

Unified Framework for Developing Testing Effort Dependent

Software Reliability Growth Models

P.K. KAPUR
1
, OMAR SHATNAWI

2
, ANU G. AGGARWAL

1
, RAVI KUMAR

1

1
Department of Operational Research, University of Delhi, Delhi 110007, INDIA

2
Department of Computer Science, Al al-Bayt University, Mafraq 25113, JORDAN

 pkkapur1@gmail.com

Abstract: - Several software reliability growth models (SRGMs) have been presented in the literature in the last
three decades. These SRGMs take into account different testing environment depending on size and efficiency

of testing team, type of components and faults, design of test cases, software architecture etc. The plethora of

models makes the model selection an uphill task. Recently, some authors have tried to develop a unifying

approach so as to capture different growth curves, thus easing the model selection process. The work in this

area done so far relates the fault removal process to the testing/execution time and does not consider the

consumption pattern of testing resources such as CPU time, manpower and number of executed test cases.

More realistic modeling techniques can result if the reliability growth process is studied with respect to the
amount of expended testing efforts. In this paper, we propose a unified framework for testing effort dependent

software reliability growth models incorporating imperfect debugging and error generation. The proposed

framework represents the realistic case of time delays between the different stages of fault removal process i.e
Failure Observation/Fault Detection and Fault Removal/Correction processes. The Convolution of probability

distribution functions have been used to characterize time differentiation between these two processes. Several

existing and new effort dependent models have been derived by using different types of distribution functions.
We have also provided data analysis based on the actual software failure data sets for some of the models

discussed and proposed in the paper.

Key-Words: - Software reliability growth model, Testing effort function, Imperfect debugging, Error

generation, Convolution, Probability distribution function.

1 Introduction
The role of software is expanding rapidly in many

aspects of modern life, ranging from critical

infrastructures, such as transportation, defense, and
telecommunication systems, to work-place

automation, productivity enhancement, education,

health-care, publishing, on-line services,
entertainment, etc. Given the potentially costly

impact of software failures for many of these

applications, it is important to have sound methods

of developing reliable software as well as accurate

methods of quantitatively certifying software

reliability. Hence it is crucial that software

reliability engineering techniques should play a

central role in the planning and control of software

development projects. In particular, it is important

to document the times and nature of bug
occurrences, and their correction times, throughout

the design and implementation phases as well as

testing phase. With such data it is possible to

estimate the time at which the software product will

have reached a target level of reliability, or to

devise methods to decrease that time.

A large number of software reliability growth

models (SRGMs), which relate the number of
failures (faults identified/corrected) and execution

time, have been discussed in the literature

[10,13,16,23]. These SRGM assume diverse testing

environment like distinction between failure and

correction processes, learning of the testing

personnel, possibility of imperfect debugging and

fault generation, constant or monotonically

increasing / decreasing fault detection rate (FDR)

or randomness in the growth curve. But no SRGM

can be claimed to be the best as the physical
interpretation of the testing and debugging changes

due to numerous factors e.g., design of test cases,

defect density, skills and efficiency of testing team,
availability of testing resources etc. The plethora of

SRGM makes the model selection a tedious task.

To reduce this difficulty, unified modeling
approaches have been proposed by many

researchers. These schemes have proved to be

successful in obtaining several existing SRGM by

following single methodology and thus provide an

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 521 Issue 4, Volume 8, April 2009

insightful investigation for the study of general
models without making many assumptions.

The work in this area started as early as in

1980s with Shantikumar [19] proposing a
Generalized birth process model. Gokhale and

Trivedi [6] used Testing coverage function to

present a unified framework and showed how

NHPP based models can be represented by

probability distribution functions of fault–detection

times. Dohi et al. [3] proposed a unification method
for NHPP models describing test input and

program path searching times stochastically by an

infinite server queuing theory. Inoue [7] applied
infinite server queuing theory to the basic

assumptions of delayed S-shaped SRGM [22] i.e.

fault correction phenomenon consists of successive
failure observation and detection/correction

processes and obtained several NHPP models

describing fault correction as a two stage process.

Another unification methodology is based on a

systematic study of fault detection process (FDP)

and fault correction process (FCP) where FCPs are

described by detection process with time delay. The

idea of modeling FCP as a separate process

following the FDP was first used by Schneidewind
[18]. More general treatment of this concept is due

to Xie et al [20,21] who suggested modeling of

fault detection process as a NHPP based SRGM

followed by fault correction process as a delayed

detection process with random time lag. The recent

unification scheme (due to Kapur et al [11]) is

based on cumulative distribution function for the

detection/correction times and incorporates the

concept of change point in fault detection rate.

