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Abstract: - This paperwork describes and refers to the structure of neuronal networks who make up the system 
we use for predicting wire breaking, the way they have been used and implemented; and the use and 
implementation of the entire system. Before testing the networks, we must identify the design of the RNA input 
curves. We should identify it experimentally, using the same measurements as for the continuous cast process. 
For using the serial-dynamic and space network, we need a large amount of data, more than the data that a 
thermo-couple uses during 120 seconds. Thus, specialists have had to design new software in order to stimulate 
the difference curves we should use for each network input. Because dynamic-serial networks follow the same 
pattern of data input, we have preferred to use only one serial-dynamic network and clone the others. We have 
performed the same in case of space networks whose input data are the same output data from two of the 
dynamic-serial networks. 
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1 Introduction 
In the process of continuous casting, the melted 
steel from the melting pot is passed, through the 
intermediary of the distributor, in the water-cooled 
crystallizer tank. In this way, a crust forms here 
which is solidified at the exterior, and one of the 
great problems is its cracking or even its tearing, 
due to several factors [1].  

When the portion that has suffered the crack gets 
out of the crystallizing apparatus, the cast iron pours 
out and the casting process must be stopped. Such 
an accident must be avoided by detecting all cracks 
and reducing the casting speed, allowing the iron to 
become solid [6], [11], [21]. 

There was established that when a crack occurs, 
the liquid steel touches the crystallizers wall, 
causing an increase in it’s temperature. That’s why, 
the crack can be detected by means of several heat 
sensors mounted on the crystallizer’s wall both on 
its width and on the direction of casting [1], [14].  

In the paperwork „Neural system for detecting 
cracks in the wire of the continuous casting”, 
published during the 12  International 
Research/Expert Conference ″Trends in the 
Development of Machinery and Associated 
Technology TMT 2008, Istanbul, 2008, pp. 649-
652, the author, 

th

Tirian G.O, has accomplished a 
prediction system of wire breaking, by using a 
number of temperature sensors mounted inside the 

crystallizing apparatus  wall, and whose signals 
have been analised by a multiple-neuronal system 
who is able to read all the data received from the 
thermal-couples and to come up with an appropriate 
answer.  

Neuronal networks prove to be useful for solving 
some difficult problems, such as: estimating, 
identifying, predicting, and controlling or for 
complex optimization [9], [10], [12].  

Because each operation should be independent – 
we refer to all components of the system – 
connection patterns may work in parallel [22]. The 
way data is memorized and processed differentiate 
the artificial neuronal networks from all classic 
software. The classic software follows the 
instructions according to a pre-defined sequential 
order. Due to their features, which enable them 
solve any difficult problem, based on a large 
number of examples, connection systems we use for 
different occasions: shape acknowledge systems or 
signals, systems for controlling complex processes 
[24]. 

This paperwork describes and refers to the 
structure of neuronal networks who make up the 
system we use for predicting wire breaking, the way 
they have been used and implemented; and the use 
and implementation of the entire system.  
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2 Experimental determination of the 
temperature oscillations 
Due to the fact that dynamic-serial networks follow 
the same pattern of the input data, we have preferred 
to use only one dynamic serial-network and cloning 
all the others. The same thing happenend in case of 
spatial networks, who use the output data of the 
other two dynamic-serial networks as input data. 

We have identified the characteristics of the 
temperature oscillations when we consider some 
entry data for the continuous breakout prediction 
process [21]. This has been an experiment enabled 
due to measurements of the continuous moulding 
process. 

On one aside of the crystallizing apparatus, we 
have installed some sensors for measuring the 
temperature – 12 lines and 4 columns-matrixes. 
Therefore, the number of sensors that have been 
installed was 48. We have used a special method: 
we have opened up the double walls of the 
crystallizing apparatus and have installed the 
temperature sensors inside. 

 

 
Fig. 1 Temperature curves at the beginning    

     
Each sensor registers a temperature value, which 

we have monitored – it lasted for 1 second. We have 
registered the data to equal laps of time of 120 
seconds. We have registered the data for different 
moments, such as for the moment we have started 
moulding (Fig. 1), and when the curve had a certain 
shape. Another curve method is the one registered at 
a certain moment in time, after we have started 
casting, but right after the curve had reached the 
normal value (Fig. 2) – thus, it has small variations. 

The last type of curve that has been registered in 
case of cracks (Fig. 3) - in this case, the temperature 
increases very much along a parable, so that it 
should the highest, value (almost 100 °C over the 
normal limit) and it should decrease asymptotically 
under the normal value. 

