
Applications of Neural Networks in Continuous Casting

GELU OVIDIU TIRIAN, CAMELIA BRETOTEAN PINCA
Department of Electrotechnical Engineering and Industrial Informatics

“Politechnica” University of Timisoara
Revolutiei str., no. 5, Hunedoara

ROMANIA
ovidiu.tirian@fih.upt.ro, camelia.bretotean@fih.upt.ro

Abstract: - This paperwork describes and refers to the structure of neuronal networks who make up the system
we use for predicting wire breaking, the way they have been used and implemented; and the use and
implementation of the entire system. Before testing the networks, we must identify the design of the RNA input
curves. We should identify it experimentally, using the same measurements as for the continuous cast process.
For using the serial-dynamic and space network, we need a large amount of data, more than the data that a
thermo-couple uses during 120 seconds. Thus, specialists have had to design new software in order to stimulate
the difference curves we should use for each network input. Because dynamic-serial networks follow the same
pattern of data input, we have preferred to use only one serial-dynamic network and clone the others. We have
performed the same in case of space networks whose input data are the same output data from two of the
dynamic-serial networks.

Key-Words: neuronal system, prediction, samples, algorithm, training, crack, continuous casting.

1 Introduction
In the process of continuous casting, the melted
steel from the melting pot is passed, through the
intermediary of the distributor, in the water-cooled
crystallizer tank. In this way, a crust forms here
which is solidified at the exterior, and one of the
great problems is its cracking or even its tearing,
due to several factors [1].

When the portion that has suffered the crack gets
out of the crystallizing apparatus, the cast iron pours
out and the casting process must be stopped. Such
an accident must be avoided by detecting all cracks
and reducing the casting speed, allowing the iron to
become solid [6], [11], [21].

There was established that when a crack occurs,
the liquid steel touches the crystallizers wall,
causing an increase in it’s temperature. That’s why,
the crack can be detected by means of several heat
sensors mounted on the crystallizer’s wall both on
its width and on the direction of casting [1], [14].

In the paperwork „Neural system for detecting
cracks in the wire of the continuous casting”,
published during the 12 International
Research/Expert Conference ″Trends in the
Development of Machinery and Associated
Technology TMT 2008, Istanbul, 2008, pp. 649-
652, the author,

th

Tirian G.O, has accomplished a
prediction system of wire breaking, by using a
number of temperature sensors mounted inside the

crystallizing apparatus wall, and whose signals
have been analised by a multiple-neuronal system
who is able to read all the data received from the
thermal-couples and to come up with an appropriate
answer.

Neuronal networks prove to be useful for solving
some difficult problems, such as: estimating,
identifying, predicting, and controlling or for
complex optimization [9], [10], [12].

Because each operation should be independent –
we refer to all components of the system –
connection patterns may work in parallel [22]. The
way data is memorized and processed differentiate
the artificial neuronal networks from all classic
software. The classic software follows the
instructions according to a pre-defined sequential
order. Due to their features, which enable them
solve any difficult problem, based on a large
number of examples, connection systems we use for
different occasions: shape acknowledge systems or
signals, systems for controlling complex processes
[24].

This paperwork describes and refers to the
structure of neuronal networks who make up the
system we use for predicting wire breaking, the way
they have been used and implemented; and the use
and implementation of the entire system.

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 693 Issue 6, Volume 8, June 2009

mailto:ovidiu.tirian@fih.upt.ro

2 Experimental determination of the
temperature oscillations
Due to the fact that dynamic-serial networks follow
the same pattern of the input data, we have preferred
to use only one dynamic serial-network and cloning
all the others. The same thing happenend in case of
spatial networks, who use the output data of the
other two dynamic-serial networks as input data.

We have identified the characteristics of the
temperature oscillations when we consider some
entry data for the continuous breakout prediction
process [21]. This has been an experiment enabled
due to measurements of the continuous moulding
process.

