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Abstract: - Several software reliability growth models (SRGMs) have been presented in the literature in the last 
three decades. These SRGMs take into account different testing environment depending on size and efficiency 

of testing team, type of components and faults, design of test cases, software architecture etc. The plethora of 

models makes the model selection an uphill task. Recently, some authors have tried to develop a unifying 

approach so as to capture different growth curves, thus easing the model selection process. The work in this 

area done so far relates the fault removal process to the testing/execution time and does not consider the 

consumption pattern of testing resources such as CPU time, manpower and number of executed test cases. 

More realistic modeling techniques can result if the reliability growth process is studied with respect to the 
amount of expended testing efforts. In this paper, we propose a unified framework for testing effort dependent 

software reliability growth models incorporating imperfect debugging and error generation. The proposed 

framework represents the realistic case of time delays between the different stages of fault removal process i.e 
Failure Observation/Fault Detection and Fault Removal/Correction processes. The Convolution of probability 

distribution functions have been used to characterize time differentiation between these two processes. Several 

existing and new effort dependent models have been derived by using different types of distribution functions. 
We have also provided data analysis based on the actual software failure data sets for some of the models 

discussed and proposed in the paper.  
 

 

Key-Words: - Software reliability growth model, Testing effort function, Imperfect debugging, Error 

generation, Convolution, Probability distribution function. 

 

1 Introduction 
The role of software is expanding rapidly in many 

aspects of modern life, ranging from critical 

infrastructures, such as transportation, defense, and 
telecommunication systems, to work-place 

automation, productivity enhancement, education, 

health-care, publishing, on-line services, 
entertainment, etc. Given the potentially costly 

impact of software failures for many of these 

applications, it is important to have sound methods 

of developing reliable software as well as accurate 

methods of quantitatively certifying software 

reliability. Hence it is crucial that software 

reliability engineering techniques should play a 

central role in the planning and control of software 

development projects. In particular, it is important 

to document the times and nature of bug 
occurrences, and their correction times, throughout 

the design and implementation phases as well as 

testing phase. With such data it is possible to 

estimate the time at which the software product will 

have reached a target level of reliability, or to 

devise methods to decrease that time. 

 

A large number of software reliability growth 

models (SRGMs), which relate the number of 
failures (faults identified/corrected) and execution 

time, have been discussed in the literature 

[10,13,16,23]. These SRGM assume diverse testing 

environment like distinction between failure and 

correction processes, learning of the testing 

personnel, possibility of imperfect debugging and 

fault generation, constant or monotonically 

increasing / decreasing fault detection rate (FDR) 

or randomness in the growth curve. But no SRGM 

can be claimed to be the best as the physical 
interpretation of the testing and debugging changes 

due to numerous factors e.g., design of test cases, 

defect density, skills and efficiency of testing team, 
availability of testing resources etc. The plethora of 

SRGM makes the model selection a tedious task. 

To reduce this difficulty, unified modeling 
approaches have been proposed by many 

researchers. These schemes have proved to be 

successful in obtaining several existing SRGM by 

following single methodology and thus provide an 

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 521 Issue 4, Volume 8, April 2009



                                                          

 

 

insightful investigation for the study of general 
models without making many assumptions. 

The work in this area started as early as in 

1980s with Shantikumar [19] proposing a 
Generalized birth process model. Gokhale and 

Trivedi [6] used Testing coverage function to 

present a unified framework and showed how 

NHPP based models can be represented by 

probability distribution functions of fault–detection 

times. Dohi et al. [3] proposed a unification method 
for NHPP models describing test input and 

program path searching times stochastically by an 

infinite server queuing theory. Inoue [7] applied 
infinite server queuing theory to the basic 

assumptions of delayed S-shaped SRGM [22] i.e. 

fault correction phenomenon consists of successive 
failure observation and detection/correction 

processes and obtained several NHPP models 

describing fault correction as a two stage process.  

Another unification methodology is based on a 

systematic study of fault detection process (FDP) 

and fault correction process (FCP) where FCPs are 

described by detection process with time delay. The 

idea of modeling FCP as a separate process 

following the FDP was first used by Schneidewind 
[18]. More general treatment of this concept is due 

to Xie et al [20,21] who suggested modeling of 

fault detection process as a NHPP based SRGM 

followed by fault correction process as a delayed 

detection process with random time lag. The recent 

unification scheme (due to Kapur et al [11]) is 

based on cumulative distribution function for the 

detection/correction times and incorporates the 

concept of change point in fault detection rate. 

