-
dence the estimated neural network size for their ex-
periments and concentrate on other experimental is-
sues.

7 Conclusion
Most of the work in the literature has related the size
of neural networks with the number of attributes of
the dataset and/or weight inputs, i.e. with the descrip-
tive representation of the dataset. The distinguished
feature of our approach is that the size of neural net-
works depends only on the number of available data
for training the network and not on the number of
weights. This means that the learning capacity of a
neural network for achieving high classification accu-
racy is highly related to the number of available train-
ing data. This is a problem depended parameter and
therefore there is no-free-lunch for using neural net-
works of constant sizes that perform well in any hard
classification problem. Estimation of neural network
sizes should be performed according to problem pa-
rameters of each dataset as the number of available
training data used in our approach. Estimating the size
of the neural network by using Equation (2) allows re-
searchers to concentrate on other parameters to fine
tune and optimize the performance of their classifier
(learning algorithm parameters or type and structure
of the network, data representation, other problem de-
pended parameters). Equation (2) then provides us
with an important tool for designing neural network
sizes for accurate classification performance in real
world and multimedia datasets.
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