These unification schemes predict the fault
content and reliability of the software with respect

to the calendar time and do not consider the

consumption pattern of resources such as computer
time, manpower and number of executed test cases

etc. More realistic unifying techniques can result if

the reliability growth process is related to the

amount of expended testing efforts. In this paper,

we propose a generalized framework for deriving

several existing as well as new testing effort

dependent software reliability growth models with

the possibility of imperfect debugging and error

generation.
In practical software development scenario, As

soon as a failure is observed, the efforts are made

to correct the cause of the failure. It is quite
possible that the testing team may not be able to

remove/correct fault completely and the original

fault may remain leading to a phenomenon known
as imperfect debugging, or replaced by another

fault resulting in error generation. In case of
imperfect debugging the fault content of the

software is not changed, but because of incomplete

removal, the original detected fault is not corrected
perfectly. But in case of error generation, the total

fault content increases as the testing progresses

because new faults are introduced in the system

while removing the old original faults.

It was Goel [4] who first introduced the concept

of imperfect debugging. Model due to Obha and
Chou [12] is an error generation model applied on

G-O model and has been also named as Imperfect

debugging model. Kapur and Garg [10] introduced
the imperfect debugging in Goel and Okumoto [5].

They assumed that the FDR per remaining faults is

reduced due to imperfect debugging. Thus the
number of failures observed/detected by time

infinity is more than the initial fault content. Pham

[15] developed an SRGM for multiple failure types

incorporating error generation. Recently, Kapur et

al. [9] proposed a flexible SRGM with imperfect

debugging and error generation using a logistic

function for fault detection rate which reflects the

efficiency of the testing/removal team.

In this paper, we present a unified framework
for software reliability growth modeling with

respect to testing effort expenditure and incorporate

the concept of imperfect debugging and error

generation. This unified scheme is based on

probability distribution functions. It is also shown

that previously reported non-homogeneous Poisson

process (NHPP) based SRGMs with imperfect

debugging and error generation are special cases of

the proposed framework. From this approach, we

can not only obtain existing models but also
develop some new NHPP models. The proposed

models are formulated for the case when there is a

time differentiation between failure observation /
detection and fault removal/correction processes.

Here we have used different standard probability

distribution functions for representing failure

observation and fault correction times. These

distribution functions have been discussed briefly

to demonstrate their utility and applicability for

representing these random times.

The existing and new models derived here have

been validated and evaluated on two actual
software failure data sets. Non-linear regression

based on least square method has been used for

parameter estimation and MSE (mean squared
error) and R2 (coefficient of multiple

determination) has been used as the performance

comparison criteria. For faster and accurate
calculations, the statistical package SPSS has been

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 522 Issue 4, Volume 8, April 2009

utilized for the purpose. The goodness of fit curves
have been drawn to illustrate the fitting of the

models to the data graphically.

Rest of this paper is organized as follows:
Section 2 mentions the basic assumptions made

followed by the model development under

imperfect debugging and error generation. This

section describes the unified framework for testing

effort dependent software reliability growth models

by considering time differentiation between failure
observation/detection and fault removal/correction

processes. In section 3 we derive many existing and

new software reliability growth models by using
different probability distribution functions. Section

4 shows numerical examples for the proposed

models based on two real software failure data sets.
Finally, conclusions are drawn in section 5.

Notations
m(Wt) Mean value function (MVF) or

the expected number of faults
corrected by time t.

a Expected number of faults lying

dormant in the software when

the testing starts i.e at t=0.

Wt Amount of testing effort

expended by time t.

a(Wt) Total fault content of software

dependent on testing effort

expended

λ(Wt) Intensity function for fault
correction process (FCP) or fault

correction rate per unit time.

G(Wt), F(Wt)

Testing effort dependent

probability distribution function
for failure observation and fault

correction Times

g(Wt), f(Wt)

Testing effort dependent

probability density function for

failure observation and fault

correction times

* Convolution.

⊗ Steiltjes convolution.

2 Unified Framework for Modeling

Reliability Growth with Time

Differentiation between Failure

Observation/Detection and Fault

Removal/Correction

2.1 Basic Assumptions
The model is based on the following assumptions:
1. Software system is subject to failure during

execution caused by faults remaining in the

system.

2. The number of faults detected at any time

instant is proportional to the remaining number

of faults in the software. Each time a failure is

observed, immediate correction effort starts

and the following may occur:

(a) Fault content is reduced by one with

probability (p).