These unification schemes predict the fault 
content and reliability of the software with respect 

to the calendar time and do not consider the 

consumption pattern of resources such as computer 
time, manpower and number of executed test cases 

etc. More realistic unifying techniques can result if 

the reliability growth process is related to the 

amount of expended testing efforts. In this paper, 

we propose a generalized framework for deriving 

several existing as well as new testing effort 

dependent software reliability growth models with 

the possibility of imperfect debugging and error 

generation. 
In practical software development scenario, As 

soon as a failure is observed, the efforts are made 

to correct the cause of the failure. It is quite 
possible that the testing team may not be able to 

remove/correct fault completely and the original 

fault may remain leading to a phenomenon known 
as imperfect debugging, or replaced by another 

fault resulting in error generation. In case of 
imperfect debugging the fault content of the 

software is not changed, but because of incomplete 

removal, the original detected fault is not corrected 
perfectly. But in case of error generation, the total 

fault content increases as the testing progresses 

because new faults are introduced in the system 

while removing the old original faults. 

It was Goel [4] who first introduced the concept 

of imperfect debugging. Model due to Obha and 
Chou [12] is an error generation model applied on 

G-O model and has been also named as Imperfect 

debugging model.  Kapur and Garg [10] introduced 
the imperfect debugging in Goel and Okumoto [5]. 

They assumed that the FDR per remaining faults is 

reduced due to imperfect debugging. Thus the 
number of failures observed/detected by time 

infinity is more than the initial fault content. Pham 

[15] developed an SRGM for multiple failure types 

incorporating error generation. Recently, Kapur et 

al. [9] proposed a flexible SRGM with imperfect 

debugging and error generation using a logistic 

function for fault detection rate which reflects the 

efficiency of the testing/removal team. 

In this paper, we present a unified framework 
for software reliability growth modeling with 

respect to testing effort expenditure and incorporate 

the concept of imperfect debugging and error 

generation. This unified scheme is based on 

probability distribution functions. It is also shown 

that previously reported non-homogeneous Poisson 

process (NHPP) based SRGMs with imperfect 

debugging and error generation are special cases of 

the proposed framework. From this approach, we 

can not only obtain existing models but also 
develop some new NHPP models. The proposed 

models are formulated for the case when there is a 

time differentiation between failure observation / 
detection and fault removal/correction processes. 

Here we have used different standard probability 

distribution functions for representing failure 

observation and fault correction times. These 

distribution functions have been discussed briefly 

to demonstrate their utility and applicability for 

representing these random times. 

The existing and new models derived here have 

been validated and evaluated on two actual 
software failure data sets. Non-linear regression 

based on least square method has been used for 

parameter estimation and MSE (mean squared 
error) and R2 (coefficient of multiple 

determination) has been used as the performance 

comparison criteria. For faster and accurate 
calculations, the statistical package SPSS has been 
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utilized for the purpose. The goodness of fit curves 
have been drawn to illustrate the fitting of the 

models to the data graphically.  

Rest of this paper is organized as follows: 
Section 2 mentions the basic assumptions made 

followed by the model development under 

imperfect debugging and error generation. This 

section describes the unified framework for testing 

effort dependent software reliability growth models 

by considering time differentiation between failure 
observation/detection and fault removal/correction 

processes. In section 3 we derive many existing and 

new software reliability growth models by using 
different probability distribution functions. Section 

4 shows numerical examples for the proposed 

models based on two real software failure data sets. 
Finally, conclusions are drawn in section 5.  

 

Notations 
m(Wt)  Mean value function (MVF) or 

the expected number of faults 
corrected by time t. 

a Expected number of faults lying 

dormant in the software when 

the testing starts i.e at t=0. 

Wt  Amount of testing effort 

expended by time t. 

a(Wt) Total fault content of software 

dependent on testing effort 

expended 

λ(Wt)  Intensity function for fault 
correction process (FCP) or fault 

correction rate per unit time. 

G(Wt), F(Wt) 

 

Testing effort dependent 

probability distribution function 
for failure observation and fault 

correction Times 

g(Wt), f(Wt) 

 

 

Testing effort dependent 

probability density function for 

failure observation and fault 

correction times 

* Convolution. 