On one aside of the crystallizing apparatus, we
have installed some sensors for measuring the
temperature – 12 lines and 4 columns-matrixes.
Therefore, the number of sensors that have been
installed was 48. We have used a special method:
we have opened up the double walls of the
crystallizing apparatus and have installed the
temperature sensors inside.

Fig. 1 Temperature curves at the beginning

Each sensor registers a temperature value, which

we have monitored – it lasted for 1 second. We have
registered the data to equal laps of time of 120
seconds. We have registered the data for different
moments, such as for the moment we have started
moulding (Fig. 1), and when the curve had a certain
shape. Another curve method is the one registered at
a certain moment in time, after we have started
casting, but right after the curve had reached the
normal value (Fig. 2) – thus, it has small variations.

The last type of curve that has been registered in
case of cracks (Fig. 3) - in this case, the temperature
increases very much along a parable, so that it
should the highest, value (almost 100 °C over the
normal limit) and it should decrease asymptotically
under the normal value.

Fig. 2 Temperature curves established for a
of the moulding certain moment during the

moulding

Fig. 3 Temperature curves in case of cracks

3 Network design
Most of the neuronal networks we use in practise
are Multilayer Perceptron (RNA-MLP, Multilayer
Perceptron) and use the back-propagation learning
algorithm [2], [16], [23]. The back-propagation
algorithm uses any error that might occur in case of
current inputs (as the result of the calculation,
propagating the input values written on the patterns)
and the expected outputs (those enabled by the
current pattern), in order to adjust each percentage.
We sequentially adjust the percentage, from the last
layer (the output layer) to the first layer (the input
layer) [3], [15], [20].

In the case of the dynamic-serial network, which
receives the serial-dynamic of the temperature of the
individual thermo-couples as input data (both upper
and bottom layer), as well as for the space network,
which receives the inputs, the output values of the

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 694 Issue 6, Volume 8, June 2009

two dynamic-serial networks have used a neuronal
artificial network pattern - Multilayer Perceptron.
This network is a totally connected feedforward
network (who propagates the signal forwards) [7],
[18].

A neuronal Multilayer Perceptron network is a
complex structure of artificial neurons organized
into levels and whom we connect, so that we cannot
connect a neuron otherwise than to the next higher
level [17] .

The feedforward totally connected networks
(Fig.4) are characterized by the fact that a node from
a certain level receives as field the entire next lower
level and they are made up by [5], [25]:
- an input layer;
- a null or several hidden layers;
- the output layer.

Fig. 4 Two-layer Perceptron

They are used for increasing the performance
and solving out some difficult problems. The output
of a level is the input for another level. The levels
in-between the input pseudo-level and the output
level are called hidden levels [8].

The interest for such neuronal networks has been
caused by their ability of operating with data
different from that of the training stage and by
learning to use a random distribution of the synapse
percentages of the network. Thus, such type of
networks could be used successfully for different
use that contains classifiers [23].

There are two stages who enable us accomplish
the RNA application. The first stage is the training
stage or learning stage [2], when we use pairs of
input-output who should be correctly associated,
and the RNA changes the free parameters in order to
learn those associations. The second stage refers to
using the RNA. In this case, we could use input
vectors different from those used during the training
stage, and the RNA must give the proper answer,
based on the generalizing features.

3.1 The design of the dynamic-serial
network
Choosing the inputs (their number and type)
Generally, the most difficult problem is to choose
the inputs [25]. The outputs of the network are
designed by the problem we analyse. An empirical
rule of choosing the inputs is the following: “The
more data, the better!” This rule is true in case of the
network inputs and so is the number of training
patterns.

Additional inputs do not influence the accuracy
of the results we receive from the network, although
some inputs prove to be less important for
determining the right output. Although, all
simulators have higher neurons limit–consequently,
a higher input limit.