(b) Fault content remains unchanged with

probability (1-p).

3. During the fault correction process, whether the

fault is removed successfully or not, new faults

are generated with a constant probability α.

4. The Fault correction times are i.i.d. random
variables with probability distribution function

∫=
tW

0

t)()WF(dxxf

where F(Wt) is testing effort dependent
distribution function.

5. The fault correction process is modeled by

NHPP.

6. The initial number of failure observed in the

software system at t=0 is a Poisson random

variable with mean of a.

2.2 Model Development
Let the counting processes {X(Wt), t≥0} and

{N(Wt), t≥0} represent the cumulative number of
failures observed and faults corrected up to time t

respectively and let the test begun at time t=0.

Then the distribution of N(Wt) is given by

})0(Pr{})0(|)(Pr{})(Pr{
0

jXjXnWNnWN
j tt ===== ∑
∞

=

 (1)

Here it can be noted that the conditional probability

Pr{N(Wt)=n | X(0)=j} is zero for j<n. For j≥n it is

given by

 () () nj

t

n

tt WFWF
n

j
jXnWN

−−

===)(1)(})0(|)(Pr{ (2)

Therefore, we have

() ()

[] ()[]
∑

∑

∞

=

−

∞

=

−

−

−
−=

−
−

==

0

0

)!(

)(1
)exp(

!

)(

!

)exp(
)(1)(})(Pr{

j

nj

t

n

t

j

j

nj

t

n

tt

nj

WFa
a

n

WaF

j

aa
WFWF

n

j
nWN

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 523 Issue 4, Volume 8, April 2009

Here it can be noted that

[] ()())(1exp
!)(

))(1(
0 tj

nj

t WFa
nj

WFa
−=

−
−∑∞

=

−

From above we obtain

 () ()
!

)(exp)(
})(Pr{

n

WFaWFa
nWN t

n

t
t

−
== (3)

Hence we can conclude that the fault correction
process is poison with mean value function (MVF)

as given by:

 [])()()(ttt WFaWNEWm == (4)

As specified before, here F(Wt) is the testing

effort dependent probability distribution function

for fault correction times. It may be noted that
F(Wt) is so defined that it satisfies all the properties

of probability distribution functions.

1. At t=0, Wt=0 and F(Wt). In this paper, we have

used three types of testing effort function

namely Exponential, Rayleigh and Weibull

type. All these functions satisfy the property

that at t=0, Wt=0. It can be verified from their

expressions, discussed in detail in appendix at

the end of the paper.

2. For t>0, Wt>0 and F(Wt)>0. In this paper we

have assumed F(Wt) to be either Exponential,
Gamma, Weibull or Normal type. As t

increases, Wt also increases indicating

monotonically increasing nature of F(Wt).
Similarly the continuity of F(Wt) can also be

explained.

3. As testing continues for an infinitely large

time, i.e., t→∞, Wt→W, the corresponding

value of distribution function F(Wt) is F(W).

HereW is very large positive number

representing the upper bound on the

availability of the amount of testing resources

available. Therefore, F(W) can be assumed to

be of order 1.

From Equation (4), the instantaneous failure
intensity function λ(Wt) is given by:

()tt WaFW ')(=λ

Or we can write

[] ()
()

'

() ()
1

t
t t

t t

dm
F Wdt

W a m W
dW F W

dt

λ = = −
− (5)

Let us define

()
()

'

()
1

t
t

t

F W
s W

F W
=

−

Here s(Wt) represents hazard rate function or
failure occurrence rate per remaining fault of the

software, or the rate at which the individual faults

manifest themselves as failures during testing or
hazard rate function. The expression of hazard rate

function s(Wt) in terms of probability distribution

function gives the directions for incorporating the

case of time differentiation between the stages of

failure observation and fault correction.

2.3 Proposed Testing Effort Dependent

Modeling
Let us consider the case when there is a time delay
between the observation of the failure and the

correction of the underlying fault. This time delay

can be due to various factors e.g. severity /

complexity of the faults, change in defect density,

skill of the testing team etc. Then FCP is no longer

a one-stage process. The correction may be a two /

three stage process namely failure observation,

fault detection followed by the fault

removal/correction. This division of fault
correction into different processes defines the

complexity of faults present in software. More the

delay in removal/correction of a fault on its
observation/detection, more complex is the fault. In

that case, Equation (5) can be modified as:

()()
() ()

[]
*

() ()
1

t
t t

t t

dm
f g Wdt

W a m W
dW F G W

dt

λ = = −
− ⊗

 (6)

or, [])()()(ttt WmaWhW −=λ

where
()()
()()t

t

t
WGF

Wgf
Wh

⊗−
=

1

*
)(is the failure

observation/detection-fault removal/correction rate.

