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Abstract: -In this paper, we propose a design method of the narrow band FIR filter in a Fluency signal space. As
a result, we can make superior narrow band FIR filters than ordinary one. While an FIR filter has advantages that
it is stable and can realize perfect linear phase, its transfer function can be of higher order according to desired
accuracy. One of such difficult classes that indeed requires lots of multipliers is the narrow band filter. In proposed
method, it is possible to design a narrow band FIR filter with multipliers much less than Remez method, a typical
conventional method. In the first step of the proposed method, a pair of mother filters that are basic for the desired
filter are defined. In the next step, scaled filters of the mother filters will be taken. Finally, we take an appropriate
cascade connection of the scaled filters and make it the approximation model of the desired characteristics of nar-
row band FIR filter. By a numerical experiment, the proposed method is shown to be supeior to Remez method,
as stated above.

Key–Words:-Fluency theory, Signal space, Dual space, Sampling function, Frequency scaling, Cascade connec-
tion, Remez algorithm

1 Introduction

Due to the information digitization in recent years,
the importance of the circuits that perform digital
signal processing is increasing. The conventional
mathematical models for signal processing are based
on Whittaker-Someya-Shannon’s sampling theorem
in the typical Hilbert spaceL2, whereL2 is square
integrable fucntion space. However, this space is too
small because even sin and cos functions, which are
analytic functions, does not belong to this space. So,
it is inconvenience to design and analyze a system.

On the other hand, when we consider the
Schwartz classS of infinitely many times differen-
tiable functions that decay faster than any inverse
polynomials as a signal subspace ofL2, the dual space

S′ of S is bigger thanL2. However, the dual space is
very tempered because the space is metric space, that
is, inner product is not defined in the space. Also, in
view of real signals, conditions ofS are too stringent.

One of authors has been studied modeling of
real signals based on the Fluency information theory
[14][15][16][17]. In the theory, the degree of smooth-
ness of signals is taken as one of the main character-
istics of signals, and signal spaces are classified into
subspaces ofL2 by the smoothness of signals. We de-
note the Fluency signal space asDm, which is func-
tion space of(m − 2)-times differentiable functions
that decay like with the order of inverse of(m − 2)-
th order polynomials. The signal space is included in
conventional signal spaceL2 and containsS. Also,
the dual spaceD′

m of Dm is bigger thanL2 and
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Figure 1:Signal spaces and dual spaces

smaller thanS′. Therefore,Dm is appropriate sig-
nal space in view of both real signals and a system
design, see Fig.1.

The conventional systems, for example, DA con-
verter, filter, amplifier and so on, are designed based
on the sinc function inL2. They have many prob-
lems. In design of DA converters, it is impossible
for conventional DA converters to reproduce the ultra-
sound components higher than about 22.05kHz from
conventional CDs whose sampling rate are 44.1kHz
because the analog signal reproduced from the digi-
tal signal of CD is strictly band-limited to frequency
under 22.05kHz being based on the Shannon’s sam-
pling theorem. However, the DA converter designed
by using a non-analytic sampling function of piece-
wise polynomial of degree 2 inD′

3, named Fluency
DAC, can reproduce the ultrasound components from
the digital signal of CD. The Fluency Audio System
implemented Fluency DAC has received many awards
for audio systems and become the world standard.
This is one of applications inD3.

In this paper, we propose a design method of nar-
row band FIR filters with linear phase based on a sam-
pling function in the dual space of the Fluency signal
spaceD3. As a result, we can make superior narrow
band FIR filters than ordinary one.

Circuits that perform digital signal processing
are implemented in the handheld units like cellular
phone, audio player and PDA, as wel as in compar-
atively middle-scale systems such as PC and appli-
ances. In those systems, digital filter is used in re-
moving noise, adaptive signal processing and adjust-
ing frequency components. Especially, FIR filters
have a merit that it is stable for the bounded input.
In addition, when the impulse response is symmetric,
the FIR filter can perfectly realize the linear phase.
The linear phase property is important in processing
waveform, measuring and reproducing audio signal.
However, there is a trade-off between the required fre-
quency characteristics and circuit complexity [3][9].
In order to obtain a steeper characteristics, a higher
order transfer function is necessary in general. For

example, in the case of designing a band pass filter
that has very narrow pass-band, the order of the trans-
fer function become high, and a large number of mul-
tipliers are required according to the given accuracy.
This fact causes a problem in dealing with multime-
dia information with mobile devices, that do not have
sufficient computational power and memory. By us-
ing our proposed method, it is possible to design a
narrow band FIR filter with smaller number of multi-
pliers than conventional method.