Thus, when we gather the data and establish the
inputs of the network, we should not provide the
second level with similar input vectors, because they
might give confliction results at the output. It is
important to gather the right amount of input data,
as well as the way we use them within the network.
Most of the simulation devices allow inputs whose
value reach 0-1 or from -1 and +1. Therefore, real
data should be pre-processed in order to belong to
the same pattern. Most of the simulation devices
come along with this process. The way they chose
the most important inputs for the network and the
way the simulator parameters are set up help us to
come up with the best neuronal network or not.

For a dynamic-serial network, we could use the
analogical inputs. Due to this process we are about
to describe that such inputs have both negative and
positive values. The network [21] receives the data
from each individual thermo-couples from the upper
and the bottom layer, meanwhile the temperatures
the temperature sensors measure reach higher values
than those of the input data allowed by the network,
using a corresponding differentiating formula:

() ()12 tTtTT −=Δ the temperatures the sensors
measure – for time t1 and t2; by scaling them, we are
able to reach the right values of the input data for a
dynamic-serial network. Such difference of input
data is used for a dynamic-serial network and it
should register any change of temperature. Once the
data are differentiated, they are gathered into 10
buffers for each sample cycle and memorized into
10 data stock units, for each dynamic-serial
network.

 We should present the input data sequentially,
by taking each step equal to one, for each input data
of the 10 buffers (Fig. 5). This process may look
like a pile, where the first element we introduce is
the first element we take out of the pile. We put it

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 695 Issue 6, Volume 8, June 2009

into the upper side of the pile, and we take it from
the bottom side.

Fig.5 Presenting the data of a serial-dynamic input

The number of input neurons of a dynamic-serial

network should be equal to ten.
Choosing the output
The number of outputs is generally required by the
application. We need a number of neurons who
should be equal to the number of distinct classes
that the network should acknowledge.

In the case of a dynamic-serial network, the
number of output neurons is equal to one. This
neuron shows that the temperature features of an
input neuron are suspicious and it might prove
whether the wire might break or not. The result of
the input neuron is a figure between 0...1, and it is
the result of the acknowledge process of the results
performed by the dynamic-serial network.
Determining the number of hidden layers and
neurons to each hidden layer
The most appropriate number of hidden layers
and neurons for each hidden layer is difficult to
establish. Generally, one hidden layer is enough to
solve most of the problems. In some cases, we could
use two or three hidden layers.

As a rule, the number of neurons for each input
layer and/or output layers is caused by the features
of the application. The neurons of the hidden
structures are very important for detecting the
features, the legal and regular features contained by
the training patterns [23].

As far as the classification problems are
concerned (not approximation or shaping up), when
the network acknowledges a class from an infinite
set of possible classes it is enough for a hidden

layer. We could use more hidden layers so that the
network should be used faster.

A bigger number of hidden neurons for each
layer negatively influence the ability of RAN
generalization. It also leads to increasing the volume
of data that are about to be processed and the time
for the training stage. A smaller number of neurons
are not enough for shaping up a less appropriate
inner data representation – it may lead to an
increased square average error, which corresponds
to the test data, as well as to the training data [16].

To conclude, the most appropriate number of
hidden neurons should be determined after some
experiments.

In case of a dynamic-serial network, we have
chosen one single hidden layer. During the first
stage, we have chosen a large number of neurons for
the hidden layer, which has led to a very big
network training time. Secondly, we have chosen a
smaller number of neurons, and the network
capacity of prediction has decreased a lot – the
network has problems when it has to acknowledge
simple cases. Based on the experiments, we have
reached the conclusion that a number of 8 neurons
for a hidden layer are enough to enable a fast
training process, and the current network is going to
acknowledge the input patterns very accurately.

We have chosen the „trainscg” as a training
algorithm. This training algorithm changes the
percentage according to the method of the
conjugated gradient we have previously presented.
We could use this algorithm for training any
neuronal network, as long as the percentage, inputs,
and transfer functions could derivate.
Backpropagation algorithm [13], [15], [25] is used
for calculating the partial performance derivates
reported to the percentage and to the „bias” value.
This algorithm does not make up a line search up for
each iteration.