Upon solving we get:

 () ()()t tm W a F G W= ⊗ (7)

By selecting suitable probability distribution
functions, we can derive MVF for several existing

and new Finite failure count models. This equation

represents two stage fault correction under perfect

debugging conditions.

Now let us consider the case when faults can be

introduced during the debugging phase with a

constant fault introduction rate α. Therefore, the

fault content rate function a(Wt) is a linear function
of the expected number of faults detected by time t.

That is,

)()(tt WmaWa α+=

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 524 Issue 4, Volume 8, April 2009

Now incorporating imperfect debugging and
error generation in proposed modeling, we have

() ()
() ()

[]
*

() () ()
1

t
t t t

t t

dm
f g Wdt

W p a m W m W
dW F G W

dt

λ α= = + −
− ⊗

 (8)

where p is the probability of perfect debugging.

Solving Equation (8) with initial condition that

at t=0, m(0)=0 and W0=0, we get:

()
()

() ()[]α

α
−⊗−−

−
= 1

))((11
1

p

tt WGF
a

Wm (9)

Here If p=1 and α=0, i.e. perfect debugging,

Equation (9) is nothing but Equation (7).

The mean value functions m(Wt) for various
models can be derived by using different types of

distribution functions F(Wt) and G(Wt).

2.4 Particular Cases
Here if we define failure observation times

distribution, i.e., G(Wt) is unit function, then

Equation (7) is same as the Equation (4) and

Equation (9) becomes

()[])1(
)(11

1
)(

α

α
−−−

−
= p

tt WF
a

Wm (10)

This equation defines the removal process as

one stage process where no time is lost between the

failure observation and its removal. This case has

been discussed in detail in [1].

3 Derivation of Existing and New SRGM

3.1 Probability Distribution Functions for Modeling Detection/Correction Times
In this paper we have used the following probability distributions functions for random failure observation /

detection and correction times.
.

Distribution Description / Application

Exponential This is the most simple and widely used distribution in reliability engineering

modeling because it has a constant rate. It indicates the uniform distribution of faults in
the software code where each and every fault has same probability for its removal.

Though in most of the software testing projects, for sake of simplicity, the removal

times are assumed to follow exponential distribution, but to achieve a more flexible
modeling of removal times, we can use Weibull or Gamma distribution. Both of these

distributions are generalization of Exponential distribution only and have very similar

shapes.

Weibull It can represent different types of curves depending on the values of its shape

parameter and hence extremely flexible. It is very appropriate for representing the

processes with fluctuating rate i.e. increasing /decreasing rates.

Gamma / Erlang Gamma and Erlang distributions are extensions of Exponential distribution where the

fault removal consists of multiple steps e.g. generation of failure report, its analysis
and correction time followed by verification and validation.

Normal

During testing, there are numerous factors, which affect the fault correction process.

These factors can be internal e.g. defect density, complexity of the faults, the internal

structure of the software or the factors can be external and come from the testing
environment itself e.g. design of the test cases, skill of the testers / test case designers,

testing effort availability/consumption. etc. This two-parameter distribution can

describe the correction times quite well for the cases where correction time depends on

multiple factors.

By combining above-mentioned distributions in our proposed UM approach; we can explain a number of

existing SRGM formulated for different T&D scenario. In the next section we discuss how to obtain MVF of

the various existing SRGM and propose few new models also.

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 525 Issue 4, Volume 8, April 2009

3.2 MVF for Various New and Existing Models
The mean value functions m(Wt) corresponding to different forms of distribution functions F(Wt) and G(Wt) are
summarized in Table I.