⊗  Steiltjes convolution. 

 
 

2 Unified Framework for Modeling 

Reliability Growth with Time 

Differentiation between Failure 

Observation/Detection and Fault 

Removal/Correction 
 

2.1 Basic Assumptions 
The model is based on the following assumptions: 
1. Software system is subject to failure during 

execution caused by faults remaining in the 

system. 
 

2. The number of faults detected at any time 

instant is proportional to the remaining number 

of faults in the software. Each time a failure is 

observed, immediate correction effort starts 

and the following may occur: 

(a) Fault content is reduced by one with 

probability (p). 
 

(b) Fault content remains unchanged with 

probability (1-p).  
 

3. During the fault correction process, whether the 

fault is removed successfully or not, new faults 

are generated with a constant probability α. 
 

4. The Fault correction times are i.i.d. random 
variables with probability distribution function    

∫=
tW

0

t )()WF( dxxf  

where F(Wt) is testing effort dependent 
distribution function. 
 

5. The fault correction process is modeled by 

NHPP. 
 

6. The initial number of failure observed in the 

software system at t=0 is a Poisson random 

variable with mean of a. 

 
2.2 Model Development 
Let the counting processes {X(Wt), t≥0} and 

{N(Wt), t≥0} represent the cumulative number of 
failures observed and faults corrected  up to time t 

respectively and let  the test begun at time t=0.  

Then the distribution of N(Wt) is given by  
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∞
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Here it can be noted that the conditional probability 
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Here it can be noted that 

[ ] ( )( ))(1exp
!)(

))(1(
0 tj

nj

t WFa
nj

WFa
−=

−
−∑∞

=

−

 

From above we obtain  
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Hence we can conclude that the fault correction 
process is poison with mean value function (MVF) 

as given by:  

                [ ] )()()( ttt WFaWNEWm ==               (4) 

 
As specified before, here F(Wt) is the testing 

effort dependent probability distribution function 

for fault correction times. It may be noted that 
F(Wt) is so defined that it satisfies all the properties 

of probability distribution functions. 
 

1. At t=0, Wt=0 and F(Wt). In this paper, we have 

used three types of testing effort function 

namely Exponential, Rayleigh and Weibull 

type. All these functions satisfy the property 

that at t=0, Wt=0. It can be verified from their 

expressions, discussed in detail in appendix at 

the end of the paper. 
 

2. For t>0, Wt>0 and F(Wt)>0. In this paper we 

have assumed F(Wt) to be either Exponential, 
Gamma, Weibull or Normal  type. As t 

increases, Wt also increases indicating 

monotonically increasing nature of F(Wt). 
Similarly the continuity of F(Wt) can also be 

explained. 
 

3. As testing continues for an infinitely large 

time, i.e., t→∞, Wt→W, the corresponding 

value of distribution function F(Wt) is F(W). 

HereW is very large positive number 

representing the upper bound on the 

availability of the amount of testing resources 

available. Therefore, F(W) can be assumed to 

be of order 1. 

From Equation (4), the instantaneous failure 
intensity function λ(Wt) is given by: 

( )tt WaFW ')( =λ  

Or we can write  

[ ] ( )
( )

'

( ) ( )
1

t
t t

t t

dm
F Wdt

W a m W
dW F W

dt

λ = = −
−       (5) 

Let us define   

( )
( )

'

( )
1

t
t

t

F W
s W

F W
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Here s(Wt) represents hazard rate function or 
failure occurrence rate per remaining fault of the 

software, or the rate at which the individual faults 

manifest themselves as failures during testing or 
hazard rate function. The expression of hazard rate 

function s(Wt) in terms of probability distribution 

function gives the directions for incorporating the 

case of time differentiation between the stages of 

failure observation and fault correction. 

