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Abstract: We propose a new motion management method for lung tumor tracking radiotherapy by using a novel
time series prediction technique. In radiotherapy, the target motion often affects the conformability of the therapeu-
tic dose distribution delivered to thoracic and abdominal tumors, and thus tumor motion monitoring systems have
been developed. Even we can observe tumor motion accurately, however, radiotherapy systems may inherently
have mechanical and computational delays to be compensated for synchronizing dose delivery with the motion.
For solving the delay problem, we develop a novel system to predict complex time series of the lung tumor motion.
An essential core of the system is an adaptive prediction modeling with a phase locking technique by which time-
varying cyclic dynamics is transferred into a time invariant one. Simulation studies demonstrate that the proposed
system can achieve a clinically useful high accuracy and long-term prediction of the average error1.05 ± 0.99
[mm] at1 [sec] ahead prediction.

Key–Words:Time series prediction, adaptive modeling, radiation therapy, lung tumor, and motion management.

1 Introduction

It is important for radiation therapy to give sufficient
dose to tumor and to reduce normal tissue toxicity. By
using image-guided techniques, extracranial stereo-
tactic radiotherapy (ESRT) can achieve a precise dose
delivery in a short time [1] and thus have a good
outcome that is comparable to the performance of
surgery [2]. In addition to this, delivering a highly
conformal dose distribution to a “static” tumor target
in three-dimensional space is largely solved by tech-
niques such as intensity modulated radiation therapy
(IMRT) [3, 4].

In radiation therapy, it is known that the target
motion often affects the conformability of the thera-
peutic dose distribution delivered to thoracic and ab-
dominal tumors. Tumor motions can not only be asso-
ciate with patient’s stochastic movements and system-
atic drifts, but also involve internal movements caused
by such as respiration and cardiac cycles [5].

To take into account such “dynamic” nature of
the internal organ motion during the course of radia-

tion therapy, several techniques have been proposed
and evaluated in clinical use. A simple method is to
increase the planning target volume (PTV) to cover
the possible range of motion of the target [6], but un-
desirably it results in an increased dose to the nor-
mal tissues surrounding the tumor. One of the other
methods to treat the respiratory motion of the lung
tumor is a breath-hold technique [7]. Since the respi-
ration may be dominant over the lung tumor motion,
the tumor can be regarded as a static target by using
such technique to stop the respiration. Geometric gat-
ing method is also this kind of techniques to limit the
motion effect [8, 9, 10, 11]. They are, however, not
desirable techniques because of patient intervention
by the breath-hold or beam interruption by the gating.
In this sense, tumor tracking by moving the radiation
source [12, 13, 14] or the beam defined by multileaf
collimator [15, 16, 17] can be in an ideal direction.

To achieve such tumor tracking, several methods
have been proposed. Among these, direct measure-
ments of a fiducial gold marker of the tumor posi-
tion by fluoroscopy imaging techniques [18, 19, 20,
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Figure 1:An example of X-ray images of the fiducial gold marker implanted into a lung tumor. Three-dimensional
coordinates of the tumor motion can be measured by using the marker’s position.

21, 22], as shown in Fig. 1 for example, are more
promising than indirect ones such as external skin
marker tracking [11, 23, 24] and breath monitoring
techniques [25]. Such tracking systems may involve
mechanical and computational delays to control the
multileaf collimator and for image and time series
processings of the tumor motion. Thus, the time delay
must be compensated by predicting the tumor motion
to accomplish a real-time tracking [5]. The desired
accuracy of the tumor location can be within about
1 [mm] at up to 1 [sec] ahead prediction. This is a
highly accurate condition for the complex dynamics
of the tumor motion.

In this paper, we propose a new system realizing
such highly accurate prediction of lung tumor motion
for tracking radiation therapy. The proposed system
takes into account the complex dynamics by using an
adaptive modeling for the prediction.

The rest of this paper consists of as follows. We
will investigate nature of the motion first, by using
time series analysis techniques in section 2. Then
prediction method will be developed in section 3 by
using results of the analysis. In section 4, predic-
tion accuracy of the proposed system will be evalu-
ated by using real data of tumor motions in which
the performances of the prediction systems consist-
ing of a smoothing prediction model designed by
Holt-Winters seasonal (HWS) method [26] and more
general seasonal ARIMA (SARIMA) model [27] are
compared to a conventional prediction method. Con-

cluding remarks will be given in section 5.