This paper is organized as follows.
Section 2 reviews the Fluency information theory

and give specifications of narrow band FIR filters.
In Section 3, we describe our design method.

In the proposed method, we first introduce a pair of
mother filters that generates other intermediate filters
used in constructing the desired filter. Usually, when
one wants to design a filter, the one is to consider the
filter characteristics such as filter length and coeffi-
cients, the width of pass-band and attenuation level,
and whether or not the ripple is permitted. Our re-
quirements here are flatness of pass-band and locality
of support. As a solution to satisfy the conditions, we
introduce the mother filters from the sampling func-
tion of piecewise polynomial of degree 2 that is de-
rived by authors’ previous research [14]. We then take
scaled filters of the mother filters, as components of
the desired filters. The pass-band of each scaled fil-
ter is narrowed by scaling frequency axis. Finally, the
desired narrow band filter is realized by adding cas-
cade connection of the scaled filters until the specified
characteristics are satisfied. Since the scaled filter in-
cludes several 0 coefficients, the total multipliers can
be reduced without changing the order of the desired
transfer function. Also, the scaled filters have zeros
and poles according to the value of the scaling. There-
fore, by connecting the scaled filters cascade, we can
make the width of pass-band narrow and the level of
stop-band low. We thus form the desired characteris-
tics.

In order to make the filter description be such
that it is presenting the frequency characteristics of
the sampling function in definitions of mother filters,
we consider formulating the scaled filters appearing
in the cascade connection through Dirac’s delta func-
tion operating on the continuous Fluency sampling
function. By the delta function argument, it turns out
that the frequency scaling of the mother filters cor-
responds to the time scaling of the original Fluency
function.

In Section 4, as an example to demonstrate the
usefulness of the proposed method, we design a band-
pass filter with very narrow band. As a result, the
Parks-McClleran (Remez) algorithm that is a typi-
cal design method requires 829 multipliers, while the
proposed method 95, just 1/9 of the conventional. The
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proposed methodthus can realize narrow-band FIR
filters with small number of multipliers.

In Section 5, we conclude this paper with some
discussions.

2 Specifications
In this section, we will reviews the Fluency theory
and set the specifications of the objective narrow band
filter.

2.1 The Fluency theory
The Fluency information theory has been proposed by
one of authors as a theory of modeling of real signals.
In the theory, the degree of smoothness of signals is
taken as one of the main characteristics of signals. Let
m be the degree of smoothness of signals with(m−2)
times continuous differentiability, the Fluency infor-
mation theory classifies signal spaces into subspaces
based on the variablem attributed to signals. When
m = 1, the subspace coincides with the Walsh sig-
nal space. Whenm ≥ 2, the subspace is function
space of piecewise polynomials of degree(m − 1)
having only(m − 2) times continuous differentiabil-
ity. Whenm = ∞, the signal space is similar to the
band-limited signal space. We denote signal spaces
characterized by parameterm asDm. The signal
spaceDm is spanned by a basis of sampling func-
tion of piecewise polynomial that has been derived by
one of authors. Moreover, the sampling funciton is a
functional ofDm, that is, a element of the dual space
D′

m of Dm.
By selecting appropriate signal spacesDm ac-

cording to the object, the Fluency analysis enables us
to deal with signals flexibly and precisely. In the field
of high-end audio and image processing, our new ap-
proaches based on the Fluency analysis have already
been highly-acclaimed.

In this paper, we select the signal space withm =
3 and design narrow band FIR filters in the dual space
D′

3 of D3.

2.2 Narrow band FIR filter
In designing filters, we design filters whose−3dB
bandwidth is very narrow and pass-band is flatter,
transition-band is steeper, stop-band is a large of at-
tenuation. Moreover, filters are linear phase. In Sec-
tion 4, as an example, we design a narrow band FIR
filter by using concrete numerical values.