 

 
 

Fig. 2 Temperature curves established for a 
of the moulding certain moment during the 

moulding 
 

 
 

Fig. 3 Temperature curves in case of cracks 
 
 
3 Network design 
Most of the neuronal networks we use in practise 
are Multilayer Perceptron (RNA-MLP, Multilayer 
Perceptron) and use the back-propagation learning 
algorithm [2], [16], [23]. The back-propagation 
algorithm uses any error that might occur in case of 
current inputs (as the result of the calculation, 
propagating the input values written on the patterns) 
and the expected  outputs (those enabled by the 
current pattern), in order to adjust each percentage. 
We sequentially adjust the percentage, from the last 
layer (the output layer) to the first layer (the input 
layer) [3], [15], [20]. 

In the case of the dynamic-serial network, which 
receives the serial-dynamic of the temperature of the 
individual thermo-couples as input data (both upper 
and bottom layer), as well as for the space network, 
which receives the inputs, the output values of the 
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two dynamic-serial networks have used a neuronal 
artificial network pattern - Multilayer Perceptron. 
This network is a totally connected feedforward 
network (who propagates the signal forwards) [7], 
[18].  

A neuronal Multilayer Perceptron network is a 
complex structure of artificial neurons organized 
into levels and whom we connect, so that we cannot 
connect a neuron otherwise than to the next higher 
level [17] . 

The feedforward totally connected networks 
(Fig.4) are characterized by the fact that a node from 
a certain level receives as field the entire next lower 
level and they are made up by  [5], [25]: 
- an input layer; 
- a null or several hidden layers; 
- the output layer. 
 

 
 

Fig. 4 Two-layer Perceptron 
 

They are used for increasing the performance 
and solving out some difficult problems. The output 
of a level is the input for another level. The levels 
in-between the input pseudo-level and the output 
level are called hidden levels [8]. 

The interest for such neuronal networks has been 
caused by their ability of operating with data 
different from that of the training stage and by 
learning to use a random distribution of the synapse 
percentages of the network. Thus, such type of 
networks could be used successfully for different 
use that contains classifiers [23]. 

There are two stages who enable us accomplish 
the RNA application. The first stage is the training 
stage or learning stage [2], when we use pairs of 
input-output who should be correctly associated, 
and the RNA changes the free parameters in order to 
learn those associations. The second stage refers to 
using the RNA. In this case, we could use input 
vectors different from those used during the training 
stage, and the RNA must give the proper answer, 
based on the generalizing features. 
 
 

3.1 The design of the dynamic-serial 
network   
Choosing the inputs (their number and type) 
Generally, the most difficult problem is to choose 
the inputs [25]. The outputs of the network are 
designed by the problem we analyse. An empirical 
rule of choosing the inputs is the following: “The 
more data, the better!” This rule is true in case of the 
network inputs and so is the number of training 
patterns. 

Additional inputs do not influence the accuracy 
of the results we receive from the network, although 
some inputs prove to be less important for 
determining the right output. Although, all 
simulators have higher neurons limit–consequently, 
a higher input limit. 

Thus, when we gather the data and establish the 
inputs of the network, we should not provide the 
second level with similar input vectors, because they 
might give confliction results at the output. It is 
important to gather the right amount of input data, 
as well as the way we use them within the network. 
Most of the simulation devices allow inputs whose 
value reach 0-1 or from -1 and +1. Therefore, real 
data should be pre-processed in order to belong to 
the same pattern. Most of the simulation devices 
come along with this process. The way they chose 
the most important inputs for the network and the 
way the simulator parameters are set up help us to 
come up with the best neuronal network or not. 

For a dynamic-serial network, we could use the 
analogical inputs. Due to this process we are about 
to describe that such inputs have both negative and 
positive values. The network [21] receives the data 
from each individual thermo-couples from the upper 
and the bottom layer, meanwhile the temperatures 
the temperature sensors measure reach higher values 
than those of the input data allowed by the network, 
using a corresponding differentiating formula: 

( ) ( )12 tTtTT −=Δ  the temperatures the sensors 
measure – for time t1 and t2; by scaling them, we are 
able to reach the right values of the input data for a 
dynamic-serial network. Such difference of input 
data is used for a dynamic-serial network and it 
should register any change of temperature. Once the 
data are differentiated, they are gathered into 10 
buffers for each sample cycle and memorized into 
10 data stock units, for each dynamic-serial 
network.  

