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Abstract: - This paper treats the comparison between the Volterra model and Reproducing Kernel Hilbert Space 
(RKHS) model in Multiple Input Single Output (MISO) case. The RKHS model uses the Statistical learning theory to 
find a solution of a regularization risk. It is characterise by a linear combination of the kernels function. The complexity 
of Volterra model is depending of the degree and the memory of the model contrarily of the RKHS model which 
depend only of the number of observations. The performances of both models are evaluated first by using Monte Carlo 
numerical simulations and then have been tested for modelling of a chemical reactor and results are successful. 
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1 Introduction 
Volterra models process have several important 
properties that make them very useful for the modeling 
and analysis of non linear systems [1], [9], [17], [12],    
[26]. A significant advantage of the Volterra models, if 
compared with other nonlinear models, is that their 
input-output relation is linear with respect to the filter 
coefficients. The nonlinearity is reflected only by the 
multiple products between the delayed versions of the 
input signal. Each homogeneous term can be viewed as 
a multidimensional convolution; Volterra models with 
finite memory are BIBO (Bounded Input Bounded 
Output) stable; they allow to model a large class of non 
linear systems. Indeed, it has been shown that causal 
time invariant non linear systems with fading memory 
can be described with a finite degree of precision by 
truncated Volterra models [8], [18]. 
Many methods from the linear filter theory can be 
applied to the Volterra filter. For example, adaptive 
methods and algorithms are widely used in applications 
dealing with kernels estimation. Various Least Mean 
Square (LMS) and recursive least square (RLS) 
algorithms have been applied to the problem of Volterra 
kernel estimation [2], [9], [10], [11], [12], [24]. 
However this elegy is disqualified by the huge 
increasing of the parameter number depending on non 
linearity hardness.  
As an alternative to this modelling strategy the last few 
years has registered the birth of a new modelling 
technique developed on a particular Hilbert Space the 
kernel of which is reproducing. This space known as 

Reproducing Kernel Hilbert Space (RKHS) uses the 
statistical learning theory to provide an RKHS model as 
a linear combination of the kernels forming the RKHS 
space. The RKHS modelling proud of its independence 
of the degree and the memory of the model which 
constraint the models developed on Volterra series and 
cause the exponential increasing of their parameter 
number. Contrarily the parameter number depends only 
on the observation number and may be very smaller 
compared to that engaged in Volterra series models 
especially for higher nonlinear systems.  
In this paper we are concerned by the comparison of 
Volterra model and RKHS model in MISO case [15]. 
In paragraph 2, we remind the Volterra model in SISO 
and MISO case and we present the statistical learning 
theory (SLT) which uses the RKHS to yield MISO 
models. 
The paragraph 3 is devoted to the comparative study of 
these two models, for each model some setting 
parameters are tuned and some performances such as 
the parameter number, the Normalized Mean Square 
Error (NMSE) and the computing time are evaluated. 
The validation of such models is carried out through 
Monte Carlo simulations where the influence of an 
additive noise is evaluated for the two models. These 
two models are tested on a physical process the 
Continuous Stirred chemical Reactor and the results 
are successful.  
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2 Non linear system modelling 
2.1 Volterra model 
2.1.1 SISO Volterra model 
The model output is written as: 
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Where u and y are the input and the output of the 
process respectively and 1( , , )i ih m m⋯  is the ith 
Volterra kernel. For causal and stable system, the 
infinite sums in (1) can be truncated to a finite one as: 
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With P the non linearity degree, M the system 
memory, 

1 2
( ,  m ,  ...,  m )

i i
h m  the ith Volterra Kernel. 