Table I

Model F(Wt) G(Wt) m(Wt)

SRGM-1

tW ~)exp(b 1()tW []tWbp

e
a)1(

1
1

α

α
−−−

−

SRGM-2 tW ~)exp(b tW ~)exp(b () (1)
1 (1)

1

p
bWt

t
a

bW e
α

α

−−
− +

−

SRGM-3 ~ 1exp()tW b ~ 2exp()tW b ()
()

−
−

−
−

−

−−

α

α

1

21

21

12
1

1
1

p

tbtb
ebeb

bb

a

SRGM-4 tW ~Erlang-2 (b) tW ~)exp(b

(1)
2 2

1 1
1 2

p

bWt t
t

b Wa
bW e

α

α

−
−

 − + + −

SRGM-5
tW ~ Wei(b,k)

(Weibull

Distribution)

1()tW []k
tWbp

e
a)1(

1
1

α

α
−−−

−

SRGM-6
tW ~ N(µ,σ

2
)

(Normal

Distribution)

1()tW ()()[])1(
,,11

1

ασµφ
α

−−−
−

p

tW
a

SRGM-7 tW ~ N(µ,σ
2
) tW ~)exp(b

()
()

()
2

(1)

2 2

1 , ,

1
1

, ,

p

b
bt b

t
a

e t b

α

σ
µ

ϕ µ σ

α
ϕ µ σ σ

−

 − + +

 −

− − + +

SRGM-8 tW ~),(11 βαγ tW ~)exp(b

()

()

()

1

1

1 1

1
1

11

1 , ,

1
, ,1

11

p

bt

t
a

e
t

bb

α

α

α β

β
αα

ββ

−

−

 − Γ

 −

+ Γ− −−

4 Model Validation, Comparison Criteria and Data Analyses

4.1 Model Validation
To illustrate the estimation procedure and application of the SRGM (existing as well as proposed) we have

carried out the data analysis of the following two real software data sets.

Data set Software Project / Program Description

DS-1
The first data set (DS-1) had been collected during 35 months of testing a radar system of
size 124 KLOC and 1301 faults were detected during testing [2].

DS-1I

The second data set (DS-2) had been collected during 19 weeks of testing a real time

command and control system of size 1317 KLOC and 328 faults were detected during

testing [14].

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 526 Issue 4, Volume 8, April 2009

4.2 Comparison Criteria for SRGM
The performance of SRGM are judged by their
ability to fit the past software fault data (goodness

of fit) and predicting the future behavior of the

fault.

Goodness of Fit criteria
The term goodness of fit is used in two different

contexts. In one context, it denotes the question if a

sample of data came from a population with a

specific distribution. In another context, it denotes
the question of “How good does a mathematical

model (for example a linear regression model) fit to

the data”?

a. The Mean Square-Error (MSE):

The model under comparison is used to simulate

the fault data, the difference between the expected

values,)(ˆ itm and the observed data yi is measured

by MSE as follows.

∑
=

−
=

k

i

ii

k

ytm
MSE

1

2))(ˆ(

where k is the number of observations. The lower

MSE indicates less fitting error, thus better

goodness of fit [10].

b. Coefficient of Multiple Determination (R
2
):

We define this coefficient as the ratio of the sum of

squares resulting from the trend model to that from

constant model subtracted from 1.

SScorrected

SS residual
1 2 −=R

R2 measures the percentage of the total variation

about the mean accounted for the fitted curve. It
ranges in value from 0 to 1. Small values indicate

that the model does not fit the data well. The larger

R
2
, the better the model explains the variation in

the data [10].

c. Bias:

The difference between the observation and

prediction of number of failures at any instant of

time i is known as PEi.(prediction error). The
average of PEs is known as bias. Lower the value

of Bias better is the goodness of fit [17].

d. Variation:

The standard deviation of prediction error is known

as variation.

() ()∑ −−= 2

1
1 BiasPE

N
Variation i

Lower the value of Variation better is the
goodness of fit [17].

e. Root Mean Square Prediction Error:
It is a measure of closeness with which a model

predicts the observation.

()22 VariationBiasRMSPE +=

Lower the value of Root Mean Square

Prediction Error better is the goodness of fit [17].

In other words, we evaluate the performance of

the models under comparison using MSE, R
2
, Bias,

Variation, and RMSPE metrics. For MSE, Bias,

Variation, and RMSPE, the smaller the metric

value the better the model fits relative to other

models run on the same data set. For R
2
, the larger

the metric value the better.

4.3 Data Analyses
The SRGM with mean value function m(t) given in

Table I are estimated for finding their unknown
parameters. For testing effort estimation we have

worked out results on all three effort functions

namely Exponential, Rayleigh and Weibull. But for

model parameter estimation we have used Weibull

function as it gives best results as compared to

other two effort functions. The estimated values of

testing effort function parameters are given in

Tables II and III for DS-1 and DS-2 respectively.

For DS-1

The parameter estimation and comparison criteria
results for DS-1 of all the models under

consideration can be viewed through Table IV and

Table V. The fitting of the models to DS-1 is

graphically illustrated in Fig. 1.1 and Fig.1.2.