3 Design Method
In this section, we describe the method to design the
narrow band filter with specification given in sec-

tion 2. Section 3.1 presents the basic concept of the
proposed designing method. In section 3.2, we de-
fine a pair of mother filters based on a Fluency sam-
pling function, and study their properties. Section 3.3
discusses the scaling operation on the mother filters.
Section 3.4 explains how the desired filter is obtained
by cascade connection of the scaled filters, through
the Fourier transform argument. Section 3.5 gives the
procedure to realize the desired filter.

3.1 Basic Concept: the Class One Can Re-
duce the Multipliers

First, we introduce a pair of mother filters with low-
pass or high-pass characteristics from a Fluency sam-
pling function of degree 2 in [14].

The Fluency sampling function used here has a
low-pass characteristic and is derived from a class of
piecewise polynomials of degree 2 satisfying maxi-
mally flat pass-band without ripple, linear phase, and
compact support in time domain.

Second, we consider scaling the mother filters
in frequency domain. The scaled filters involve sev-
eral zeros in their coefficients. Because of this, filters
composed of such scaled filters require less multipli-
ers than those with the same order constructed by di-
rect method.

Also, a scaled filter has its pass-band and zeros
according to scale values. Hence, one can make the
pass-band narrow and stop-band small, by connecting
several scaled filters cascade. Based on this idea, we
design the narrow band filters.

Now we consider when multipliers are reducible
by the frequency scaling. As an example, let us con-
sider FIR filters given by

G(z) =
8∑

k=0

gk z
−k, (1)

and

A(z) ,
3∑

k=0

ak z
−k, (2)

and letG(z) be constructed as

G(z) = A(z) ·A(z3)

= (a0+a1z
−1+a2z

−2) · (a0+a1z
−3+a2z

−6)
(3)

the cascade connection ofA(z) and its scaled one
A(z3). Then, the multipliers in the right hand side
of (3) is 6, while those in (1) is 9. Since the scaled
filters thus contain several zero coefficients, the mul-
tipliers can be reduced by the cascade connection of
the scaled filters.
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When adesired transfer functionG(z) is given,
with scaled filtersA(zkn) (i.e. frequencyf 7→ knf )
of a basic filterA(z) = a0 + · · · + aµ−1z

−(µ−1) of µ
multipliers, by

G(z) =
N∏

n=1

A(zkn), (4)

µN multipliers are necessary. We can write this down
to the direct form as

G(z) = g0 + g1z
−1 + · · · + gdz

−d,

whered = (µ − 1)
∑N

n=1 kn. Necessary number of
multipliers to realize this is1 + (µ− 1)

∑
kn in gen-

eral. Therefore, as a sufficient condition, if

µN ≤ (µ− 1)
N∑

n=1

kn,

i.e.
1
N

N∑
n=1

kn ≥ µ

µ− 1
,

then themultipliers to construct the desired filter is
less than those by direct form.

3.2 Definition of Mother Filters from a Flu-
ency Sampling Function

In this subsection, we first present a sampling func-
tion of piecewise polynomial of degree 2, named Flu-
ency sampling function, in the signal spaceD3 and
state its properties. We then define a pair of moth-
ers filters based on the Fluency sampling function and
study their properties.

The Fluency sampling function of degree 2 has
been derived in [14]. It is a non-regular function hav-
ing singular points at which it is only one time differ-
entiable. The Fluency function is given by

ψ0(t) = −h
2
ϕ

(
t+

h

2

)
+ 2hϕ(t) − h

2
ϕ

(
t− h

2

)
,

(5)
where

ϕ(t) ,
∫ ∞

−∞

{
sin(πfh)
πfh

}3

ej2πftdf. (6)

Hereh > 0 is a real and is a sampling interval when
one reconstruct signals usingψ0. The Fluency sam-
pling functionψ0 is only one time differentiable at
every 1

2h point. TheFluency functionψ0 have the
following properties as well:

ψ0(t) = 0, for |t| ≥ 2h (7)

ψ0(t) = ψ0(−t) (8)

ψ0(kh) = δk,0, k = 0,±1, · · · (9)

Equations (7), (8) and (9) indicate thatψ0 is compact
support, even and has value zero at every sampling
points other than origin, respectively. The symbolδk,0

in (9) is the Kronecker’sδ. Denoting the frequency
characteristics ofψ0 by Ψ0, we can write

Ψ0(f) = h{2 − cos(πfh)}
{

sin(πfh)
πfh

}3

. (10)

This Ψ0 possesses maximal flatness of 3rd order and
linear phase. The reason why we define our mother
filter from thisψ0 is as follows:

1. Since the function is compact support, the num-
ber of filter coefficients is finite.

2. Since the function is symmetric, the filter is a
linear phase.

3. Since it has maximally flat characteristic, no rip-
ple is caused in the pass band by connecting the
filters defined from the function.