The Volterra model can be seen as a natural extension 
of the linear system impulse response to non linear 
systems. Although it is non linear with respect to its 
inputs, this model is linear with respect to its 
parameters which enables to apply some identification 
techniques developed in linear case. The parameter 
number npof the Volterra model is given by: 
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To reduce the parameter number we use generally the 
triangular form of the Volterra model, given as: 
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And the relevant parameter number of such model is: 
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2.1.2 MISO Volterra model  
For multiple input single output process [19], [20], the 
output of the triangular form of Volterra model is:  
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Where [ ]1 2( ) ( )  ( )    ( ) T
nu k u k u k u k= ⋯  and y(k) 

are  the process input vector and output respectively. 
The parameter number is  
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2.2 RKHS model 
2.2.1 Statistical Learning Theory (SLT) 
The Statistical Learning Theory [21], [22] aims to 
model an input/output process from a set of 
observations ( ) ( ){ }1 1, ,..., ,N ND x y x y= , by selecting, 
in a pre-definite set of functions H, the function 0f that 
fits as most as possible the relation between the 
process inputs ix  and  outputs iy  and the optimal 
function is that which minimizes the  following 
functional risk. 
 

( ) ( )( ) ( )
,

,  ,
X Y

R f V y f x P x y dxdy= ∫                      (8) 

 
Where ( ),X Y  is a random vector of distribution P of 

which the ( ),i ix y  are independents distributed 

observations and ( )( ),V y f x  is a cost function that 

measures the deviation between the process output 
y and its approximation by ( )f x . Since the 

distribution ( ),P x y  is unknown, the risk ( )R f  can 

not be evaluated. To overcome this situation we 
minimize rather the empirical risk ( )empR f . 
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Where N is the observation number and ( )( ) , i iV y f x  is 

a loss function. However, the direct minimization of 

( )empR f in the H  isn’t the best estimate of the 

minimization of the risk ( )R f . Indeed, the minimization 

of the empirical risk often, leads to overfitting of the 
function reserved to the data and the generalization of 
the model to new observations other than that in D may 
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not be guaranteed. To solve this problem, [21] proposed 
the structural risk minimization (SRM) principle. 
It consists on penalizing the empirical risk by a function 
estimating the complexity of the reserved model given 
by: 

( ) ( )
2.

. ln 1 ln
4
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+ −
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The idea of SRM is to define a nested sequence of 
hypothesis spaces: 
 
 1 2... QH H H⊂ ⊂ ,                                                       (11) 

    
Where each hypothesis space qH  has finite capacity qh  

and larger than that of all previous sets, that is: 
 

1 1... Qh h h≤ ≤ .                                                              (12) 

 
For example qH  could be the set of polynomials of 

degree q , or a set of splines with q  nodes, or some more 
complicated non linear parameterization. Using such a 
nested sequence of more and more complex hypothesis 
spaces, SRM consists of choosing the minimizer of the 
empirical risk in the space *q

H for which the bound on 

the structural risk, as measured by the right hand side of 
inequality (10), is minimized. 
Further information about the statistical properties of 
SRM can be found in [13], [22]. 
To summarize, in SLT the problem of learning form 
examples is solved in three steps:  

a- we define a loss function ( )( ),V y f x  measuring the 

error of predicting the output of input x  with ( )f x  

when the actual output isy ; 
 b- we define a nested sequence of hypothesis spaces 

qH , 1,...,q Q=  whose capacity is an increasing function 

of q ;  

c- we minimize the empirical risk in each of qH  and 

choose, among the solutions found, the one with the best 
trade off between the empirical risk and the capacity as 
given by the right hand side of inequality (10). 
 This leads to the minimization of the criterion defined 
in the equation  
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Where the parameter λ  is regularization term allowing 
to adjust the trade-off between the minimization of the 

empirical risk and generalization ability. The bigger λ  
is, the more important the regularity for the solution 
will be. 
The minimization of the criterion (13) on any arbitrary 
function space H, possibly of infinite dimension, is not 
an easy problem. However, this task may be 
accomplished easily when this space is a Reproducing 
Kernel Hilbert Space (RKHS). 
 