2 Motion of Lung Tumor

Three-dimensional time series of human lung tumor
motion was observed at Hokkaido University Hospi-
tal [28]. An example of the tumor location at superior
segment of right lung, S6, is shown in Fig. 2. A domi-
nant source of the tumor motion is respiration, but the
others such as caused by cardiac motion may also be
included in the time series.

Figure 2:Structure of a human lung.
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Figure 3: Preprocessed time seriesy(t) of the ob-
served tumor marker motion at S6 of the lung.

2.1 Preprocessing (noise reduction) of the
time series

A fiducial gold marker implanted into the lung tu-
mor was used to measure the three-dimensional co-
ordinates of the tumor motion. The spatial resolution
and sampling period were 0.01[mm] and 0.033[sec]
(30[Hz]), respectively. To reduce observational noise
and avoid abnormal data involved in raw data of the
time series, we preprocessed the time series by using
several filters such as the Kalman filter [29] and sta-
tistical filters. An example of the preprocessed time
series

y(t) = [y1(t) y2(t) y3(t)] (1)

t = 1, 2, . . . , 5000, are shown in Fig. 3. Here el-
ements of vectory(t) at time t [step], y1(t), y2(t),
andy3(t) [mm], are the marker’s position of the lat-
eral, cephalocaudal, and anteroposterior directions,
respectively. Note that the time series of the vector
y(t), t = 1, 2, ..., can be obtained in real-time.

For the teaching data of time series prediction,
we further reduced the observational impulse noise
involved in the time seriesy(t), t = 1, 2, ..., in
Eq. (1) by using statistical filters, and then reduced
high frequency noise by using a low pass filter that
deletes unnecessary high frequency components that
are higher than0.1 × fmax [Hz]. Here fmax is the
maximum frequency of the digital Fourier transform
spectrum under the sampling period. The statistics
can be computed by using all data of the time series
for t = 1, 2, . . . , 5000 in Fig. 3. The noise reduced
time seriesy∗(t) = [y∗1(t) y∗2(t) y∗3(t)] are shown in
Fig. 4 and assumed as the real motion of the fiducial

t

y*1 (t)

y*2 y*3

y*1

y*2 (t)

y*3 (t)

Figure 4:The noise reduced time seriesy∗(t) of the
marker motion.

marker of the tumor.

2.2 Cyclic dynamics

There can be cyclic dynamics with approximately90
[steps] periods of respiratory motion involved in the
fiducial marker motion of the lung tumor as seen in
Figs. 3 and 4. Note that the periods of the cyclic
components and rhythmic dynamics can be fluctuated
when the respiratory dynamics are changed. If pa-
tients are in rest, however, respiratory dynamics is al-
most cyclic and thus the dominant dynamics of time
series is also cyclic as seen in Fig. 3.

We calculate the autocorrelation function (ACF),
γ, of the time series for further analysis of the cyclic
dynamics involved in the tumor motion. Fig. 5 shows
γ(t, k) of a sample time series in the cephalocau-
dal direction,[y∗2(t − 150) y∗2(t − 149) · · · y∗2(t +
149) y∗2(t+150)], within a time window (301 steps) as

ç(t; k)

Figure 5:Autocorrelation function,γ(t, k), of y∗2.
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Figure 6:Autocorrelation functions ofY (t).
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Figure 7: Periodssi, i = 1, 2, 3, of Y (t) as func-
tions of timet. It can be seen that periods are slightly
fluctuated aroundsi = 90.

a function of timet [step] and the shiftk [step]. Note
that the first peak of the ACF at a shiftk(≥ 1) corre-
sponds to the dominant period of the cyclic dynamics.
Then from the autocorrelation function analysis, it is
revealed that the dominant periods are approximately
90 [steps] as expected above. Furthermore, the peri-
ods are slightly and smoothly fluctuated and thus they
can be time variant. As shown in Figs. 6 and 7, ACFs
for time series of the other two directions,y∗1 andy∗3,
are almost similar to that ofy∗2.

In the following section, we will build a model
with time variant periods for predicting such fluctu-
ated motion of the lung tumor.

3 Prediction Method

3.1 Concept of prediction algorithm

Fig. 8 shows a tumor motion prediction system pro-
posed in this paper. Let us predict theh-step (h ≥ 1)
ahead fiducial marker’s position of the lung tumor.

*

Figure 8:The proposed prediction system.