We define a pair of mother filters, an elementary
component of the desired filter as follows:

Definition 1 (Mother Filters) We define the filters
L0(z) and H0(z) with coefficients given byψ0(k ·
h/2), for k · h/2 ⊂ supp(ψ0) = [−2h, 2h]:

L0(z) ,
3∑

k=−3

ak z
−k (11)

and
H0(z) , L0(−z), (12)

where

ak = ψ
(h

2
k
)
, ψ(t) =

1
2
ψ0(t). (13)

LetL0(f) andH0(f) denote thefrequency char-
acteristics of the mother filtersL0(z) andH0(z), re-
spectively. Sinceak is symmetric by (8), they can be
written as

L0(f) = e−j6πfτ

(
a0 + 2

3∑
k=1

ak cos(2πkfτ)

)
,

(14)

H0(f) = L0(f + 0.5fs). (15)

Hereτ > 0 correspnds to the sampling interval
of the signal input to the filter andfs = 1/τ is the
sampling frequency. Since the coefficients ofL0(f)
andH0(f) are symmetric, the two filters are linear
phase. Also, since every second coefficients of the
filters from the central (k = 0) are0, the two filters
turns out to be half-band filters. Further,L0(f) and
H0(f) have the maximal flatness property [2][12].
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Lemma 2 (Maximal Flatness) L0 andH0 have the
maximal flatness of third order:

L0(z)|z=1 = H0(z)|z=−1 = 1 , (16)

dkL0(z)
dzk

∣∣∣∣
z=1

=
dkH0(z)
dzk

∣∣∣∣
z=−1

= 0 (17)

(k = 1, 2, 3) ,
dnL0(z)
dzn

∣∣∣∣
z=−1

=
dnH0(z)
dzn

∣∣∣∣
z=1

= 0 (18)

(n = 0, 1, 2, 3).

Lemma 3 (Half-Band Filter Pair) L0 andH0 are
mutually a half-band filter pair, i.e.∣∣L0(f) +H0(f)

∣∣ ≡ 1, for all f ∈ [0, fs

2 ].

Lemma 4 (Monotonicity) L0 is monotonically de-
creasing onf ∈ [0, fs

2 ].

Proposition 5 (Estimation around f = 0 and f =
fs/2) L0 satisfies the following evaluations on the
neighborhood off = fs/2 andf = 0, respectively:

|L0(f)| ≤ 3
16

(
π(f − fs/2)

fs/2

)4

,

for
∣∣∣f − fs

2

∣∣∣ ≤ √
3 fs/2
π

(19)

and

|L0(f)| ≥ 1 − 3
16

(
2πf
fs

)4

,

for |f | ≤
√

3 fs/2
π

.

(20)

3.3 Introducing scaled filters
Next, we define scaled filters based on mother filters
L0(z) andH0(z) as follows:

Definition 6 (Scaled Filters)We define scaled filters
as follows:

Lp(z) , L0

(
zp+1

)
and (21)

Hq(z) , Lq(−z), (22)

wherep andq are non-negative intergers.

The frequency responses ofLp(z) andHq(z) de-
fined in Eqs. (21) and (22) can be described as fol-
lows:

Lp(f) = L0((p+ 1)f) and (23)

Hq(f) = Lq(f + 0.5fs) (24)

0

1

0.5

p=0
p=1
p=2

[normalized frequency]
f

[a
m

pl
itu

de
]

Figure 2:Frequency characteristics ofLp(f)

0

1

0.5

q=0
q=1
q=2

[normalized frequency]
f

[a
m

pl
itu

de
]

Figure 3:Frequency characteristics ofHq(f)

Figures 2 and 3 show examples of frequency re-
sponses ofLp(z) andHq(z) for p = 0, 1, 2, respec-
tively. From these figures,Lp(z) andHq(z) are low-
pass and high-pass filter, respectively.