2.2.2 Reproducing Kernel Hilbert space :RKHS 
Let dE ⊂ ℝ and ( )2 EL the Hilbert space of square 
integrable functions defined onE . Let :k E E× → ℝ  be 

a continuous positive definite kernel and an operator kL   

defined by: 
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where ( )2f L E∈ andx E∈ . 

kL is a linear operator having a sequence of 

eigenfunctions  
( )1 2, , ..., lψ ψ ψ and a sequence of corresponding real 

positive eigenvalues ( )1 2, , ..., lσ σ σ (where l  can be 

infinite) and satisfying: 
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According to the Mercer theorem [4], [5], these eigen 
functions constitute an orthonormal system in( )2 EL   

and the kernel k  can be written as follows: 
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Let H  be a Hilbert space defined by: 
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Where i i iϕ σ ψ=  1, ...,i l= , and the inner product  

is given by: 
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k is said to be the reproducing kernel of the Hilbert 

spaceH  if  and only if:  
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a- x E∀ ∈  , ( ), .k x H∈                                  (19) 

 
b- x E∀ ∈  and f H∀ ∈ : 
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H  is called reproducing kernel Hilbert space (RKHS) 
with kernel k  and  dimension l . Moreover, for any 
RKHS, there exists only one positive definite kernel 
and vice versa [4]. 
 
Let consider the applicationΦ : 
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Φ transforms the input space E  into a high 
dimensional feature space and the relation (16) can 
then be written: 
 

 ( ) ( ) ( ), ,k x t x t= Φ Φ                    (22) 

 
 
2.2.3 RKHS and representer theorem 
Let’s assume that the random variableX  takes its values 
in the space dE ⊂ ℝ and let us consider a function 

2:  K E → ℝ  K, called kernel such as: 
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The representer theorem [7] proves that the solution of 
the optimization problem given by (9) in the 
Reproducing Kernel Hilbert space H  space can be 
written as: 
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In this case, the optimization problem (13) is equivalent 
to quadratic optimization problem of N real( )ia  

Furthermore, the space H becomes implicit and is 
simply visible by means of its kernel thanks to the 
property (b) called also kernel trick. 
 
In particular, the square norm of the solution function 
f in the space H is given by: 
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2.2.4 Learning machines 
The algorithms used to estimate the parameters ai in (24) 
are called learning machines such as support vector 
machines (SVM) and, regularization network (RN)  
 
 
2.2.3.1 Support vector machines 
Support Vector Machines (SVM) have been recently 
developed in the framework of statistical learning theory 
[21], [23] and have been successfully applied to a 
number of applications, ranging from time series 
prediction to face recognition, to biological data 
processing for medical diagnosis. Their theoretical 
foundations and their experimental success encourage 
further research on their characteristics, as well as their 
further use. Support Vector Regression (SVR) belongs 
to the category of reproducing-kernel methods, just 
Kernel Principal Component Analysis KPCA [3], Partial 
least square PLS [16]. Based on the theory of Support 
Vector Machines, SVR is now a well established method 
for designing black-box models in engineering. The aim 
of SVR is to build a model : nf →ℝ ℝ  of the output of a 
process or system that depends on a set of factors.  
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and b  are coefficients. They can be estimated 

by minimizing the regularized risk function 
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Where ( )( ),i iV fy xε is the so-called loss function 

measuring the approximate errors between expected 
output iy  and the calculated output ( )if x . And C is a 

regularization constant determining the trade-off 
between the training error and the generalization 
performance. 
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The second term, 
21

2
w is used a measurement as a of 

function flatness. 
Introduction of slack variables *,ξ ξ  leads (27) to the 
following constrained function. 
 

( ) ( )2* *

1

1
 , = 

2

N

i i
i

Minimize R w w Cξ ξ ξ
=

+ +∑          (28) 

s.t. 
 

( )
( ) *

    ,  
         

   ,    

i i i

i i i

y w x b

w x b y

ε ξ

ε ξ

 − 〈 Φ 〉 − ≤ +


〈 Φ 〉 + − ≤ +
                        (29) 

 
*, 0 ,  1,  ...,    i i i Nξ ξ ≥ =  

 
This formulation of the problem comes back to useε -
insensitive loss function of the following shape: 
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One can interpret this function as creating a tube of ray 
ε  (Fig.1)        

 
 
                                                                  

 
 
 
 
 
 
                                 

 
 
 
 

                       Fig. 1. 
 