 

2.3 Proposed Testing Effort Dependent 

Modeling 
Let us consider the case when there is a time delay 
between the observation of the failure and the 

correction of the underlying fault. This time delay 

can be due to various factors e.g. severity / 

complexity of the faults, change in defect density, 

skill of the testing team etc.  Then FCP is no longer 

a one-stage process. The correction may be a two / 

three stage process namely failure observation, 

fault detection followed by the fault 

removal/correction. This division of fault 
correction into different processes defines the 

complexity of faults present in software. More the 

delay in removal/correction of a fault on its 
observation/detection, more complex is the fault. In 

that case, Equation (5) can be modified as: 

     
( )( )
( ) ( )

[ ]
*

( ) ( )
1

t
t t

t t

dm
f g Wdt

W a m W
dW F G W

dt

λ = = −
− ⊗

    (6) 

or,                [ ])()()( ttt WmaWhW −=λ  

where 
( )( )
( )( )t

t

t
WGF

Wgf
Wh

⊗−
=

1

*
)(  is the failure 

observation/detection-fault removal/correction rate. 

Upon solving we get: 

                        ( ) ( )( )t tm W a F G W= ⊗                  (7) 

By selecting suitable probability distribution 
functions, we can derive MVF for several existing 

and new Finite failure count models. This equation 

represents two stage fault correction under perfect 

debugging conditions. 

 

Now let us consider the case when faults can be 

introduced during the debugging phase with a 

constant fault introduction rate α. Therefore, the 

fault content rate function a(Wt) is a linear function 
of the expected number of faults detected by time t. 

That is, 

)()( tt WmaWa α+=  
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Now incorporating imperfect debugging and 
error generation in proposed modeling, we have 

( ) ( )
( ) ( )

[ ]
*

( ) ( ) ( )
1

t
t t t

t t

dm
f g Wdt

W p a m W m W
dW F G W

dt

λ α= = + −
− ⊗

                 (8) 

where p is the probability of perfect debugging.  

 

Solving Equation (8) with initial condition that 

at t=0, m(0)=0 and W0=0, we get: 

( )
( )

( ) ( )[ ]α

α
−⊗−−

−
= 1

))((11
1

p

tt WGF
a

Wm   (9) 

Here If p=1 and α=0, i.e. perfect debugging, 

Equation (9) is nothing but Equation (7). 
 

The mean value functions m(Wt) for various 
models can be derived by using different types of 

distribution functions F(Wt) and G(Wt). 

 

2.4   Particular Cases  
Here if we define failure observation times 

distribution, i.e., G(Wt) is unit function, then 

Equation (7) is same as the Equation (4) and 

Equation (9) becomes 

( )[ ])1(
)(11

1
)(

α

α
−−−

−
= p

tt WF
a

Wm         (10) 

This equation defines the removal process as 

one stage process where no time is lost between the 

failure observation and its removal. This case has 

been discussed in detail in [1]. 

 

3 Derivation of Existing and New SRGM  
 

3.1 Probability Distribution Functions for Modeling Detection/Correction Times 
In this paper we have used the following probability distributions functions for random failure observation / 

detection and correction times. 
.  

 

Distribution Description / Application 
 

Exponential  This is the most simple and widely used distribution in reliability engineering 

modeling because it has a constant rate. It indicates the uniform distribution of faults in 
the software code where each and every fault has same probability for its removal.  

Though in most of the software testing projects, for sake of simplicity, the removal 

times are assumed to follow exponential distribution, but to achieve a more flexible 
modeling of removal times, we can use Weibull or Gamma distribution. Both of these 

distributions are generalization of Exponential distribution only and have very similar 

shapes. 
 

Weibull It can represent different types of curves depending on the values of its shape 

parameter and hence extremely flexible. It is very appropriate for representing the 

processes with fluctuating rate i.e. increasing /decreasing rates.  
 

Gamma / Erlang Gamma and Erlang distributions are extensions of Exponential distribution where the 

fault removal consists of multiple steps e.g. generation of failure report, its analysis 
and correction time followed by verification and validation.  
 

Normal 

 

During testing, there are numerous factors, which affect the fault correction process. 

These factors can be internal e.g. defect density, complexity of the faults, the internal 

structure of the software or the factors can be external and come from the testing 
environment itself e.g. design of the test cases, skill of the testers / test case designers, 

testing effort availability/consumption. etc. This two-parameter distribution can 

describe the correction times quite well for the cases where correction time depends on 

multiple factors. 
 

 
By combining above-mentioned distributions in our proposed UM approach; we can explain a number of 

existing SRGM formulated for different T&D scenario. In the next section we discuss how to obtain MVF of 

the various existing SRGM and propose few new models also. 
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3.2 MVF for Various New and Existing Models 
The mean value functions m(Wt) corresponding to different forms of distribution functions F(Wt) and G(Wt) are 
summarized in Table I. 
 