We have used the following activating functions
(Fig.6): Hyperbolic tangent sigmoid transfer
function and Logarithmic sigmoid transfer function.

Fig. 6 Activating functions

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 696 Issue 6, Volume 8, June 2009

3.2 The design of the space network
Choosing the input (their number and type)
The input of a space network is analogical. At the
input, the space network receives the output values
of the two serial-dynamic networks, in order to
acknowledge the relationship among the thermo-
couples. The serial-dynamic networks have an input
result between 0 ... 1; space networks have their
input data within the same values: 0 ... 1.

The input value from a dynamic network [21] (at
the output) is used for sampling the 6 buffers (Fig.7)
in addition, gathered by the 6 stock units. The
highest value received from the 6 stock units is
introduced into the input level of the space network.
The highest value is introduced at the input level in
order to correct the propagation time of a crack into
the crust of the additional thermo-couples from the
upper row.

Fig. 7 The method of input data presentation of a
space network

The input level of the space network is made by

two neurons.
Choosing the output

The output level of a space network is made by
one neuron and it starts the breaking alarm when the
output value exceeds a limited pre-determined
value.

The result of the network output is:
0 – in case there is no crack;
1 – in case there is a wire crack.

Determining the number of hidden layers and
neurons for each hidden layer

We have tried to perform different experiments
for the number of hidden layers and the number of
neurons for each layer. We have studied a case and

we have used two hidden layers, but the training
time has increased a lot, and the accuracy of the
network has been very low. The next step was to
choose one hidden layer and establishes the number
of neurons. There have been some problems that
caused a huge error when acknowledging the input
patterns. After several trials, we have reached to the
conclusion that a single hidden layer who contains 4
neurons reduces the training time and the error is
equal to zero.

The training algorithm we have used for the
space network is the Levenberg–Marquardt method
(trainlm) [4], [13]. This algorithm is used a lot.

We have used for activating function, the
following functions: Hyperbolic tangent sigmoid
transfer function and Logarithmic sigmoid transfer
function.

3.3 Generating the input data for training of
dynamic- serial network
All the programmes we use for generating training
data in case of a dynamic serial-network has been
accomplished using Matlab. We have generated two
variables who had stocked the input data (“In.m”)
and output data (“Out.m”), as two matrixes, such
as:

 Table 1
Name of the

variable
Name of the

matrix Dimensions

In.m Pantr1 10 x n
Out.m Tantr1 1 x n

where n represents the number of the columns of the
two matrixes, according to the sampling.

The entry curve has been divided into several
samples, each equal to 1, and the data has been
gathered in both cases, and either there has been a
crack or not. All the data has been studied for
different moments in time (Fig.8).

We have studied some sets of 10-values (because
the dynamic serial network has 10 inputs), and they
have been successively used at the input. For each
set of 10 values, the software has generated (in case
of the output variable) the right answer the network
should come up with at the output. Thus, we have
been able to make up the following scale of input
data:

Table 2
Input date (xi) Output date (yi)

xi ≤ 0 0
xi ∈(0, 10) xi /10 ⇒ xi = 0.1 ... 0.9

xi ≥ 10 1

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 697 Issue 6, Volume 8, June 2009

We have considered that the exceeded limit
value (yi = 0.6) of the dynamic-serial network should
admit any cracks as the outcome of a dynamic
temperature variation. Table 3 refers to some
examples of data sets who are possible at the input
of the dynamic-serial network [21], as well as the
results it should give at the output. This data have
been simulated with Matlab.