Zeros and pass-band central points ofLp(z) and
Hq(z) are as follows:

The center frequencies of the pass-band ofLp(f)
are fc,k = 2k

2(p+1)fs (k = 0, 1, · · · , ⌊p+1
2 ⌋), and

the zeros of Lp(f) are fz,l = 2l+1
2(p+1)fs (l =

0, 1, · · · , ⌊p
2⌋) on the interval [0, fs

2 ]. On the other
hand, the center frequencies of the pass-band of
Hp(f) arefz,l and the zeros ofHp(f) arefc,k:

Lp(fc,k) = Hp(fz,l) = 1 (25)

Lp(fz,l) = Hp(fc,k) = 0 (26)

k = 0, 1, · · · ,
⌊

p+1
2

⌋
; l = 0, 1, · · · ,

⌊p
2

⌋
Here⌊K⌋ is themaximum integer which is smaller
than or equal toK.

In this subsection, we have defined the scaled
fliters necessary to design the desired filter and
showed their properties.
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3.4 Principle of the Narrowband Filter Con-
struction

This subsection describes the principle of construct-
ing the narrowband filter based on cascade connec-
tion of the scaled filters. We will clarify the relation
between the characteristics of the digital filter as a dis-
crete system and that of Fluency sampling function as
a continuous system.

Let ∆τ be the sequence of the impulses defined
as

∆τ (t) ,
∞∑

k=−∞
δ(t− kτ) (27)

whereδ(t) is the Dirac’s delta function,τ is the in-
terval between two successive impulses. The Fourier
transform∆̂τ of ∆τ is given by [13]

∆̂τ (f) =
1
τ

∞∑
k=−∞

δ

(
f − k

τ

)
=

1
τ
∆1/τ (f). (28)

Using∆τ and theFluency sampling functionψ0,
we can rewriteL0(f)

L0(f) =
3∑

k=−3

ake
−j2πfkτ

=
∫ ∞

−∞
{ψ0(t)∆τ (t)} e−j2πftdt

= Ψ0 ∗
1
τ
∆1/τ (f) (29)

=
1
τ

∞∑
k=−∞

Ψ0

(
f − k

τ

)
, (30)

whereΨ0 is theFourier transform ofψ0 andτ = h/2.
The meaning of Eq.(30) is illustrated in Fig.4. Fig-
ures 4(a) and 4(b) show the waveform of the Fluency
sampling function and its Fourier transform, respec-
tively. Figures 4(c) and 4(d) show the waveform of
∆τ and its Fourier tansform, respectively. The sam-
pled values of the Fluency sampling function can be
represented by the product of∆τ andψ0. Therefore
the Fourier transform of the sampled values is given
by the convolution of(1/τ)∆1/τ andΨ0. As a result,
the frequency characteristics ofL0(f) are shown in
Fig.4(f). Similarly,Lp(f) can be written as

Lp(f) = L0 ((p+ 1)f) =
3∑

k=−3

ake
−j2π(p+1)fkτ

=
∫ ∞

−∞

[
ψ0

(
t

p+ 1

)
∆(p+1)τ (t)

]
e−j2πftdt

= Ψ0((p+ 1) (·)) ∗ 1
τ
∆ 1

(p+1)τ
(f)

=
1
τ

∞∑
k=−∞

Ψ0

(
(p+ 1)f − k

τ

)
(31)

 0

t

(a) Fluency sampling
functionψ0(t)

 0

f

(b) Fourier transform
Ψ0(f) of ψ0(t)

0

t
τ

(c) ∆τ (t)

0

f

1/τ

1/τ

(d) ∆̂τ (f)

0
t

(e) (a)×(c)

0

f

(f) (b)∗(d)

Figure 4: Summary of Eq.(30)

Figure 5 illustrates Eq.(31) forp = 1. In case
of p = 1, while the time axis expands to(p + 1)
times, the frequency axis reduces1/(p + 1). Eq.(31)
gives the description of the digital filterLp(f) by us-
ing Fourier transform of the continuous Fluency sam-
pling function.

Hence, we could confirm that proposed digital fil-
ters hold properties of the Fluency sampling function.