 We should present the input data sequentially, 
by taking each step equal to one, for each input data 
of the 10 buffers (Fig. 5). This process may look 
like a pile, where the first element we introduce is 
the first element we take out of the pile. We put it 
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into the upper side of the pile, and we take it from 
the bottom side. 
 

 
 
Fig.5 Presenting the data of a serial-dynamic input 

 
The number of input neurons of a dynamic-serial 

network should be equal to ten. 
Choosing the output 
The number of outputs is generally required by the 
application. We need a number of neurons who 
should be equal to the number of distinct classes 
that the network should acknowledge.  

In the case of a dynamic-serial network, the 
number of output neurons is equal to one. This 
neuron shows that the temperature features of an 
input neuron are suspicious and it might prove 
whether the wire might break or not. The result of 
the input neuron is a figure between 0...1, and it is 
the result of the acknowledge process of the results 
performed by the dynamic-serial network.  
Determining the number of hidden layers and 
neurons to each hidden layer 
The most appropriate number of hidden layers 
and neurons for each hidden layer is difficult to 
establish. Generally, one hidden layer is enough to 
solve most of the problems. In some cases, we could 
use two or three hidden layers.  

As a rule, the number of neurons for each input 
layer and/or output layers is caused by the features 
of the application. The neurons of the hidden 
structures are very important for detecting the 
features, the legal and regular features contained by 
the training patterns [23]. 

As far as the classification problems are 
concerned (not approximation or shaping up), when 
the network acknowledges a class from an infinite 
set of possible classes it is enough for a hidden 

layer. We could use more hidden layers so that the 
network should be used faster. 

A bigger number of hidden neurons for each 
layer negatively influence the ability of RAN 
generalization. It also leads to increasing the volume 
of data that are about to be processed and the time 
for the training stage. A smaller number of neurons 
are not enough for shaping up a less appropriate 
inner data representation – it may lead to an 
increased square average error, which corresponds 
to the test data, as well as to the training data [16]. 

To conclude, the most appropriate number of 
hidden neurons should be determined after some 
experiments. 

In case of a dynamic-serial network, we have 
chosen one single hidden layer. During the first 
stage, we have chosen a large number of neurons for 
the hidden layer, which has led to a very big 
network training time. Secondly, we have chosen a 
smaller number of neurons, and the network 
capacity of prediction has decreased a lot – the 
network has problems when it has to acknowledge 
simple cases. Based on the experiments, we have 
reached the conclusion that a number of 8 neurons 
for a hidden layer are enough to enable a fast 
training process, and the current network is going to 
acknowledge the input patterns very accurately. 

We have chosen the „trainscg” as a training 
algorithm. This training algorithm changes the 
percentage according to the method of the 
conjugated gradient we have previously presented. 
We could use this algorithm for training any 
neuronal network, as long as the percentage, inputs, 
and transfer functions could derivate. 
Backpropagation algorithm [13], [15], [25] is used 
for calculating the partial performance derivates 
reported to the percentage and to the „bias” value. 
This algorithm does not make up a line search up for 
each iteration. 

We have used the following activating functions 
(Fig.6): Hyperbolic tangent sigmoid transfer 
function and Logarithmic sigmoid transfer function.  

 

 
 
 

Fig. 6 Activating functions 
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3.2 The design of the space network  
Choosing the input (their number and type) 
The input of a space network is analogical. At the 
input, the space network receives the output values 
of the two serial-dynamic networks, in order to 
acknowledge the relationship among the thermo-
couples. The serial-dynamic networks have an input 
result between 0 ... 1; space networks have their 
input data within the same values: 0 ... 1. 

The input value from a dynamic network [21] (at 
the output) is used for sampling the 6 buffers (Fig.7) 
in addition, gathered by the 6 stock units. The 
highest value received from the 6 stock units is 
introduced into the input level of the space network. 
The highest value is introduced at the input level in 
order to correct the propagation time of a crack into 
the crust of the additional thermo-couples from the 
upper row. 

 

 
 

Fig. 7 The method of input data presentation of a 
space network 

 
The input level of the space network is made by 

two neurons. 
Choosing the output 

The output level of a space network is made by 
one neuron and it starts the breaking alarm when the 
output value exceeds a limited pre-determined 
value. 

The result of the network output is: 
0 – in case there is no crack; 
1 – in case there is a wire crack. 