SRGM-5 shows a poor fitting to the actual values

of the real time data set while all other models fit

the data excellently well.

For DS-2
The parameter estimation and comparison criteria

results for DS-2 of all the models under

consideration can be viewed through Table VI and

Table VII. The fitting of the models to DS-2 is

graphically illustrated in Fig.2.1 and Fig.2.2.

SRGM-4 shows a poor fitting to the actual values

of the real time data set while all other models fit

the data quite well.

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 527 Issue 4, Volume 8, April 2009

Tables: Parameters Estimation and Comparison Criteria

Table II: Estimation of Testing Effort Function Parameters for DS-I

Parameter Estimation Testing Effort

Function W v l

Exponential 1030421 .0000461 -

Rayleigh 2873 .00173 -

Weibull 2669 .0007729 2.07

Table III: Estimation of Testing Effort Function Parameters for DS-II

Parameter Estimation Testing Effort

Function W v l

Exponential 8544 .000288 -

Rayleigh 49 013681 -

Weibull 799 .002328 1.11

Table IV: Parameter Estimates for DS-1

Table V: Model Comparison Results for DS-1

Models R
2

MSE BIAS VARAITION RMSPE

SRGM-1 .99470 1121 -7.59343 33.09411 33.95409

SRGM-2 .99490 1085 -5.19371 33.01314 33.41919

SRGM-3 .99473 1121 -7.59343 33.09411 33.95409

SRGM-4 .99482 1102 -3.95571 33.45488 33.68793

SRGM-5 .97470 5387 17.54 72.31 74.407

SRGM-6 .99684 672 1.63 26.25 26.300

SRGM-7 .99471 1127 -0.28057 34.07326 34.07442

SRGM-8 .99470 1129 -2.19771 34.02571 34.09661

Table VI: Parameter Estimates for DS-2

Models a b/b1 b2/k p α µ σ α1 β1

SRGM-1 1193 .0104 - .1362 .2279 - - - -

SRGM-2 1484 .0956 - .0131 .0025 - - - -

SRGM-3 1357 .0447 .0453 .0330 .0676 - - - -

SRGM-4 1484 .3779 - .0032 .0147 - - - -

SRGM-5 1446 .0991 .5718 .1327 .9741 - - - -

SRGM-6 1252 - - .1118 .0147 1.242 181.34 - -

SRGM-7 1522 .2008 - .0055 .0147 .2147 .1245 - -

SRGM-8 1435 .0164 - .0733 .0828 - - .2304 .0136

Models a b/b1 b2/k p α µ σ α1 β1

SRGM-1 332 .1647 - .2026 .4111 - - - -

SRGM-2 406 .9536 - .0364 .1147 - - - -

SRGM-3 379 .9853 .3818 .0856 .2368 - - - -

SRGM-4 332 .8958 - .0592 .1824 - - - -

SRGM-5 427 .8441 .2067 .6478 - - - -

SRGM-6 318 - - .1945 .0741 2.842 8.027 - -

SRGM-7 367 .4368 - .0721 .3158 .4535 .2578 - -

SRGM-8 418 .1392 - .1896 .6475 - - .0417 .0293

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 528 Issue 4, Volume 8, April 2009

Table VII: Model Comparison Results for DS-2

Figures: Goodness of Fit Curves

Goodness of Fit (DS-I)

0

349

698

1047

1396

0 5 10 15 20 25 30 35

Testing Time (month)

C
u
m

u
la

ti
v
e
 F

a
u
lt
s

Actual Data
SRGM-1
SRGM-2
SRGM-3
SRGM-4

Goodness of Fit (DS-I)

0

337

674

1011

1348

0 5 10 15 20 25 30 35

Testing Time (month)

C
u
m

u
la

ti
v
e
 F

a
u
lt
s

Actual Data
SRGM-5
SRGM-6
SRGM-7
SRGM-8

 Figure.1.1 Figure.1.2

Goodness of Fit (DS-II)

0

70

140

210

280

350

0 4 8 12 16 20

Testing Time (week)

C
u
m

u
la

ti
v
e
 F

a
u
lt
s

Actual Data
SRGM-1
SRGM-2
SRGM-3
SRGM-4

Goodness of Fit (DS-II)

0

70

140

210

280

350

0 4 8 12 16 20

Testing Time (week)

