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Abstract: - Demand forecasting and decision making processes are among the key activities which directly affect the 
performance of successful supply chain networks. The variability of the demand information between the stages of the 
supply chains and the increase in this variability as the demand data moves upstream from the customer to consequent 
stages of the supply chain networks is called Bullwhip Effect. As demand pattern varies due to the field of activity and 
architecture of supply chains networks, determining the appropriate forecasting and order decision model for system 
interested in is complicated. This paper analyzes the response of bullwhip effect to a hybrid grey GM (1, 1) forecasting 
and ANFIS based order decision model under demand with relatively medium variation in a two stage supply chain 
network simulation.  
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1   Introduction 
Supply chain networks (ScNs) are multi stage complex 
dynamical systems consist of various involved 
organizations performing different processes and 
activities in each and consequent stages which are 
connected through upstream and downstream linkages to 
produce value in the form of products and services [1, 
2].  
 

 
         Fig.1. A simple multistage ScN 

 
Bethinking of the definition exposes that the 
performance of a successful ScN system directly 
depends on accurate and appropriate demand 
information, as this vital data influences all decision 
making processes of ScN. The information flow in ScN 

consists of cumulative data about costs parameters, 
production activities, inventory systems and levels, 
logistic activities and many other related complex 
processes. But basically; in addition to the architecture, 
system performance of successful ScNs directly depends 
on accurate, constant, on time and appropriate demand 
information flow through the stages of the system 
grounding on the decision making process and estimated 
values obtained from the selected forecasting activities 
and decision making processes performed in each stage.  

The variability of the demand information between 
the stages of ScN and the increase in this variability as 
the demand data moves upstream from the customer to 
the consequent stages is called Bullwhip Effect (BE). 

 

 
        Fig.2. Bullwhip effect in a two stage ScN        

 
This phenomenon triggers several system defects which 
directly influence total performance of ScNs. such as 
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undesirable excess inventory levels, inefficient labor 
force, cost increases, overload errors in production 
activities and etc. [2, 3, 4]. 

Just like many other ScN related research topics, BE 
also has a long research history. The first academic 
research on this topic grounds on to the pioneer 
empirical work of Forrester [5, 6] in which with a simple 
ScN simulation consists of retailer, wholesaler, 
distributor and factory stages, discovered the existence 
of BE as ‘demand amplification’ in ScN systems and 
emphasized on the decision making process in each 
stage of ScN. After arguing about the possible causes, he 
concluded that the decision making process and time 
delays in each phase of ScN and the factory capabilities 
could be the main reasons of the demand amplification, 
as the amount of the demand accrual rate amplifies not 
only by taking account the real demand increases but 
also potential future increases from the retailer to the 
factory (upstream through the chain). Sterman used an 
experimental four-stage ScN role-playing simulation that 
simulates the beer distribution in ScN which successfully 
depicts the notion of system dynamics (i.e., Beer 
Distribution Game) and became world wide teaching 
tool showing the behavior, concept and structure of ScNs 
[7, 8]. The model was so simple but despite to its 
simplicity, it successfully showed the impact of the 
decision process in each echelon on the demand 
variability. Lee et al. [9, 10, 11, 12]; focusing on the 
operational causes of the problem and proving the 
existence by documentary evidences provided from 
several companies from different sectors (such as their 
well-known case P&G), declared four major causes and 
triggers of BE as demand forecast updating, rationing 
game, order batching and price fluctuations. Chen et 
al.[13, 14, 15, 16, 17] studied  the effects of forecasting, 
lead times and information sharing on  BE which is  
quantified as a ratio of demand variances of two 
consequent stages of simple ScN system. They showed 
order variances in the upstream stage will be amplified if 
upstream stage demand decisions are renewed 
systematically using the monitored values of predecessor 
stage orders periodically. And also concluded that, even 
thought the demand data is available for all stages (i.e. 
centralized demand information) in addition to unique 
the forecasting technique and inventory system in each 
stage through whole chain, BE will exist. Gavirneni et 
al. [18], Cachon et al. [19], Dejonckheere et al. [20], 
Sohn et al. [21], Saeed [22] and Sucky [23] are same of 
the other researches who investigated the effects of 
forecasting and information flow on this phenomenon. 