Determining the number of hidden layers and 
neurons for each hidden layer  

We have tried to perform different experiments 
for the number of hidden layers and the number of 
neurons for each layer. We have studied a case and 

we have used two hidden layers, but the training 
time has increased a lot, and the accuracy of the 
network has been very low. The next step was to 
choose one hidden layer and establishes the number 
of neurons. There have been some problems that 
caused a huge error when acknowledging the input 
patterns. After several trials, we have reached to the 
conclusion that a single hidden layer who contains 4 
neurons reduces the training time and the error is 
equal to zero.  

The training algorithm we have used for the 
space network is the Levenberg–Marquardt method 
(trainlm) [4], [13]. This algorithm is used a lot. 

We have used for activating function, the 
following functions: Hyperbolic tangent sigmoid 
transfer function and Logarithmic sigmoid transfer 
function. 
 
 
3.3 Generating the input data for training of 
dynamic- serial network 
All the programmes we use for generating training 
data in case of a dynamic serial-network has been 
accomplished using Matlab. We have generated two 
variables who had stocked the input data (“In.m”) 
and output data  (“Out.m”), as two matrixes, such 
as: 

         
         Table 1 
Name of the

variable 
Name of the 

matrix Dimensions

In.m Pantr1 10 x n 
Out.m Tantr1  1 x n 

 
where n represents the number of the columns of the 
two matrixes, according to the sampling. 

The entry curve has been divided into several 
samples, each equal to 1, and the data has been 
gathered in both cases, and either there has been a 
crack or not. All the data has been studied for 
different moments in time (Fig.8). 

We have studied some sets of 10-values (because 
the dynamic serial network has 10 inputs), and they 
have been successively used at the input. For each 
set of 10 values, the software has generated (in case 
of the output variable) the right answer the network 
should come up with at the output. Thus, we have 
been able to make up the following scale of input 
data: 

Table 2 
Input date (xi) Output date (yi) 

xi ≤ 0 0 
xi ∈(0, 10) xi /10 ⇒ xi = 0.1 ...  0.9 

xi  ≥ 10 1 
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We have considered that the exceeded limit 
value (yi = 0.6) of the dynamic-serial network should 
admit any cracks as the outcome of a dynamic 
temperature variation. Table 3 refers to some 
examples of data sets who are possible at the input 
of the dynamic-serial network [21], as well as the 
results it should give at the output. This data have 
been simulated with Matlab. 
 

 
 

Fig. 8 Sampling modes for the input curve in the 
dynamic-serial network 

 
      

               Table 3 
3 1 3 -1 -1 3 
1 3 2 -1 2 1 
3 2 2 2 1 2 
2 2 3 1 2 4 
2 3 1 2 3 8 
3 1 1 3 11 7 
1 1 1 11 9 7 
1 1 1 9 10 6 
1 1 0 10 8 7 

Input  
date 

 

1 0 -1 8 7 8 
Output of 

RNA 1 0.3 0.3 0.3 1.0 1.0 0.8

 
 
3.4 Training of the dynamic serial-network 
After we had designed the neuronal system, we have 
obtained a number of 48 dynamic-serial network 
and 33 spatial networks [21]. Considering that 
dynamic-serial networks have 10x8x1 neurons, 
meanwhile the spatial networks have 2x4x1 
neurons, the system lasts for a long time. Because of 

the research, we have performed, the system made 
up of 81 networks lasts for almost 30 hours, and the 
training data set has been limited to a certain size, 
thus it has been not enough for the system to 
perform correctly.  

If we study the temperature pattern that the 
dynamic-serial and spatial networks use, we could 
see that the dynamic-serial networks of the 
temperature follow a certain temperature pattern 
(pattern 1), which corresponds to the dynamic 
increase or decrease of the temperature who has 
been measured by the thermocouples. Better said, 
the input data represent the difference between the 
corresponding thermocouples, either the cracks 
occur or not. Spatial networks follow another 
pattern (pattern 2), who represents the result 
obtained at the output of the first type of network. 
Because all dynamic-serial networks follow the 
same temperature pattern, meanwhile all spatial 
networks follow another temperature pattern, we 
could reduce each type of neuronal network at the 
time when using the system. Thus, the dynamic-
serial network works apart from the spatial network. 

Because all dynamic-serial networks follow the 
same output pattern, it is enough to use one 
dynamic-serial network, meanwhile cloning the 
others. Thus, the time a network uses to work is 
reduced within a few minutes. The data we use for 
enabling the network could be used for all cases in 
order to use the network correctly, either the data set 
is rather large.  