Fig. 8 Sampling modes for the input curve in the
dynamic-serial network

 Table 3
3 1 3 -1 -1 3
1 3 2 -1 2 1
3 2 2 2 1 2
2 2 3 1 2 4
2 3 1 2 3 8
3 1 1 3 11 7
1 1 1 11 9 7
1 1 1 9 10 6
1 1 0 10 8 7

Input
date

1 0 -1 8 7 8
Output of

RNA 1 0.3 0.3 0.3 1.0 1.0 0.8

3.4 Training of the dynamic serial-network
After we had designed the neuronal system, we have
obtained a number of 48 dynamic-serial network
and 33 spatial networks [21]. Considering that
dynamic-serial networks have 10x8x1 neurons,
meanwhile the spatial networks have 2x4x1
neurons, the system lasts for a long time. Because of

the research, we have performed, the system made
up of 81 networks lasts for almost 30 hours, and the
training data set has been limited to a certain size,
thus it has been not enough for the system to
perform correctly.

If we study the temperature pattern that the
dynamic-serial and spatial networks use, we could
see that the dynamic-serial networks of the
temperature follow a certain temperature pattern
(pattern 1), which corresponds to the dynamic
increase or decrease of the temperature who has
been measured by the thermocouples. Better said,
the input data represent the difference between the
corresponding thermocouples, either the cracks
occur or not. Spatial networks follow another
pattern (pattern 2), who represents the result
obtained at the output of the first type of network.
Because all dynamic-serial networks follow the
same temperature pattern, meanwhile all spatial
networks follow another temperature pattern, we
could reduce each type of neuronal network at the
time when using the system. Thus, the dynamic-
serial network works apart from the spatial network.

Because all dynamic-serial networks follow the
same output pattern, it is enough to use one
dynamic-serial network, meanwhile cloning the
others. Thus, the time a network uses to work is
reduced within a few minutes. The data we use for
enabling the network could be used for all cases in
order to use the network correctly, either the data set
is rather large.

The program we use for dynamic-serial networks
has been made up by Matlab. We have designed the
features of the network – we refer to the number of
neurons for each input layer: = 10, the number of
hidden neurons: = 8, and the number of output layer
neurons: = 1. We have established the number of the
columns of the input and output matrix - equal to
33. The next stage of the programme refers to
generating the input and output data. We should
check out if the data has been already generated, and
if they have been then we should save them directly
on the hard disk. In case this data has not been yet
generated, it should be generated by launching the
corresponding scripts automatically.

After we have uploaded the data, we should
define the dynamic-serial network and all the
corresponding parameters. Thus, learning rate
η=10e-3, momentum α = 0.01, min_degree =1e-16,
number of stages = 5000, and goal = 0.01. We
should also point out the training functions as:
'tansig' and 'logsig', and the training algorithm:
trainscg.

The next step is to highlight the training mode –
to highlight the network we should used, the number

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 698 Issue 6, Volume 8, June 2009

of the input variables, and the name of the output
variables [8].

Fig. 9 represents the result of the using progress
of the neuronal network, by using the training
algorithm - Scaled conjugate gradient back
propagation. We are able to see the difference
between the output value and the signal we need -
0.001 – for a number of stages equal to 76 – it is
much smaller than the one showed by the
programme – 5000.

Fig. 9 The training of the dynamic series network
using Scaled conjugate gradient backpropagation

Fig. 10 The training of the dynamic series network

using Gradient descent with momentum
backpropagation

By using another training algorithm – Gradient

descent with momentum back propagation, (Fig.
10), the difference between the output of the
neuronal network and the signal we need - 0,001 –
has not been reached, either we have performed the
5000 training stages.

The network has been used successfully, with the
help of the data generated by the corresponding
Matlab programme. By testing the network using
different series of real data (either crack should
occur or not), and the data we have measured during
the industrial process, the network admits all the
cases at the input – cracks or no cracks, with a 100%
precision.

When using the dynamic-serial network, we use
330 samples; 50 samples in case there is any crack,
and the rest in case there has not been any crack.
The process stops when the difference between the
outputs value of the neuronal network and the
desired signal has reached 0.1 or less for each
sample; or, when calculating the frequentative
convergence, we reach to 5000 stages.