As concluded in many past researches, two major 
minimization tools for handling this undesirable 
phenomenon are i.) appropriate and accurate demand 
forecasting and, ii.) demand/production decision 
processes. Although motivation for the problem is 

specific, finding the adequate forecasting model for the 
demand pattern in many ScNs is snarl [3, 4]. For the 
dynamic and chaotic systems like ScN, where 
information is relatively few and the rate of uncertainties 
are considerably high fuzzy logic(FL) introduced by 
Zadeh [24] and grey system theory introduced by Deng 
[25, 26] best fits for application due to the uncertain and 
vagueness nature of the prediction [27, 28, 29, 30]. But 
building proper fuzzy rules and determining appropriate 
membership functions for the parameters of forecasting 
and decision activities according to the system that will 
be analyzed is; unfortunately, not simple. This paper 
analyses the response of  BE to a hybrid system consists 
of grey GM (1, 1) (GrGM) demand forecasting in 
addition to neuro-fuzzy (more specifically adaptive 
neuro-fuzzy inference systems; ANFIS) decision making 
process in a two stage ScN under demand data with 
relatively medium variation ( 50=µ , 685.8=cσ ). 

The following sections of the paper are organized as 
follow. In section 2, grey system theory, GrGM, 
forecasting model and neuro-fuzzy systems (NFS) are 
explained. In section 3 ScN simulation model is 
introduced. In sections 4 the application of discussed 
forecasting and decision models on ScN is analyzed and 
research findings together are illustrated. And finally in 
section 5 conclusions are presented.  
 
 
2   GrGM, NFS 
 
 
2.1 GrGM  
Grey system theory introduced by Deng [25, 26] is 
pretty much similar to FL in nature thought it’s 
completely crisp. The theory also; like FL, is 
comparatively new. The grey system theory can simply 
be summarized as a methodology that concerns with the 
systems comprising uncertainties and lack of sufficient 
amount of information (like most ScNs); in which, the 
term ‘grey’ indicates the system information that lays 
between the clearly and certainly known ones (the white 
part) and the unknown ones which contains any 
knowledge of the system structure (the black part); so 
that grey systems include partially known and partially 
unknown characteristics [31]. 
 

K n o w n U n k n o w n
P a r t i a l l y  K n o w n

P a r t i a l l y  U n k n o w n

G r e y  S y s t e m  T h e o r y

 
Fig.3. Grey system theory 
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From this point of view, grey system theory similar to 
FL, which does not enforces to set a clear-cut boundary 
between the decision variables and alternatives. Again 
like FL, it has successfully been applied to many fields 
including medical, engineering, control and military 
problems [25, 26, 32].  

Differently from statistical forecasting methods 
which usually needs large past periods data sets to have 
better regularity of variables of random process, grey 
theory uses accumulated generating operation (AGO) to 
obtain regularity via which noise is reduced by 
converting ambiguous original time series data to a 
monotonically increased series[33]. 

The importance of AGO in grey system theory arise 
from its capability of turning unimproved stochastic data 
to useful regulars series and inverse accumulated generic 
operation (IAGO); which is the other important tool of 
grey system theory, transforms this AGO generated 
regulars series to row data sequence. The basic idea of 
the grey model is to construct a regular differential 
equation with the help of AGO which denoted in general 
form as GM (n, m) of where, n denotes the order of 
ordinary differential equation and m denotes the number 
of grey variable defining the order of AGO and IAGO. 
As increases in n and m also increases the computation 
time exponentially causing likely correctness defects, 
most widely use model in grey system theory is GM (1, 
1) which has important advantages those can be 
summarized as the usage for any kind of data 
distribution including small data sets and less 
requirement for computation [4, 33]. The system 
structure of the GrGM forecasting model which utilizes 
past data to establish a grey model to predict future is 
explained as follow [4, 33, 34].  

GrGM model simply aims to obtain internal 
regularity for the available past data that will be used for 
forecasting and transfer the arranged sequence in to a 
differential equation to form grey model. Let 0D show 
on hand data collected from the system as; 
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where n represents the number of data. The generated 
AGO series of 0D ; 1D , then can be denoted as; 
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0

1

1
DD = . If the model is a GM (n, 

m) model and regularity can not be reached with one 
AGO, then operation has to be repeated m times till the 

data set became more regular. 
Composing a differential equation for 1D  to establish 
internal regularity as in 3 the first-order differential 
equation (as 1D  increases monotonically enabling it to 
be approximated by an exponential function having 
dynamics of a first-order differential equation) can be 
given as in (4); 
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where a  and b  denotes the developed coefficient and 
the grey control variable respectively. By setting the 
sampling interval as one unit ( 1=h ), the first derivative 
of 1D  as a discrete time series can be written as follow; 
 

0
1

11
1

11
1

1

1 ++
+ =−=






 −= kkk

kk DDDDD
dk

dD
, 1≥∀  (5) 

 
Setting the second part of the grey model to 1

averageD  
equation (3) can be redesign in a matrix form as follow. 
 