With this method, the narrowband filter can be
constructed by cascade connection of the scaled filters
and the mother filters. For example,

G(f)

=
P∏

p=0

Lp(f) = L0(f) · L1(f) · · ·LP (f)

=
P∏

p=0

[∫ ∞

−∞

{
ψ0

(
t

p+ 1

)
∆(p+1)τ (t)

}
e−j2πftdt

]

=
P∏

p=0

[
1
τ

∞∑
k=−∞

Ψ0

(
(p+ 1)f − k

τ

)]
.

Figure 6 illustrates the performance of cascade
connection of scaled filters. We see that the the more
the value ofp and the number of scaled filters to
be connected be, the more bandwidth of the filter
becomes narrow and the stop-band level attenuates.
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 0

t

(a)ψ0

(
t

p+1

)  0

f

(b) Ψ0 ((p+ 1)f)

0
t

τ(Μ+1)

(c) ∆(p+1)τ (t)

0
f

1/τ(m+1)

1/τ(m+1)

(d) ∆̂(p+1)τ (f)

0

t

(e) (a)×(c)

0

f

(f) (b)∗(d)

Figure 5: Illustration of Eq.(31) (p= 1)

Based on the principle, the narrowband filter is con-
structed.

3.5 Estimation of Stop- and Pass-band At-
tenuation

In this subsection, we indicate that how we can esti-
mate the attenuation in the process of adding the cas-
cade connection of scaled filters. It is roughly esti-
mated by using the evaluations in Proposition 5. We
will explain it with the example of|L0(f)L1(f)| for
stop- and pass-band.

For stop-band, by (19), we have

|L0(f) · L1(f)|

≤ 3
16

[
π(f − fs

2 )
fs/2

]4

· 3
16

[
π(2f − fs

2 )
fs/2

]4

=
( 3

16

)2( π

fs/2

)8
[

2(f − fs

2
)(f − 1

2
· fs

2
)

]4

≤ 9
16

(π
4

)8
= −21.78 [dB],

on [fs

4 ,
fs

2 ]. Herewe have used thaty = (f− fs

2 )(f−
1
2 · fs

2 ) takesits minimum(1
4

fs

2 )2 at f = 1+ 1
2

2
fs

2 =

0

1

0.5

[a
m

pl
itu

de
 (

dB
)]

[normalized frequency (Hz)]
f

(a)L0(z)

1

0 0.5

[a
m

pl
itu

de
 (

dB
)]
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Figure 6:Connecting scaled filters

3
4

fs

2 , sincethe derivative ofy is

y′ = 2
(
f −

1 + 1
2

2
fs

2

)
.

Since theattenuation on[fs

4 ,
fs

2 ] is notadequate, one
may take thoseLp orHq that place a zero aroundf =
3
4 · fs

2 (for example).
Similarly, |L1 ·L2| has its estimation of stop-band

level on[13
fs

2 ,
1
2

fs

2 ], as

|L1(f) · L2(f)| ≤
( 1

12

)2(π
4

)8
= −60.0 [dB].

For pass-band, we have atf = fs/12 for exam-
ple,∣∣L0(f)L1(f)

∣∣
≥
[
1 − 3

16

{π(f − fs

2

fs/2

}4
]
·
[
1 − 3

16

{π(2f − fs

2

fs/2

}4
]

=
[
1 − 3

16

(π
6

)4]
·
[
1 − 3

16

(π
3

)4]
= −2.34[dB],

by (20). In order to attenuate siderobes, we may won-
der whether multiplyingL0 one more time, i.e. taking
L2

0L1 is possible or not. It turns out possible by∣∣L2
0(f)L1(f)

∣∣ ≥ −2.47[dB].

3.6 Design Procedure
This subsection explains the procedure for designing
the narrowband filter. The target filter is the one that
satisfies the specification given in Section 2, and it is
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designed bythe following procedure. For simplicity,
the sampling frequency is assumed to be unity below.

Since the proposed method is limited to the band-
pass filter design, the class of scaled filters used in
the cascade connection is predetermined. The center
frequency for the targeted filter isfc = 1

4 , andso must
be the filters connected cascade.