Table I 

Model F(Wt)  G(Wt) m(Wt) 

 

SRGM-1 

 
tW ~ )exp(b  1( )tW  [ ]tWbp

e
a )1(

1
1

α

α
−−−

−
 

SRGM-2 tW ~ )exp(b  tW ~ )exp(b  ( ) (1 )
1 (1 )

1

p
bWt

t
a

bW e
α

α

−− 
− + 

−  
 

SRGM-3 ~ 1exp( )tW b  ~ 2exp( )tW b  ( )
( )





















−
−

−
−

−

−−

α

α

1

21

21

12
1

1
1

p

tbtb
ebeb

bb
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SRGM-4 tW ~Erlang-2 (b) tW ~ )exp(b  

(1 )
2 2

1 1
1 2

p

bWt t
t

b Wa
bW e

α

α

−
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SRGM-5 
tW   ~ Wei(b,k) 

(Weibull 

Distribution) 

1( )tW  [ ]k
tWbp

e
a )1(

1
1

α

α
−−−

−
 

SRGM-6 
tW  ~ N(µ,σ

2
) 

(Normal 

Distribution) 

1( )tW  ( )( )[ ])1(
,,11

1

ασµφ
α

−−−
−

p

tW
a

 

SRGM-7 tW  ~ N(µ,σ
2
) tW ~ )exp(b  

( )
( )

( )
2

(1 )

2 2

1 , ,

1
1

, ,

p

b
bt b

t
a

e t b

α

σ
µ

ϕ µ σ

α
ϕ µ σ σ

−

 
 − + +
 
 

  − 
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SRGM-8 tW ~ ),( 11 βαγ  tW ~ )exp(b  

( )

( )

( )

1

1

1 1

1
1

11

1 , ,

1
, ,1

11

p

bt

t
a

e
t

bb

α

α

α β

β
αα

ββ

−

−

  − Γ 
  
 −   

+ Γ−    −−     

 

 
4 Model Validation, Comparison Criteria and Data Analyses 
 

4.1   Model Validation 
To illustrate the estimation procedure and application of the SRGM (existing as well as proposed) we have 

carried out the data analysis of the following two real software data sets. 
  
 

 

Data set  Software Project / Program Description  
 

DS-1 
The first data set (DS-1) had been collected during 35 months of testing a radar system of 
size 124 KLOC and 1301 faults were detected during testing [2]. 
 

DS-1I 

The second data set (DS-2) had been collected during 19 weeks of testing a real time 

command and control system of size 1317 KLOC and 328 faults were detected during 

testing [14]. 
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4.2 Comparison Criteria for SRGM 
The performance of SRGM are judged by their 
ability to fit the past software fault data (goodness 

of fit) and predicting the future behavior of the 

fault. 

 

Goodness of Fit criteria 
The term goodness of fit is used in two different 

contexts. In one context, it denotes the question if a 

sample of data came from a population with a 

specific distribution. In another context, it denotes 
the question of “How good does a mathematical 

model (for example a linear regression model) fit to 

the data”?  
 

a. The Mean Square-Error (MSE):  

The model under comparison is used to simulate 

the fault data, the difference between the expected 

values, )(ˆ itm and the observed data yi is measured 

by MSE as follows.  

∑
=

−
=

k

i

ii

k

ytm
MSE

1

2))(ˆ(  

where k is the number of observations. The lower 

MSE indicates less fitting error, thus better 

goodness of fit [10]. 

 

b. Coefficient of Multiple Determination (R
2
):  

We define this coefficient as the ratio of the sum of 

squares resulting from the trend model to that from 

constant model subtracted from 1.  

SScorrected

SS residual
1 2 −=R  

R2 measures the percentage of the total variation 

about the mean accounted for the fitted curve. It 
ranges in value from 0 to 1. Small values indicate 

that the model does not fit the data well. The larger 

R
2
, the better the model explains the variation in 

the data [10].  

 

c. Bias: 

The difference between the observation and 

prediction of number of failures at any instant of 

time i is known as PEi.(prediction error). The 
average of PEs is known as bias. Lower the value 

of Bias better is the goodness of fit [17]. 

 

d. Variation: 

The standard deviation of prediction error is known 

as variation. 