,

1          
.         
.         

1          

1          

.  

.  

1
)(

1
)2(

1
)1(

0

0
3

0
2









=

























−

−

−

=

























b
a

D

D

D

D

D

D

naverage

average

average

n

         (6) 

 
where, 
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After applying least square method values of the 
confidents a and b  can be obtained with the following 
equation, 
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with the corresponding matrices depicted below. 
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where n denotes the number of data set used and 0D

r
is 

the raw sequenced data. 
Using this coefficients a and b  equation (3) can also be 
solved and estimated cumulated value 1

1
ˆ

+kD  and output 

forecast; 0
1

ˆ
+kF , for the period 1+k can be determined 

with the following equations. 
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2.2 ANFIS   
Artificial neural networks (ANNs) are mathematical 
information processing systems which are constituted 
based on the functioning principles human brains in 
which neurons in biological neural systems correspond to 
nodes and synapses correspond to weighted links in ANN 
[35]. As ANNs are computational models constituted of 
many interconnected neurons, the basic processing 
element of the ANNs are neurons. Their way of 
interconnection also affects the ANN structure in addition 
to learning algorithm type, activation functions and 
number of layers. Using logical connections (weighted 
links) neurons in ANNs get the input from adjacent 
neurons with the input strength effected by the weight 
and; using the weighted input broadcasted from the 
adjacent neurons produce an output with the help of an 
activation function and broadcast the activation as an 
input; only one at a time, to other neurons [36]. In the 
input layer neurons receive input that is given to the 
system, contrarily the output layer neurons broadcast the 
ANN output to external environment while neurons in the 
hidden layers act as a black box providing links for the 
relation between the input and output [37, 38]. Due to 
their simple architecture, ability of learning, generalizing, 
adaptation, parallelism and also capability of to be 
implemented to software as well as hardware, ANNs are 
powerful information processing systems that yield 

successful results for many problems and systems in 
extensive fields, which made their usage widespread. 

      
Fig.4. General ANN architecture (feed-forward) 

 
Neuro-fuzzy systems (NFS); which also known as 

hybrid intelligent systems, can simply be defined as the 
combination of two complementary technologies: ANNs 
and FL. This combined system has the abilities of 
deducing knowledge from given rules (which come from 
the ability of fuzzy inference systems (FIS)), learning, 
generalization, adaptation and parallelism (which come 
from the abilities of ANN). So these hybrid systems 
cover the frailty of both FL (i.e., no ability of learning, 
difficulties in parameter selection and building 
appropriate membership function,  etc.) and ANN (i.e., 
black box, difficulties in extracting knowledge, etc.) and 
became a robust technology using both systems powerful 
abilities.     

 

    

A N N F L

N F S

 
          

          Fig.4. NFS  
 
The usage of hybrid NFS is rapidly increasing in many 
areas both civilian and military domain such as process 
controls, design, engineering applications, forecasting, 
modular integrated combat control systems, medical 
diagnosis, production planning and etc. This multilayer 
fuzzy inference integrated networks use neural networks 
to adjust membership functions of the fuzzy systems. 
This structure provides automation for designing and 
adjustment of membership functions improving desired 
output by extracting fuzzy rules from the input data with 
the trainable learning ability of ANNs and also 
overcomes the black box structure (i.e., difficulties of in 
understanding and explaining the way it deducts) of 
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learning process of ANNs. Many studies have been made 
using different architectures of these hybrid systems, 
such as architectures fuzzy logic based neurons [39], 
neuro-fuzzy adaptive models [40] and ANNs with fuzzy 
weights [41].  
    ANFIS is the implementation of FIS to adaptive 
networks for developing fuzzy rules with suitable 
membership functions to have required inputs and 
outputs. An adaptive network is a feed-forward multi-
layer ANN with; partially or completely, adaptive nodes 
in which the outputs are predicated on the parameters of 
the adaptive nodes and the adjustment of parameters due 
to error term is specified by the learning rules (the other 
node type is named as fix node) [42, 43]. Generally 
learning type in ANFIS is hybrid learning. This learning 
model is appropriate for the systems having unsteady 
nature like ScNs. Jang [42] defined this learning type as 
the learning that involves parameter updating after each 
data is given to the system. In this paper ANFIS is used 
as a decision tool (together with GrGM) in every echelon 
to determine the order values to meet estimated demand 
with the selected input values. The model and the values 
are explained in the following section.  
 