The scaled filter satisfying this condition can be
determined by Eq.(25). From equation (25) we have

2k
2(p+ 1)

= fc =
1
4
,

and hencep = 4k − 1. Sincep, k ≥ 0 we have

p = 4k + 3, k = 0, 1, · · · . (32)

Similarly, we conclude that

q = 4l + 1, l = 0, 1, · · · , (33)

becauseHq(f) has a center frequency located atf =
2l+1

2(q+1) . Therefore,in order to design the narrowband
filter the following scaled filters may be used

L4k+3(z), k = 0, 1, . . . , (34)

H4l+1(z), l = 0, 1, . . . . (35)

In the following, we summarize the procedure for
designing the narrowband filter.

step 1. Initialization
Select a scaled filter such that one of whose pass-
band is closest to the target filter. If we de-
note the−3dB bandwidth ofLI(z),HI(z) by
fI , then

fI =
f0

I + 1
. (36)

According to Eqs.(34), (35) and (36), the ini-
tial constructionX0(z) is given byL4M+3(z) or
H4M+1, whereM is a natural number.

step 2. Filter Addition
The scaled filters determined by Eqs.(34) and
(35) are connected cascade. If in Step 1 we ini-
tialize the filter byX0(z) = H4M+1(z), then we
setP = Q = M − 1; otherwise ifX0(z) =
L4M+3(z), then we setP = M − 1, Q = M .
UsingX0(z) and parametersP, Q, we consider
the filter

X(z) = X0(z)
P∏

k=0

Lαk
4k+3(z)

Q∏
l=0

Hβl
4l+1(z)

(37)
where αk and βl are the numbers of filters
L4k+3(z) and H4k+1(z) respectively, used in
cascade connection. It is assumed thatαk = 0
andβl = 0 for anyk, l as initialization. Next,
αk andβl are increased one by one until it satis-
fies the specification for X(z).

step 3. Computation of Frequency Spectrum
When the filter satisfying the specification is ob-
tained by Step 2, the coefficient is quantized with
the given number of bits. The frequency char-
acteristics of the filter with resulting coefficient
is computed. If the frequency spectrum satisfies
the target specification, the algorithm terminates,
otherwise,αk andβl are increased, and return to
Step 2.

4 Comparison with a Conventional
Method

In this section, we compare the proposed method with
Parks-McClellan method (Remez algorithm), a typi-
cal conventional methods.

In designing filters, an adequate number of filter
coefficients are required according to the accuracy of
desired characteristics in general. Therefore, as the
practical problem, the filter length increases signifi-
cantly for the severe characteristics such as steep at-
tenuation and narrow bandwidth. As an example, we
design the following filter whose−3dB bandwidth is
very narrow with a small number of multipliers com-
pared with conventional methods.

(Specifications for the objective filter)
◦ Sampling frequency:2.4[GHz]

◦ Central frequency:600[MHz]

◦ −3dB Pass band:592[MHz]–608[MHz]

◦ Stop band:0[MHz]–584[MHz] and
616[MHz]–1.2[GHz]

◦ Stop band level:−80[dB]

◦ quantization bit number:18[bit]

◦ Phase condition: linear phase
This sampling frequency2.4[GHz] is set in rela-

tion to ISM (Industrial, Scientific and Medical) band.
There are several frequency bands in ISM that are
assigned to each of the applications. The2.4[GHz]
band is used for microwave, digital cordless phone,
wireless LAN, Bluetooth, etc. Because the ISM band
is offered free-license, the use of the band is increas-
ing.

Table 1 shows the numbers of multipliers used in
each filter. The ideal narrowband filter designed by
Remez algorithm requires 1707 multipliers, and after
quantization, 829 multipliers. In contrast, the filter
designed using our method requires only 95 multipli-
ers,1/9 of the conventional. By this, it turns out that
our method can design a filter satisfying the speci-
fied very narrow band filter with much less multipliers
than conventional algorithm.
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Table1: Number of multipliers
method Ideal Quantized

Conventional 1707 829
Proposed 95 95

Figures 7and 8 show the frequency responses of
the filters designed in accordance with the specifica-
tion described above. Figure 7 shows the frequency
response of the narrowband filter designed by Re-
mez algorithm. The theoretical frequency response
is shown in Fig.7(a). The frequency response of the
filter with coefficients quantized to 18 bits is shown
in Fig.7(b). Figure 8 shows the frequency response of
the narrowband filter designed by proposed method,
where (a) is ideal and (b) quantized to 18 bits. We
can see that the quantized filter designed using the
proposed method satisfies the specification required
in section 2 with slight deficiency around the bound-
aries between stopbands and transition bands.