( ) ( )∑ −−= 2

1
1 BiasPE

N
Variation i

 

Lower the value of Variation better is the 
goodness of fit [17]. 

 

e. Root Mean Square Prediction Error: 
It is a measure of closeness with which a model 

predicts the observation. 

( )22 VariationBiasRMSPE +=  

Lower the value of Root Mean Square 

Prediction Error better is the goodness of fit [17]. 

 
In other words, we evaluate the performance of 

the models under comparison using MSE, R
2
, Bias, 

Variation, and RMSPE metrics. For MSE, Bias, 

Variation, and RMSPE, the smaller the metric 

value the better the model fits relative to other 

models run on the same data set. For R
2
, the larger 

the metric value the better. 

                               
4.3 Data Analyses 
The SRGM with mean value function m(t) given in 

Table I are estimated for finding their unknown 
parameters. For testing effort estimation we have 

worked out results on all three effort functions 

namely Exponential, Rayleigh and Weibull. But for 

model parameter estimation we have used Weibull 

function as it gives best results as compared to 

other two effort functions. The estimated values of 

testing effort function parameters are given in 

Tables II and III for DS-1 and DS-2 respectively.  
 

For DS-1 

The parameter estimation and comparison criteria 
results for DS-1 of all the models under 

consideration can be viewed through Table IV and 

Table V. The fitting of the models to DS-1 is 

graphically illustrated in Fig. 1.1 and Fig.1.2. 

SRGM-5 shows a poor fitting to the actual values 

of the real time data set while all other models fit 

the data excellently well. 

 

For DS-2 
The parameter estimation and comparison criteria 

results for DS-2 of all the models under 

consideration can be viewed through Table VI and 

Table VII. The fitting of the models to DS-2 is 

graphically illustrated in Fig.2.1 and Fig.2.2. 

SRGM-4 shows a poor fitting to the actual values 

of the real time data set while all other models fit 

the data quite well. 
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Tables: Parameters Estimation and Comparison Criteria 

 
Table II: Estimation of Testing Effort Function Parameters for DS-I 

Parameter Estimation Testing Effort 

Function W   v l 

Exponential 1030421 .0000461 - 

Rayleigh 2873 .00173 - 

Weibull 2669 .0007729 2.07 

 
Table III: Estimation of Testing Effort Function Parameters for DS-II 

Parameter Estimation Testing Effort 

Function W  v  l  

Exponential 8544 .000288 - 

Rayleigh 49 013681 - 

Weibull 799 .002328 1.11 

 
Table IV: Parameter Estimates for DS-1 

 

 
 

 

 

 

 

 

 

 

 

Table V:  Model Comparison Results for DS-1 
 

Models R
2 

MSE BIAS VARAITION RMSPE 

SRGM-1 .99470 1121 -7.59343 33.09411 33.95409 

SRGM-2 .99490 1085 -5.19371 33.01314 33.41919 

SRGM-3 .99473 1121 -7.59343 33.09411 33.95409 

SRGM-4 .99482 1102 -3.95571 33.45488 33.68793 

SRGM-5 .97470 5387 17.54 72.31 74.407 

SRGM-6 .99684 672 1.63 26.25 26.300 

SRGM-7 .99471 1127 -0.28057 34.07326 34.07442 

SRGM-8 .99470 1129 -2.19771 34.02571 34.09661 

 
Table VI: Parameter Estimates for DS-2 

 

 

 

 

 

 

 

 

 
 

 

 

 

Models a b/b1 b2/k p α µ σ α1 β1 

SRGM-1 1193 .0104 - .1362 .2279 - - - - 

SRGM-2 1484 .0956 - .0131 .0025 - - - - 

SRGM-3 1357 .0447 .0453 .0330 .0676 - - - - 

SRGM-4 1484 .3779 - .0032 .0147 - - - - 

SRGM-5 1446 .0991 .5718 .1327 .9741 - - - - 

SRGM-6 1252 - - .1118 .0147 1.242 181.34 - - 

SRGM-7 1522 .2008 - .0055 .0147 .2147 .1245 - - 

SRGM-8 1435 .0164 - .0733 .0828 - - .2304 .0136 

Models a b/b1 b2/k p α  µ σ α1 β1 

SRGM-1 332 .1647 - .2026 .4111 - - - - 

SRGM-2 406 .9536 - .0364 .1147 - - - - 

SRGM-3 379 .9853 .3818 .0856 .2368 - - - - 

SRGM-4 332 .8958 - .0592 .1824 - - - - 

SRGM-5 427 .8441 .2067 .6478 - - - - 

SRGM-6 318 - - .1945 .0741 2.842 8.027 - - 

SRGM-7 367 .4368 - .0721 .3158 .4535 .2578 - - 

SRGM-8 418 .1392 - .1896 .6475 - - .0417 .0293 
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Table VII: Model Comparison Results for DS-2 