The predicted positioñy∗(t + h) of the actual (noise
reduced) tumor positiony∗(t+h) is calculated by us-
ing the real-time preprocessed time series available at
time t

Y (t) = [y(1) y(2) · · ·y(t − 1) y(t)]T (2)

Basic ideas of the prediction algorithm are as fol-
lows. As analyzed in section 2.2, the target time se-
riesy∗(t) may include a complex dynamics with time
variant periods. Thus, far past information involved
in the whole time seriesY (t) is less important or
even can have a bad effect on the prediction accu-
racy. Then, the prediction model can be built based on
the not far past information of the time series. Note
that the current period is one of the most important
piece of information for the prediction because the
cyclic dynamics makes the prediction be precise. In
this sense, the proposed algorithm tries to estimate the
current dominant period as precise as possible by us-
ing a flesh piece of information involved in the current
time series available.

Let us consider the current period vectors∗(t) =
[s∗1(t) s∗2(t) s∗3(t)] of the time seriesy∗(t) =
[y∗1(t) y∗2(t) y∗3(t)] at timet, and denote its estimation
ass(t) = [s1(t) s2(t) s3(t)]. The estimation of thes∗
can be calculated by using the autocorrelation func-
tion analysis of a flesh sample time series with a time
lengthL given asyi(τ), τ = t − L, t − L + 1, . . . , t,
available at timet. To use the important piece of in-
formation included in the flesh sample of the time se-
ries,L can cover time series for more than the current
period in time length,si(t−1) < L, but should not be
too large as mentioned above. Here if the estimated
period is changed,si(t−1) ̸= si(t), then the model of
cyclic dynamics is adapted to the new current period
si(t). The finalh-step ahead predictioñy∗(t+h) can
be calculated based on the adapted model of the new
cyclic dynamicsŶ (t) as shown in Fig. 8.

3.2 Prediction model

As prediction models of the lung tumor motion that
is mainly caused by the respiration with time variant
cyclic periods, we adopt two models of the time series
here. One is Holt-Winters exponential smoothing, a
smoothing model designed by the HWS method, and
the other is a seasonal ARIMA (SARIMA) model.
Note that, however, any other linear or nonlinear
models including neural networks can be incorpo-
rated into the proposed adaptive prediction method.

3.2.1 Holt-Winters exponential smoothing

The HWS method can provide an easy design of the
seasonal model to predict1-step ahead of the time
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series ifthe period of cyclic dynamics is known and
time invariant. The general formulations of the HWS
is given as follows.

ỹ∗i (t + h) = ai(t) + bi(t)h
+ci(t − si(t) + mod (h, si(t))) (3)

ai(t) = α (yi(t) − ci(t))
+(1 − α) (ai(t − 1) + bi(t)) (4)

bi(t) = β (ai(t) − ai(t − 1))
+(1 − β) (bi(t − 1)) (5)

ci(t) = γ (yi(t) − ai(t))
+(1 − γ) (ci(t − si(t))) (6)

where the initial values at timet0(> si(t0)) can be
initialized by

ai(t0) = yi(t0) (7)

bi(t0) =
yi(t0) − yi(t0 − si(t0) + 1)

si(t0)
(8)

ci(t0 − k) = yi(t0 − k) − (yi(t0 − si(t0) + 1)
+ (si(t0) − k) · bi(t0))
· · · k = 0, 1, 2, · · · , si(t0) (9)

In such case, only three smoothing parameters,
implying the ratio of use the predicted data to the pre-
vious actual data for smoothing, may be designed as
values between 0 and 1; 0 implies smoothing by only
the actual data, while 1 implies smoothing by only the
predicted data. The three parameters,0 ≤ α, β, γ ≤
1, are ratios for smooth calculation of the trend level,
the gradient of trend, and cyclic component, respec-
tively.

On the other hand, the easy design restricts free-
dom of the model and thus the prediction accuracy is
limited in the case of complicated time series. Also,
modeling errors may be accumulated for a mid- or
long-term prediction(h ≫ 1) and the prediction will
result in failure with a large error beyond the toler-
ance.

3.2.2 Seasonal ARIMA model

The other model, the general SARIMA model of the
time series,[x(0) x(1) · · · x(t)], with periods [steps]
of cyclic dynamics can be given as follows.

φ(B)Φ(Bs)(1 − B)d(1 − Bs)Dx(t) = θ(B)Θ(Bs)e(t)

(10)

φ(z) = 1 − φ1z − φ2z
2 − · · · − φpz

p (11)

Φ(z) = 1 − Φ1z − φ2z
2 − · · · − φP zP (12)

θ(z) = 1 + θ1z + θ2z
2 + · · · + θqz

q (13)

Θ(z) = 1 + Θ1z + Θ2z
2 + · · · + ΘQzQ (14)

wheree(t) is the Gaussian noise of which average and
variance are0 andσ2, respectively.B is a time delay
operator defined as

Bkx(t) = x(t − k)

The parametersd, D, p, P , q, andQ represent
dimensions of corresponding terms, respectively. Be-
cause of high degree of design parameter freedom of
the SARIMA model, the model can predict compli-
cated dynamics with a high precision. It is often,
however, hard to design such appropriate parameters
of the model for the precise prediction.