4 Input data for the spatial network
training

4.1 Generating the input data for training of
spatial network
Input data for spatial network is made up by the
output data of the two corresponding dynamic-serial
networks. The result of such networks is a number
within 0...1; thus, the input data for spatial networks
reach the same interval.

The spatial network has two nodes at the entry.
One of the input values received from the output of
a dynamic-serial network is used for enabling the
samples of the 6 buffers and stocked by 6 stock
units. The highest value of the 6 stock units is
introduced into the input level of the spatial
network.

If we know the way the input data looks like (in
case of the second type of neuronal networks) – if
we know the pattern of the output data of the
dynamic-serial network, we are able to fulfil the
simulation of a number of data bigger than the real
one. This data should be used for enabling one
spatial network.

The training data-generating programme we use
in case of spatial networks have also been generated
by Matlab. We have generated two variables and we
have stocked the input data (“Pin.m”) and the output
data (“Tout.m”) as some matrixes, such as:

Table 4
Name of the

variable
Name of

the matrix Dimensions

Pin.m Pantr2 2 x n
Tout.m Tantr2 1 x n

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 699 Issue 6, Volume 8, June 2009

where n represents the number of the columns of the
two matrixes.

The programme has generated some numbers
within 0...1, considering some conditions and cases
where data could occur. The network has only two
input neurons, so we need to have a two-line matrix.
In order to generate the answer of the network,
according to the input data we have used, we have
performed the following: in case the two input
values are bigger than a limit value, for instance 0.5,
the neuronal spatial network should come up with 1-
value at the output. In other case, when the value
reaches 0, the neuronal network does not come up
with the breaking value. If we test the network for
different series of data at the output of the dynamic-
serial networks, this data should indicate that there
are no cracks; the network admits all the cases it
deals with a 100% precision. Table 5 presents a few
examples of data sets at the input of the spatial
network, as well as the results it should produce at
the output. All the data has been simulated with
Matlab.

 Table 5
0.8 0.3 0.7 0.2 0.5 0.7 0.1 1.0 0.1 0.9 0.0Input

date 0.9 0.6 1.0 0.1 0.6 0.6 0.6 0.9 0.0 0.6 0.5
Output

of RNA 2 1 0 1 0 0 0 0 1 0 1 0

4.2 Training of the spatial network
The input data we use for the spatial network is
situated within the 0...1, and those is the results of
the auxiliary dynamic-serial networks’ outputs.
Thus, we are able to say that spatial networks have
the same temperature pattern. Thus, we could use
only one spatial network, meanwhile the rest are
simple clones of the one we use.

Using the spatial network, we use 200 samples.
Thirty samples of the 200 are used in case any crack
should occur. The rest we use in case there is no
crack. We may stop sing them when the difference
between the output value of the neuronal network
and the signal we need has reached 0.001 or less for
each sample, or when calculating the frequentative
convergence and reaching to 10000 stages.

The training programme for the spatial neuronal
network has been performed using the Matlab and
we call it Training_RNA_2. We have established
the design of the network, the number of neurons
from the input layer = 2, the number of hidden
neurons = 4, and the number of neurons from the
output layer = 1.

We have established the number of the columns
of the input matrixes is equal to 200. The next stage

of the programme is to generate the input and output
data. We check out if the data has been already
generated; and if they have been, the data should be
directly uploaded on the hard disk. If this data has
not been generated yet, it should be generated by
launching the corresponding scripts automatically.

After we have uploaded the data, we establish
the dynamic-neuronal network and all the
corresponding parameters. Thus, learning rate η=
10e-3, momentum α=0.01, min_grad=1e-16,
number of stages = 10000, and goal = 0.001. We
have also specified the training functions as: 'tansig'
and 'logsig'; as well as the training algorithm:
trainslm. The next step is to point out the way the
training should be performed. We should point out
the network we should use, the number of the input
variables, and the numbers of the output variables
for the network.

Fig.11 represents the outcome of the training
process of the neuronal network, using the training
algorithm Levenberg - Marquardt back propagation
[4],[19]. We are able to see the difference between
the output value of the neuronal network and the
signal of 0.001 – for a number of stages equal to 76,
much smaller than the one shown by the software –
10000.