The program we use for dynamic-serial networks 
has been made up by Matlab. We have designed the 
features of the network – we refer to the number of 
neurons for each input layer: = 10, the number of 
hidden neurons: = 8, and the number of output layer 
neurons: = 1. We have established the number of the 
columns of the input and output matrix - equal to 
33. The next stage of the programme refers to 
generating the input and output data. We should 
check out if the data has been already generated, and 
if they have been then we should save them directly 
on the hard disk. In case this data has not been yet 
generated, it should be generated by launching the 
corresponding scripts automatically.  

After we have uploaded the data, we should 
define the dynamic-serial network and all the 
corresponding parameters. Thus, learning rate 
η=10e-3, momentum α = 0.01, min_degree =1e-16, 
number of stages = 5000, and goal = 0.01. We 
should also point out the training functions as: 
'tansig' and 'logsig', and the training algorithm: 
trainscg. 

The next step is to highlight the training mode – 
to highlight the network we should used, the number 
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of the input variables, and the name of the output 
variables [8]. 

Fig. 9 represents the result of the using progress 
of the neuronal network, by using the training 
algorithm - Scaled conjugate gradient back 
propagation. We are able to see the difference 
between the output value and the signal we need - 
0.001 – for a number of stages equal to 76 – it is 
much smaller than the one showed by the 
programme – 5000. 

 

 
 

Fig. 9 The training of the dynamic series network 
using Scaled conjugate gradient backpropagation 

 

 
 
Fig. 10 The training of the dynamic series network 

using Gradient descent with momentum 
backpropagation 

 
By using another training algorithm – Gradient 

descent with momentum back propagation, (Fig. 
10), the difference between the output of the 
neuronal network and the signal we need - 0,001 – 
has not been reached, either we have performed the 
5000 training stages. 

The network has been used successfully, with the 
help of the data generated by the corresponding 
Matlab programme. By testing the network using 
different series of real data (either crack should 
occur or not), and the data we have measured during 
the industrial process, the network admits all the 
cases at the input – cracks or no cracks, with a 100% 
precision.  

When using the dynamic-serial network, we use 
330 samples; 50 samples in case there is any crack, 
and the rest in case there has not been any crack. 
The process stops when the difference between the 
outputs value of the neuronal network and the 
desired signal has reached 0.1 or less for each 
sample; or, when calculating the frequentative 
convergence, we reach to 5000 stages. 
 
 
4 Input data for the spatial network 
training  
 
 
4.1  Generating the input data for training of 
spatial network 
Input data for spatial network is made up by the 
output data of the two corresponding dynamic-serial 
networks. The result of such networks is a number 
within 0...1; thus, the input data for spatial networks 
reach the same interval.  

The spatial network has two nodes at the entry. 
One of the input values received from the output of 
a dynamic-serial network is used for enabling the 
samples of the 6 buffers and stocked by 6 stock 
units. The highest value of the 6 stock units is 
introduced into the input level of the spatial 
network. 

If we know the way the input data looks like (in 
case of the second type of neuronal networks) – if 
we know the pattern of the output data of the 
dynamic-serial network, we are able to fulfil the 
simulation of a number of data bigger than the real 
one. This data should be used for enabling one 
spatial network. 

The training data-generating programme we use 
in case of spatial networks have also been generated 
by Matlab. We have generated two variables and we 
have stocked the input data (“Pin.m”) and the output 
data (“Tout.m”) as some matrixes, such as: 

Table 4 
Name of the 

variable 
Name of 

the matrix Dimensions 

Pin.m Pantr2 2 x n 
Tout.m Tantr2  1 x n 
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where n represents the number of the columns of the 
two matrixes.   

The programme has generated some numbers 
within 0...1, considering some conditions and cases 
where data could occur. The network has only two 
input neurons, so we need to have a two-line matrix. 
In order to generate the answer of the network, 
according to the input data we have used, we have 
performed the following: in case the two input 
values are bigger than a limit value, for instance 0.5, 
the neuronal spatial network should come up with 1-
value at the output. In other case, when the value 
reaches 0, the neuronal network does not come up 
with the breaking value. If we test the network for 
different series of data at the output of the dynamic-
serial networks, this data should indicate that there 
are no cracks; the network admits all the cases it 
deals with a 100% precision. Table 5 presents a few 
examples of data sets at the input of the spatial 
network, as well as the results it should produce at 
the output. All the data has been simulated with 
Matlab. 