To design the SARIMA model, we first make a
compensated time seriesx(t) from the adapted pre-
processed time serieŝy(t) as

x(t) = ŷ(t) − z(t) (15)

wherez(t) = [z1(t) z2(t) z3(t)] is a trend level vector
at timet of the time serieŝy(t) defined by

zi(t) =
1

si(t)

t∑
τ=t−si(t)+1

ŷi(τ) (16)

i = 1, 2, 3. Then, the SARIMA model can be build by
using the compensated time series with a time length
of L given as

X(t) = [x(t − L) x(t − L + 1) · · · x(t)]T (17)

For avoiding the accumulation of the modeling error
at each step, we directly design anh-step ahead pre-
diction model instead of repeatedly use of the 1-step
ahead prediction one. To this end, the following con-
straint can be introduced.

φi = 0 · · · if mod(i, [h/2]) ̸= 0 (18)

where [x] denotes an operator that gives maximum
integer not greater thanx and mod(i, k) gives the re-
mainder on division ofi by k.

4 Results and Discussions

4.1 Adaptive compensation

The estimation of the current dominant periods of
cyclic dynamics was conducted during prediction for
the model adaptation. The estimation results are
shown in Figs. 9 and 10. As seen in these figure, esti-
mated periods as functions of time converge in around
90 after 600 steps. A reason why such long (600)
steps were needed for convergence of the estimated
periods may be due to the limitation of the changes of
the estimated periods given as|si(t) − si(t − 1)| ≤
1, i = 1, 2, 3, with the initial valuessi(0) = 1 to
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Figure 9: Autocorrelation functions of the compen-
sated time serieŝY (t).
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Figure 10:Periodssi, i = 1, 2, 3, of the compensated
time seriesŶ (t) as functions of timet. Compared
to Figs. 6 and 7, the compensated periods are almost
constant after the convergence (t >600).

avoid undesirable oscillation of the estimation by rad-
ical changes of the estimation. This may, however, re-
quire only additional20 [sec] observations before the
actual therapeutic irradiation in clinical use.

On the other hand, compared to Figs. 6 and 7,
the periods of the compensated time series are al-
most constant after the convergence. Fig. 11 shows
superimposition of the time series for each compen-
sated period on the phase axis by using the period
estimated. Compared to the original time series, the
phases (wave shapes) of the compensated time series
for different periods are synchronized with each other.
As is clear from these figures, the proposed compen-
sation is effective for the phase synchronization of the
fluctuated time series.

4.2 Prediction results

We have tested the proposed system using a predic-
tion task in which the preprocessed time seriesY (t)
of fiducial marker’s motions of several lung tumors
are used. To evaluate the performance under the worst
(longest-term) condition required in clinical use, the
maximum length ofh = 30-step (1[sec]) ahead pre-
diction was conducted first.

An example of the resulting time series fort =
3000 to 5000 predicted by the smoothing model de-
signed by the HWS method is shown in Fig. 12. In
this result, the smoothing parameters were experi-
mentally designed asα = 0.01, β = 0.05, and
γ = 0.7, respectively.

On the other hand, for the same target time series,

the prediction result by the adaptive SARIMA model
is shown in Fig. 13. Here, the objective prediction
stepsh = 30 is a mid- or long- term. In this case,
to avoid the overfitting problem for the model design,
we simplified the model asd = D = q = Q = 0,
and experimentally designed as the rest of the dimen-
sional parametersp = 5h andP = 6si(t), respec-
tively. Referential time series predicted by the zero-
order hold model given as̃y∗(t + h) = y(t) are also
shown in Figs. 12 and 13. Note that the parameters of
both models can be optimized by using some criteria
such as Akaike’s Information Criterion (AIC) [30].

As is clear from these figures, it can be concluded
that prediction accuracy of both smoothing and adap-
tive SARIMA models is superior to that of the zero-
order hold model, and the SARIMA model is slightly
further superior to the smoothing model.

To further clarify the effect of the adaptation to
the fluctuated periods, we have compared the normal
SARIMA and the adaptive SARIMA models. For
simplicity, we changed only one parameterP and the
rest of the parameters wered = D = p = q = Q =
0. Then,Φk = 1/P, k = 1, 2, · · · , P .