Table 2 shows the charasteristics of each filter.
The characteristics are bandwidth, and ideal and qun-
tized stop-band levels. It is clear that bandwidth
of the filter designed by Remez algorithm fails be-
low the specified bandwidth. Also, the quantization
makes the characteristics much poor, exceeding the
stop band level,−80dB, at several frequencies. On
the other hand, our method satisfies the specification
of bandwidth, and the stop-band level is kept under
−80dB.

5 Conclusion
In this paper, we proposed a design method of narrow
band FIR filters with linear phase in the dual space of
the Fluency signal spaceD3. As a result, we could
make superior narrow band FIR filters than ordinary
one.

Our proposed method is described as follows:
First we defined low-pass and high-pass mother filters
from quadratic piecewise polynomial Fluency sam-
pling function with maximally flat pass-band charac-
teristic and local support in the Fluency signal space
D3. These mother filters inherit maximally flat pass-
band characteristic and linear phase property. Next
we introduced scaled filters from the mother filters by
scaling. Then we obtained the narrowband filter by
cascade connection of the scaled filters.

We show efficiency of our proposed method with
the example of designing a very narrowband filter; the
filter requires only 95 multipliers, while the filter de-
signed by Remez algorithm requires 829 multipliers.

We are applying the narrowband filter to sound
quality improvement of mobile terminal music play-
ers. We will report the achivement in further papers.
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-100

-80

-60

-40

-20

0

0 0.5

[a
m

pl
itu

de
 (

dB
)]

[normalized frequency (Hz)]
f

(a) Ideal

-100

-80

-60

-40

-20

 0

 0  0.5

[a
m

pl
itu

de
 (

dB
)]

[normalized frequency (Hz)]
f

(b) Quantizedto 18 bit

Figure 8: Frequency characteristics of the filter designed by proposed method

Table 2: Filter Characteristics by Conventional and Proposed Methods
−3dB bandwidth stopband (ideal) stopband (quantized)

Conventional 9.72MHz under−80dB around−80dB
Proposed 7.44MHz under−100dB under−80dB

[12] S.Samadi, A. Nishihira and H. Iwakura, Univer-
sal Maximally Flat Lowpass FIR Systems,IEEE
Trans. Signal Processing, Vol. 48, No. 7, 2000,
pp. 1956–1964.

[13] H. Arai, Fourier Analysis and Functional Anal-
ysis, Baifu-Kan, 2001.

[14] K. Toraichi and K. Nakamura, A Quadratic
Sampling Function for DVD-Audio, IEEJ
Trans., Vol. J123C, No. 5, 2003, pp. 928–937.

[15] T. Motoyama, T. Kawabe, K. Toraichi and
K. Katagishi, New Integrated Design Approach
of RHC with Adaptive DA Converter,WSEAS
Transactions on Systems, Issue 5, Vol. 5, 2006,
pp. 981-988.

[16] K. Katagishi, K. Ikeda, M. Nakamura,
K. Toraichi, Y. Ohmiya and H. Murakami,
Fluency DA Functions as Non-uniform
Sampling Functions for Interpolating Sampled-
values, New Aspects of Circuits, Proceedings
of the 12th WSEAS International Conference
on CIRCUITS, Heraklion, Greece, July 22-24,
2008, pp. 302–309.

[17] M. Nakamura, Y. Omiya, K. Katagishi ,Y. Mo-
rooka, K. Toraichi and H. Murakami, A Se-
cure Coding for Function-Approximated Im-
ages, New Aspects of Communications, Pro-
ceedings of the 12th WSEAS International Con-
ference on COMMUNICATIONS, Heraklion,
Greece, July 22-24, 2008, pp. 416–420.

WSEAS TRANSACTIONS on SYSTEMS
Masakazu Higuchi, Shuji Kawasaki, Kazuki Katagishi, Mitsuteru 
Nakamura, Kazuo Toraichi, Hitomi Murakami, Yasuhiro Ohmiya

ISSN: 1109-2777 742 Issue 6, Volume 8, June 2009