 
Although non-linear function Φ is usually unknown all 
computations related to Φ can be reduced to the form 

( ) ( )'T
x xΦ Φ , which can be replaced with a so-called 

kernel function ( ) ( ) ( )' ',
T

K x x x x= Φ Φ  that satisfies 

Mercer’s condition [5]. Then, Eq. (26) becomes the 
explicit form. 
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In (31), Lagrange multipliersiα  and *
iα satisfy the 

equality * 0i iα α× = , 0iα ≥ , * 0iα ≥ , 1,...,i N=  
Those vectors with 0iα ≠ are called support vectors, 
which contribute to the final solution. 
 
 
2.2.3.2 Regularization network 
The cost function is: 
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And the the optimal function is given by (24), where the 
sequence { }ia are such as: 
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with ,i jΨ  the ,  thi j  component of the matrix N N×Ψ ∈ℝ  
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And the matrix N NG ×∈ℝ  is such that: 
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Or in matrix form: 
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Different types of kernels can be considered 
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Where 1p  is a given parameter 
 
 
2.2.5  RKHS MISO model 
 
In the case of MISO model the output can be written as: 
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1( ) ,  ..., , ( )py k u u k e kϕ  = +                                       (40) 

 
Where ϕ is a non linear function, p is the input number 
and e(k) is an additive noise. The input vector can be 
defined as: 
 

( ) ( ) ( ) ( ) T
,..., 1 ,..., ,..., 1 1  1 1 pu k u M k u k u M kp px  + − + − =   (41) 

 
for  k  =  1, …, N  -  Mp  +  1  
Where N is the observation number and pM is the 

memory of the pth input. 
 
 

3 Comparative study of both models 
In this paragraph we are interested to compare Volterra 
and the RKHS models when a MISO process is 
considered. 
 
 
3.1 Numerical example  
Consider the system described by the following relation: 
 

3
1 2( ) 0.3 ( -1) 0.2 ( -1) ( )y k u k u k e k= + +                        (42) 

 
Where u1 and u2 are two gaussian inputs and e is a white 
noise. The provided results are issued after 20 Monte 
Carlo tries each contains 100 runs. The model 
performance is evaluated by using the Normalized Mean 
Square Error (NMSE) between the system output and 
the model one.  
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With N the observation number, y(k) is the output of the 
system and ( )y kɶ  is the model output. 
 
 
3.1.1 Model Comparison 
In Figure 2 we draw the process output and the output of 
the RKHS model using 100 samples for the learning set 
to estimate the parameters formulated by the representer 
theorem. The kernel used is polynomial with p1 = 3.  For 
model validation we use 120 samples other than those 
used for identification. It resorts that the model output 
fits the process output with a Normalized Mean Square 
Error (NMSE) equal to 0.48%.  
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Fig.2:  Validation of RKHS model; polynomial kernel 

 
In Figure 3 we plot the Volterra model output and the 
process output for a non linearity degree P = 2 and a 
memory M = 2.  We notice the concordance between 
both outputs with an NMSE equal to 0.51%. 
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Fig.3:  Validation of Volterra model (P = 2; M =2) 
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Table 1 summarizes the performances of both models 
such as the parameter number (np) the Normalized 
Mean Square Error (NMSE) and the computing time 
(CT).  

 
 

Table 1: Performances of both models 
 

Models Tuning 
Parameters  

np NMSE(%) CT (s) 

 
RKHS 
model 

polynomial Kernel 

( p1 = 3) 

 

100 

 

0.48 

 

0.78 

P = 2 et M = 1 6 3 0.046 

P = 2 et M = 2 16 0.51 0.072 

 
Volterra 
Model 

P = 3 et M = 2 48 0.64 0.82 
 

For the Volterra model three sets of structure 
parameters (degree of non linearity P and memory M) 
are considered. Even though the NMSE and the 
computing times are comparable for both models, the 
parameter number is smaller in case of Volterra model. 
We conclude that the complexity of the Volterra model 
increases with the memory M and the non linearity 
degree P which increases when a hard non linearity is 
considered, however the complexity of the RKHS 
model depends only on the number of observations used 
in learning step. Therefore the RKHS model is more 
efficiently for modelling hard non linearity. 