 

 

 

 

 

 

 

 

 

 

 

Figures: Goodness of Fit Curves 
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   Figure.1.1         Figure.1.2 
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   Figure.2.1         Figure.2.2 

Models R
2 

MSE BIAS VARAITION RMSPE 

SRGM-1 .98867 116 0.563 11.095 11.109 

SRGM-2 .98871 122 -1.365 11.262 11.345 

SRGM-3 .98862 138 -2.043 11.90 12.074 

SRGM-4 .98458 159 -2.66 12.67 12.95 

SRGM-5 .98487 156 1.42 12.76 12.83 

SRGM-6 .99196 82 0.21 9.35 9.36 

SRGM-7 .98901 92 0.047 9.85 9.855 

SRGM-8 .99081 94 0.238 10.00 10.01 
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5  Conclusion 
In this paper, a unified framework for testing effort 
dependent software reliability growth models has 

been discussed under the assumption that failure 

observation/detection has time difference to the 

fault correction process.  More realistic software 

testing scenario has been modeled by incorporating 

the possibility of two types of imperfect debugging 

i.e. imperfect debugging and error generation. The 

framework presented here proves to be excellent 

for deriving a wide variety of effort dependent 
models by using different probability distribution 

functions. The technique is simple and presents a 

unique methodology for developing many new as 
well as existing models for different design 

environment. The scope for future research in this 

area lies for the case when reliability growth is 

studied with respect to number of test-cases 

executed i.e. discrete time unified modeling 

framework. In this paper we have used standard 

distributions e.g. Exponential, Weibull, Erlang k-

type, Normal and Gamma for correction times. 

Their validity and accuracy have been carried out 
on two real software failure datasets. The results 

obtained are quite encouraging as can be viewed 

through the numerical illustrations shown in tables 
obtained after the parameter estimation.  In future 

work the possibility of including change point or 

the modeling using stochastic differential equations 
can be worked out. The concept of unification 

provides an area of interesting study which can 

ease out the problem of model selection for the 

software developer and thus make these techniques 

more accessible and applicable. 
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Appendix  
 

Description of Testing Effort function 
The testing resources spent during testing of any 

software basically, include manpower used for fault 

detection/removal and CPU time spent in executing 

software under test. Greater the amount of testing 

effort faster is the testing process. The testing effort 

(resources) that govern the pace of testing for 

almost all the software projects are [13]: 

1. Manpower  

2. Computer time.      
The key function of manpower engaged in 

software testing is to design and run test cases and 

compare the test results with desired specifications. 
Any departure from the specifications is termed as 

a failure. On a failure the fault causing it is 

identified and then removed by failure correction 

personnel. During testing continuous monitoring is 

done to analyze the progress of testing and quality 

achieved. The computer facilities represent the 

computer time, which is necessary for failure 

identification and correction.  

The Functions which have been used in this 

paper to explain the testing effort are- Exponential, 
Rayleigh and Weibull. 

They can be derived from the assumption that, 

"The testing effort rate is proportional to the testing 

resources available". 

( )t
t

d W
v t W W

d t
 = −   

where ν(t) is the time dependent rate at which 

testing resources are consumed, with respect to 
remaining available resources.  

For solving this differential equation, we use 

initial condition that at  
 

 

Case 1: When ν(t)=ν, a constant, we get 

Exponential function:   

( )1 v t
tW W e −= −  

 

Case 2:  If ν(t)= ν.t, we get Rayleigh type curve: 

2 / 21 v t
tW W e−

 
= − 

 
 

 

Case 3:  If ν(t)=ν.l.tl-1, we get Weibull function: 

1
lv t

tW W e − 
= − 

 
 

To study the testing effort process, one of the 

above functions can be selected. 
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