C
u
m

u
la

ti
v
e
 F

a
u
lt
s

Actual Data
SRGM-5
SRGM-6
SRGM-7
SRGM-8

 Figure.2.1 Figure.2.2

Models R
2

MSE BIAS VARAITION RMSPE

SRGM-1 .98867 116 0.563 11.095 11.109

SRGM-2 .98871 122 -1.365 11.262 11.345

SRGM-3 .98862 138 -2.043 11.90 12.074

SRGM-4 .98458 159 -2.66 12.67 12.95

SRGM-5 .98487 156 1.42 12.76 12.83

SRGM-6 .99196 82 0.21 9.35 9.36

SRGM-7 .98901 92 0.047 9.85 9.855

SRGM-8 .99081 94 0.238 10.00 10.01

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 529 Issue 4, Volume 8, April 2009

5 Conclusion
In this paper, a unified framework for testing effort
dependent software reliability growth models has

been discussed under the assumption that failure

observation/detection has time difference to the

fault correction process. More realistic software

testing scenario has been modeled by incorporating

the possibility of two types of imperfect debugging

i.e. imperfect debugging and error generation. The

framework presented here proves to be excellent

for deriving a wide variety of effort dependent
models by using different probability distribution

functions. The technique is simple and presents a

unique methodology for developing many new as
well as existing models for different design

environment. The scope for future research in this

area lies for the case when reliability growth is

studied with respect to number of test-cases

executed i.e. discrete time unified modeling

framework. In this paper we have used standard

distributions e.g. Exponential, Weibull, Erlang k-

type, Normal and Gamma for correction times.

Their validity and accuracy have been carried out
on two real software failure datasets. The results

obtained are quite encouraging as can be viewed

through the numerical illustrations shown in tables
obtained after the parameter estimation. In future

work the possibility of including change point or

the modeling using stochastic differential equations
can be worked out. The concept of unification

provides an area of interesting study which can

ease out the problem of model selection for the

software developer and thus make these techniques

more accessible and applicable.

References:

[1] Aggarwal G Anu, Kumar Ravi and PK

Kapur, A New Approach for Developing
Testing Effort Dependent Software

Reliability Growth Models, In: Proc. of the

3
rd

 National Conference on Computing for
Nation Development (INDIACoM-2009),

New-Delhi, India, 2009, pp.425-432.

[2] Brooks WD and Motley RW, Technical

Report, Rome Air Development Center, New

York, 1980.

[3] Dohi T, Osaki S, and Trivedi KS, An Infinite
Server Queuing Approach for Describing

Software Reliability Growth: Unified

Modeling and Estimation Framework, In:

Proc. of the 11
th
 Asia-Pacific Software

Engineering Conference (APSEC’04), Pusan,

Korea, 2004, pp.110-119.

[4] Goel AL, Software Reliability Models:
Assumptions, Limitations and Applicability,

IEEE Transactions on Software Engineering,

Vol.11, No.21, 1985, pp.1411-1423.
[5] Goel AL and Okumoto K, Time Dependent

Error Detection Rate Model for Software

Reliability and other Performance Measures,

IEEE Transactions on Reliability, Vol.28,

No.3, 1979, pp.206-211.

[6] Gokhale SS, Philip T, Marinos PN and
Trivedi KS, Unification of Finite Failure

Non-Homogeneous Poisson Process Models

through Test Coverage, In: Proc. Int’l
Symposium on Software Reliability

Engineering (ISSRE 96), NY, USA, 1996,

pp. 289-299.
[7] Inoue S, A study on Stochastic Modelling for

Accurate Software Reliability Assessment,

Ph.D. Thesis, Doctoral Program of Graduate

School of Engineering, Tottori University,

Japan, 2006.

 [8] Kapur PK, Aggarwal G Anu and Anand

Sameer, A New Insight into Software

Reliability Growth Modeling, International

Journal of Performability Engineering,
Vol.5, No.3, 2009, pp. 267-274.

[9] Kapur PK, Kumar D, Gupta A and Jha PC,

On How To Model software Reliability

Growth in the Presence Of Imperfect

Debugging and error Generation, In: Proc. of

the 2
nd

 Int’l Conference on Reliability and

Safety Engineering, Chennai, India, 2006,

pp.515-523.

[10] Kapur PK, Garg RB and Kumar S,

Contributions to Hardware and Software
Reliability, World Scientific, 1999.

[11] Kapur PK, Kumar J and Kumar R, A Unified

Modeling Framework Incorporating Change
Point for Measuring Reliability Growth

During Software Testing, OPSEARCH,

Special Issue on Quantitative Assessment of

Software Reliability (Eds. Kapur PK and

Pham H), Vol.45, No.4, 2008, pp.317-334.