   Table 5 
0.8 0.3 0.7 0.2 0.5 0.7 0.1 1.0 0.1 0.9 0.0Input 

date 0.9 0.6 1.0 0.1 0.6 0.6 0.6 0.9 0.0 0.6 0.5
Output 

of RNA 2 1 0 1 0 0 0 0 1 0 1 0 

 
 
4.2 Training of the spatial network  
The input data we use for the spatial network is 
situated within the 0...1, and those is the results of 
the auxiliary dynamic-serial networks’ outputs. 
Thus, we are able to say that spatial networks have 
the same temperature pattern. Thus, we could use 
only one spatial network, meanwhile the rest are 
simple clones of the one we use. 

Using the spatial network, we use 200 samples. 
Thirty samples of the 200 are used in case any crack 
should occur. The rest we use in case there is no 
crack. We may stop sing them when the difference 
between the output value of the neuronal network 
and the signal we need has reached 0.001 or less for 
each sample, or when calculating the frequentative 
convergence and reaching to 10000 stages. 

The training programme for the spatial neuronal 
network has been performed using the Matlab and 
we call it Training_RNA_2. We have established 
the design of the network, the number of neurons 
from the input layer  = 2, the number of hidden 
neurons = 4, and the number of neurons from the 
output layer = 1.  

We have established the number of the columns 
of the input matrixes is equal to 200. The next stage 

of the programme is to generate the input and output 
data. We check out if the data has been already 
generated; and if they have been, the data should be 
directly uploaded on the hard disk. If this data has 
not been generated yet, it should be generated by 
launching the corresponding scripts automatically.  

After we have uploaded the data, we establish 
the dynamic-neuronal network and all the 
corresponding parameters. Thus, learning rate η= 
10e-3, momentum α=0.01, min_grad=1e-16, 
number of stages = 10000, and goal = 0.001. We 
have also specified the training functions as: 'tansig' 
and 'logsig'; as well as the training algorithm: 
trainslm. The next step is to point out the way the 
training should be performed. We should point out 
the network we should use, the number of the input 
variables, and the numbers of the output variables 
for the network. 

Fig.11 represents the outcome of the training 
process of the neuronal network, using the training 
algorithm Levenberg - Marquardt back propagation 
[4],[19]. We are able to see the difference between 
the output value of the neuronal network and the 
signal of 0.001 – for a number of stages equal to 76, 
much smaller than the one shown by the software – 
10000. 

 

 
 

Fig. 11 Training of the dynamic series network 
using the Levenberg – Marquardt backpropagation 

 
While testing the spatial network with a new set, 

the network acknowledges the crack with 100% 
accuracy; as well as in case of normal cases, where 
there has been no crack.  

We should mention that the spatial network and 
the dynamic-serial network have been trained 
separately. 

After training and testing the two types of 
networks, we have tested the multiple-neuronal 
system for predicting the crack in case of continuous 
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casting. We have initiated the variables we have 
used, such as the number temperature samples, the 
number of layer thermocouples, the number of 
layers of thermocouples, the number of networks 
directly connected to the output, the number of 
dynamic-serial and spatial networks (they are 
calculated using the formulas we have previously 
described), and the number of directly-connected 
networks. We have established the design of each 
neuronal network - the number of neuronal for each 
input, hidden, and output layer. After we have 
established all these features, we have generated and 
loaded the types of training. We have performed 
these along with performing the separate training for  
the two networks – we have looked up for the hard 
disk for the data. If we have found the data then, we 
have loaded it directly. If not, we have generated it. 
The next step was to implement the dynamic-serial 
and spatial neuronal networks. Then, we have 
trained them. Once we have finished training the 
networks, we could test the completely neuronal 
system. The system has acknowledged all the cases 
brought up to the input with 100% accuracy. 
 
 
5 Conclusions 
In this paperwork, we have established the design of 
the dynamic-serial network of each neuronal 
network, as well as for training the networks with 
the help of the Matlab software. 

We have also performed the training and 
implementing of the entire neuronal system so that it 
should be able to predict the cracks that might occur 
throughout the process of continuous casting. The 
system acknowledges all the cases it should deal 
with. Thus, 120 cases of the entire number of cases 
has not suffered any crack, meanwhile 30 cases has 
suffered from some cracks. The neuronal system 
uses a completely set of data from the testing data 
previously described, but it nevertheless 
acknowledged any crack or not with a 100% 
accuracy.  
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