Fig. 11 Training of the dynamic series network
using the Levenberg – Marquardt backpropagation

While testing the spatial network with a new set,

the network acknowledges the crack with 100%
accuracy; as well as in case of normal cases, where
there has been no crack.

We should mention that the spatial network and
the dynamic-serial network have been trained
separately.

After training and testing the two types of
networks, we have tested the multiple-neuronal
system for predicting the crack in case of continuous

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 700 Issue 6, Volume 8, June 2009

casting. We have initiated the variables we have
used, such as the number temperature samples, the
number of layer thermocouples, the number of
layers of thermocouples, the number of networks
directly connected to the output, the number of
dynamic-serial and spatial networks (they are
calculated using the formulas we have previously
described), and the number of directly-connected
networks. We have established the design of each
neuronal network - the number of neuronal for each
input, hidden, and output layer. After we have
established all these features, we have generated and
loaded the types of training. We have performed
these along with performing the separate training for
the two networks – we have looked up for the hard
disk for the data. If we have found the data then, we
have loaded it directly. If not, we have generated it.
The next step was to implement the dynamic-serial
and spatial neuronal networks. Then, we have
trained them. Once we have finished training the
networks, we could test the completely neuronal
system. The system has acknowledged all the cases
brought up to the input with 100% accuracy.

5 Conclusions
In this paperwork, we have established the design of
the dynamic-serial network of each neuronal
network, as well as for training the networks with
the help of the Matlab software.

We have also performed the training and
implementing of the entire neuronal system so that it
should be able to predict the cracks that might occur
throughout the process of continuous casting. The
system acknowledges all the cases it should deal
with. Thus, 120 cases of the entire number of cases
has not suffered any crack, meanwhile 30 cases has
suffered from some cracks. The neuronal system
uses a completely set of data from the testing data
previously described, but it nevertheless
acknowledged any crack or not with a 100%
accuracy.

References:
[1] J. Adamy , Device for early detection of run-

out in continuous casting, United States Patent,
No.5, 904, 202, Date of Patent 18 may, 1999.

[2] C. Avila , Y. Tsuji, Crack width prediction of
RC structures by Artificial neural networks,
Adaptive and Natural Computing Algorithms,
Springer Viena, pg.92-95, 12.dec. 2005.

[3] S.B. Cho, J. H. Kim, Rapid Backpropagation
Learning Algorithms, Circuits Systems Signal
Process, Vol.12, No.2, 1993, pp.155-175.

[4] M. T. Hagan and M. Menhaj, Training
feedforward networks, with the Marquardt
algorithm, IEEE Trans. Neural Networks,
vol.5, pp. 989-993, Nov.1994.

[5] M. T. Hagan, H. B. Demuth, M. H. Beale,
Neural Network Design, Boston, MA: PWS
Publishing, 1996.

[6] L. Herbert Gilles, J. Shipman, Method and
apparatus for controlling heat removal by
varying casting speed, United States Patent,
No.4, 235,276, Date of Patent 25 nov. 1980.

[7] C. K. Liew, M. Veidt, Guided Waves
Identification in Beams with Test Pattern
Dependent Series Neural Network Systems,
WSEAS Transactions on Signal Processing,
Issue 4, Vol.4, pp.86-96, April 2008.

[8] V. Lupu, C. Lupu, N. Morariu, The
implementation of clean production and the use
of neural networks in forecasting waste
management, WSEAS Transactions on Systems
and Control, Issue 9, Vol.3, pp.722-736,
September 2008.

[9] P. Makvandi, J. Jassbi, S. Khanmohammadi,
Aplication of Genetic Algorithm and Neural
Network in Forecasting with Good Data,
WSEAS Transactions on Systems, 4(4), pp.337-
342, 2005.