[12] Ohba M and Chou XM, Does Imperfect

Debugging Effect Software Reliability

Growth, In: Proc. of 11th Int’l Conference of

Software Engineering, Pittsburgh,
Pennsylvania, USA, 1989, pp.237-244.

[13] Musa JD, Iannino A and Okumoto K,

Software Reliability: Measurement,
Prediction, Applications, McGraw-Hill,

1987.

[14] Ohba M, Software Reliability Analysis
Models, IBM Journal of Research and

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 530 Issue 4, Volume 8, April 2009

Development, Vol.28, No.4, 1984, pp.428-
443.

[15] Pham H and Zhang X, An NHPP Software

Reliability Models and its Comparison,
International Journal of Reliability, Quality

and Safety Engineering, Vol.4, No.3, 1997,

pp.269-282.

[16] Pham H, System Software Reliability,

Reliability Engineering Series, Springer,

2006.
[17] Pillai K and Nair VSS, A Model for Software

Development Effort and Cost Estimation,

IEEE Transactions on Software Engineering,
Vol.23, No.8, 1997, pp.485-497.

[18] Schneidewind NF, Analysis of Error

Processes In Computer Software, Sigplan
Notices, Vol.10, No.6, 1975, pp.337–346.

[19] Shanthikumar JG, A General Software

Reliability Model for Performance

Prediction, Microelectronics Reliability,

Vol.21, No.5, 1981, pp.671–682.

[20] Xie M and Zhao M, The Schneidewind

Software Reliability Model Revisited, In:

Proc. of the 3rd Int’l Symposium on Software

Reliability Engineering, Research Triangle
Park, NC, USA 1992, pp.184–192.

[21] Xie M, QP Hu, Wu YP and Ng SH, A Study

of the Modeling and Analysis of Software

Fault-Detection and Fault-Correction

Processes, Quality and Reliability

Engineering International, Vol.23, No.4,

2007, pp.459-470.

[22] Yamada S, Ohba M and Osaki S, S-shaped

Reliability Growth Modelling for Software

Error Detection, IEEE Transactions on
Reliability, Vol.32, No.5, 1983, pp.475-478.

[23] Shatnawi Omar and Kapur PK, A

Generalized Software Fault Classification
Model, WSEAS Transactions on Computers,

Vol.7, No.9, 2008, pp.1375-1384.

[24] Junhong G, Hongwei L, Xiaozong Y, and

Cheng ZD, A Software Reliability Time

Series Growth Model with Kalman Filter,

WSEAS Transactions on Computers, Vol.5,

No.1, 2006, pp.1-8.

[25] Junhong G, Hongwei L, Xiaozong Y, A

Software Reliability Time Series Growth
Model Transformed from Goel-Okumoto

Model, WSEAS Transactions on Signal

Process, Vol.1, No.1, 2005, pp.39-46.

Appendix

Description of Testing Effort function
The testing resources spent during testing of any

software basically, include manpower used for fault

detection/removal and CPU time spent in executing

software under test. Greater the amount of testing

effort faster is the testing process. The testing effort

(resources) that govern the pace of testing for

almost all the software projects are [13]:

1. Manpower

2. Computer time.
The key function of manpower engaged in

software testing is to design and run test cases and

compare the test results with desired specifications.
Any departure from the specifications is termed as

a failure. On a failure the fault causing it is

identified and then removed by failure correction

personnel. During testing continuous monitoring is

done to analyze the progress of testing and quality

achieved. The computer facilities represent the

computer time, which is necessary for failure

identification and correction.

The Functions which have been used in this

paper to explain the testing effort are- Exponential,
Rayleigh and Weibull.

They can be derived from the assumption that,

"The testing effort rate is proportional to the testing

resources available".

()t
t

d W
v t W W

d t
 = −

where ν(t) is the time dependent rate at which

testing resources are consumed, with respect to
remaining available resources.

For solving this differential equation, we use

initial condition that at

Case 1: When ν(t)=ν, a constant, we get

Exponential function:

()1 v t
tW W e −= −

Case 2: If ν(t)= ν.t, we get Rayleigh type curve:

2 / 21 v t
tW W e−

= −

Case 3: If ν(t)=ν.l.tl-1, we get Weibull function:

1
lv t

tW W e −
= −

To study the testing effort process, one of the

above functions can be selected.

WSEAS TRANSACTIONS on SYSTEMS P. K. Kapur, Omar Shatnawi, Anu G. Aggarwal, Ravi Kumar

ISSN: 1109-2777 531 Issue 4, Volume 8, April 2009