Table 1 summarizes prediction errors at 1 [sec]
ahead by both SARIMA models with the parameter
P = 1, 2, . . . , 5. First, the results show that the errors
by the adaptive SARIMA model is less than the nor-
mal SARIMA model for all cases ofP = 2, 3, 4, 5. In
other words, the adaptive SARIMA is superior than
the normal one. ForP = 1, there is no difference
between the normal and adaptive SARIMA models
since no compensation is conducted for the time se-
ries for the current period.

Second,P = 2 is the optimal condition for
1 ≤ P ≤ 5. This suggests that there is the opti-
mal length of the time series including a useful piece
of information for the prediction. Less or more length
of the time series can affect badly on the prediction er-
ror as discussed in section 3.1. The conditionP = 2
is generally a reasonable for SARIMA model [31].
Thus, the comparison demonstrates the effect of real-

Table 1: The prediction errors (mean± SD) at 1 [sec]
(=30 steps) ahead by the normal SARIMA and adap-
tive SARIMA with P = 1, 2, · · · , 5.

P Normal SARIMA Adaptive SARIMA

1 1.0954± 0.9984
2 1.0690± 0.9766 1.0497± 0.9947
3 1.2225± 1.1656 1.1175± 1.0242
4 1.4166± 1.3576 1.2201± 1.1166
5 1.6112± 1.4736 1.2884± 1.1954
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Figure 11:Superimposition of wave shapes of time series for each period. Upper and lower columns show wave
shapes of the original time seriesY (t) and the compensated time seriesŶ (t), respectively. All the periods for
Ŷ (t) were compensated tosi = 90 in this case. Red and purple lines indicate the wave shapes of the current and
predicted periods, respectively.
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Figure 12:Comparison of time series between the target (blue dotted lines) and the predictions (red lines) at 1
[sec] (30 steps) ahead by the HWS model.
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Figure 13:Comparison of time series between the target (blue dotted lines) and the predictions (red lines) at 1
[sec] (30 steps) ahead by the proposed system with SARIMA model.

time adaptation of the model according to the esti-
mated time variant period. The best average error and
its standard deviation of the 30-step ahead prediction
were1.05 ± 0.99 [mm], and achieved by the adap-
tive SARIMA model. What should be stressed here is
that this accuracy can be sufficient for clinical use in
which the margin of the dose distribution is about 1
millimeter.

In addition, due to nonlinear nature of the respi-
ratory motion, better performance forshort-term pre-
dictionsby neural network models compared to lin-
ear filters has been reported [32, 33]. Consequently,
much better performance forlong-term predictions
can be expected by using any nonlinear models in-
cluding neural networks [34, 35] and other models
such as presented in [36] with the proposed adapta-
tion algorithm for time variant nature.

To further verify this effect of adaptation for
shorter- and longer-term predictions, we have evalu-
ated average prediction errors for varioush-step (1≤
h ≤ 120) ahead prediction tasks. Fig. 14 shows the
average prediction errors as functions of the predic-
tion intervalh, (1 ≤ h ≤ 120). For a wide range ofh,

(almost all, except for smallh), prediction accuracy of
both the smoothing and SARIMA models was supe-
rior to that of the zero-order hold model as expected.
The prediction error become larger as the prediction

Figure 14:Average errors as functions of the predic-
tion interval1 ≤ h ≤ 120 [steps].
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intervals increase, but the best accuracy was again
achieved by the adaptive SARIMA model. It can be
concluded that prediction accuracy within 1 [mm] by
the adaptive SARIMA model for shorter than 1 [sec]
ahead prediction is a promising result for clinical use.

5 Conclusions

In this paper, we have developed time series predic-
tion system for lung tumor motion tracking radiation
therapy. The precise prediction was achieved by the
proposed technique based on the real-time adaptation
to the time variant period involved in the cyclic dy-
namics of respiration that may be a dominant source
of the tumor motion. It is expected that such precise
prediction will reduce the adverse dosimetric effect of
the tumor motion.

Simulation studies revealed the superior predic-
tion performance of the proposed adaptation models
compared to the conventional zero-order hold model
and that the prediction accuracy may be sufficient
for the clinical use. In addition to this, the fact that
the performance of the proposed adaptive SARIMA
model was further superior to that of the conven-
tional SARIMA suggests the effectiveness of the pro-
posed adaptation technique based on the prediction
with high accuracy.
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