[10] K. S. Narendra and K. Parthasarathy,
Identification and control of dynamic systems
using neural networks, IEEE Trans. Neural
Networks,Vol.1, pp. 4-27, 1990.

[11] T. Nakamura, K. Kazuho, Breakout prediction
system in a continuous casting process, United
States Patent, No.5, 548,520, Date of Patent
20 aug.1996.

[12] Y. Ozel, I. Guney, E. Arca, Neural Network
Solution to the Cogeneration System by Using
Coal, 12th WSEAS International Conference on
Circuits, Heraklion, Greece, July 22-24, 2008.

[13] P. Pivoňka, J. Dohnal, On-line Identification
Based on Neural Networks Using of
Levenberg-Marquardt Method and Back-
propagation Algorithm, WSEAS Transactions
on Systems, Issue 2, Vol.3, pp.381-385, April
2004.

[14] F.P. Pleschiutschnugg, Method and apparatus
for the early recognition of ruptures in
continuous casting of steel with an oscillating
mold, United States Patent, No.US 6,179,041
B1, Date of Patent 30 jan. 2001.

[15] M. Riedmiller and H. Braun, A Direct Adaptive
Method for Faster Backpropagation Learning:
The RPROP Algorithm, Proceedings of the
1993 IEEE International Conference on Neural
Networks, 1993, pp. 586-591.

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 701 Issue 6, Volume 8, June 2009

[16] O. Sang – Hoon, L. Youngjik, A Modified
Error Function to Improve the Error Back-
Propagation Algorithm for Multi-Layer
Perceptrons, ETRI Journal, Vol.17, No.1, April
1995.

[17] M. Sarevska, A.B.M. Ssalem, N. Mastorakis,
Null Steering Beamformer Based on RBF
Neural Networks, 12th WSEAS International
Conference on Communications, Heraklion,
Greece, July 23-25, 2008.

[18] H. T. Shandiz, H. G. Tehrani, H. Hadizadeh,
Using Multi Layer Perceptron Network to
Classify Road Cracks, WSEAS Transactions on
Systems, 4 (4), pp.355-358, 2005.

[19] A. A. Suratgar, M. B. Tavakoli, and A.
Hoseinabadi, Modified Levenberg-Marquardt
Method for Neural Networks Training,
Proceedings of World Academy of Science,
Engineering and Technology, vol.6, 2005.

[20] S. Sureerattanan, H. N. Phien, et. al, The
Optimal Multi-layer Structure of
Backpropagation Networks, Proceedings of the
7th WSEAS International Conference on Neural
Networks, Cavtat, Croatia, June 12-14, 2006.

[21] G.O. Tirian, Neural system for detecting craks
in the wire of the continuous casting” 12
International Research/Expert Conference
″Trends in the Development of Machinery and
Associated Technology TMT 2008, Istanbul,
Turkey, 26 – 30 august, pp. 649-652, 2008.

th

[22] D. Thukaram, H. P. Khincha, H. P.
Vijaynarasimha, Artificial Neural Network and
Support Vector Machine Approach for
Locating Faults in Radial Distribution Systems,
IEEE Transactions on Power Delivery, Vol.20,
No.2, April 2005.

[23] C. Volosencu, Sisteme fuzzy si neuronale,
Editura Politehnica, Timisoara, 2007.

[24] C. Volosencu, Identification of Distributed
Parameter Systems, Based on Sensor Network
and Artificial Intelligence, WSEAS
Transactions on Systems, Issue 6, Vol. 7,
pp.785-801, June 2008.

[25] W. Xudong, Y. Man, C. Xingfu, Development
of Prediction Method for Abnormalities in Slab
Continuous Casting Using Artificial Neural
Network Models, ISIJ International,
Vol.46(2006), No.7, pp. 1047-1053, 2006.

WSEAS TRANSACTIONS on SYSTEMS Gelu Ovidiu Tirian, Camelia Bretotean Pinca

ISSN: 1109-2777 702 Issue 6, Volume 8, June 2009