 
3.1.2 Noise effect 
To raise the influence of an additive noise on the 
identification quality we plot in Figures 4 and 5 the 
evolution of the NMSE for different SNR for the both 
models 
 
Signal to Noise Ratio (SNR) is:  
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With y and eare the mean values of the output and the 
noise respectively. 
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Fig.4: Noise effect on MISO Volterra model 
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Fig.5: Noise effect on MISO RKHS model 
 
It’s noted that the error goes down when the SNR value 
goes high. 
 
 
3.2 Chemical reactor modelling 
3.2.1 Process description 
To test the effectiveness of the RKHS and the Volterra 
models we test them on a Continuous Stirred Tank 
Reactor CSTR which is a nonlinear system used for the 
conduct of the chemical reactions [6]. A diagram of the 
reactor is given in the Figure 6. 
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Fig. 6: Chemical reactor Diagram 

 
The physical equations describing the process are: 
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1 2
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1 2 2
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w t w t h t

dt

dC t k C tw t w t
b bC C t C C t

b b b bdt h t h t
k C t

b

= + −

= − + − −
+

 
Where ( )h t is the height of the mixture in the 

reactor, 1w (resp, 2w ) the feed of reactant 1(resp, reactant 

2) with concentration 1Cb (resp. 2Cb ). The feed product 

of the reaction is 0w  and its concentration isbC . 1k  and 

2k  are consumption reactant rate. The temperature in 
the reactor is assumed constant and equal to the ambient 
temperature. We are interested by modelling the 
subsystem presented in Figure 7 where 1k , 2k , 2w  and 

2Cb  are  assumed to be constant so that it fits a MISO 

process with inputs the feed 1w and the 

concentration 1bC  of the reactant 1 and output the 

product concentrationbC  
 

 
 

 
Fig. 7: Considered subsystem 

 
For the purpose of the simulations we used the CSTR 
model of the reactor provided with Simulink of Matlab.  

3.2.2 MISO RKHS model 
We used the support vector machine (SVM) with the 
RBF kernel. The optimal parameters1p , λ of this 
learning machine are obtained by a cross validation 
technique, -8

1 400,  =10p λ= . In the learning phase we 
use a training set of 100 inputs/outputs observations and 
in the validation phase we use 300 new observations to 
determine the performance of the RKHS model. In 
Figure 8, we plot the RKHS model output and the 
process output in the validation phase. 
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Fig.8:  Validation of RKHS model 
 

 
We notice the concordance between both outputs and the 
Normalised Mean Square Error (NMSE) is 37.848 10 %−  
 
3.2.3 MISO Volterra model 
This process can be modeled by a MISO Volterra model 
with degree of non linearity P = 2 and a memory M = 2, 
the input number is n = 2 and the parameter number is 
16. 
In Figure 9 we draw the validation of the model output; 
the yielded NMSE is 0.0485 %. 

 1bC  : Concentration 

            of reactant 1 
 1w  : Feed of reactant 1 

bC  : Product 

       Concentration 
 

          2bC  : Concentration   

                  of reactant 2 

 0w  : feed product 

 

 h   
 

 bC  : Concentration product  

 

 2w : feed of reactant 2 

 
             1w  : 

            feed of reactant 1  

                   1bC : Concentration  

                       of reactant 1 
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Fig. 9: Validation of MISO Volterra model P = 2 
 and M = 2 

 
In Table 2 we evaluate the parameter number of the 
MISO Volterra model and of the MISO RKHS model. 
We conclude that MISO Volterra model is more 
efficient because it has the less number of parameters 
with a comparable NMSE.  
 

Table 2: Performances of both models 
 

Model Model output np NMSE (%) 

16 1.05 RKHS 
model 

concentration 

100 0.00783 

16 0.0485  

Volterra model 

 

concentration 100 0.32 

 
 

4   Conclusion 
This paper has dealt with the study and the comparison 
of two non linear MISO system modelling techniques 
the Volterra model and the RKHS model. It has been 
shown that in its original form the complexity depends 
on the kind and on the hardness of the process non 
linearity. Monte Carlo simulations are carried out to 
evaluate performances of both models and the influence 
of an additive noise on the identification qualities. These 
models have been tested for modelling of a chemical 
reactor and results are successful 
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