3   The Simulation Model  
In the study, a near beer distribution game extended with 
ANFIS decision making process and GrGM forecasting 
model; which is improved from the base beer game of 
Sterman [7, 44] and its revised version of Paik’s [45] 
(that includes inventory/capacity restrictions and specific 
delay functions), is used to simulate a two stage ScN for 
evaluating the impacts of proposed system using MatLab 
as the simulation tool.  

           
 Fig.5. Proposed near beer game  

 
A comparison is made between the base model and 

the proposed model using the same input values for 
relatively medium demand variation, which is 
determined with the demand standard deviations. In this 
study, BE is quantified as a ratio of standard deviations 
of subsequent stages to reflect the amount of variability. 

           
[ ]
[ ]ki

ki
ki Min

Max
BWE

σσ
σσ

,
,

=↔ , 3 ,2=k            (13) 

 
where, σ  denotes the standard deviation of orders 
placed to upstream stage and subscripts 1, 2, 3 denote 
the customer, the retailer and the factory respectively.  

The game begins with the demand orders placed from 
the customer to retailer. Retailer tries to meet the 
demand from its own inventory upon the availability of 
the stocks. If demand exceeds the inventory level, 
retailer place order to wholesaler. Also for maintaining 
appropriate inventory level for the future customer 
demand, the ordering decision of the retailer must also 
comprehend customer demand rate for the upcoming 
periods. And in the same manner the demand and 
distribution processes go on through the ScN system of 
the game till the factory stage where beers produced to 
meet the demand of distributor. So, in each stage except 
factory, the participants of the game receives demand 
orders from downstream stage, tries to meet the demand 
from its own inventory (actual inventory), ships orders 
to downstream stage, receives shipments from upstream 
stage and places orders to upstream stage by taking, 
future demand from downstream stage, desired 
inventory level together with shipment and orders that 
have been placed that have been placed but not received 
yet into consideration. The only difference in factory; 
which is the final stage of the game stage, is that the 
orders placed from the wholesaler are attempt to be met 
from either factory inventory or by production made in 
factory. 

The ordering/production decision process rule in each 
phase of the base model is simple but effective as it 
takes almost all factors reflecting behaviors of ScN [7, 
45]. 

 
[
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Simple exponential smoothing (ES) model is used as a 
crisp forecasting technique for comparison. The 
formulation of ES is as follow; 

 
                                                                                     (15) 
 
where tF  is the forecast value for period t , 1−tD  is 
observation of demand in period 1−t , 1−tF  is the 
calculated forecast value of the previous period 1−t  and 
α  is the smoothing constant; 0 < 1≤α .  
     The total formulation of system structure in each 
stage is as follow [4]; 
 

(14)
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where, OD is the order decision, FW  is the forecast 
value determined from the selected forecasting model, 
INV  and DINV are inventory and desired inventory, 
SA  and SD  are the supply line and desired supply line, 
OB   is the orders backlogged, IO  is the incoming 
orders, OS  and IS  are outgoing and incoming 
shipments, SC  is the safety constant, DL is the total 
delay in stage i  at period t . θ  and β  represents the 
adjustment parameters for inventory and supply line 
respectively. 

The maximum, mean and minimum values of the 
parameters used in the decision rule which have been 
estimated by Sterman [7, 45] are illustrated in the 
following table. 

 
Table 1.Estimated Parameters 

Parameters α  θ  β  

Minimum 0.00 0.00 0.00 

Mean 0.36 0.26 0.34 

Maximum 1.00 0.80 1.05 

 
 

 
       Fig.6. System sturucture of the base model 

 
    Sterman [8] concluded that “anchoring and 
adjustment” (i.e.; decision process of the base model) 
heuristic inconsequent as this heuristic is lack of 
sensibility to delays and repercussions of ScN system or; 
as to generalize, lack of “System Thinking”. For all 
systems used in management determination of the 
appropriate decision making process is crucial. But 
especially in ScN, the importance of ordering or 
production decision is vital as whole ScN system mainly 
depends on these decisions. In this study , the proposed 
model contains an ANFIS based decision process in each 
phase of ScN to determine order quantities (or, the 
quantity of production in factory stage) using the 
forecast values gathered from the selected forecasting 
model (GrGM) together with inventory and pipeline 
information which also are the same input used in the 
base model. For the proposed decision process 5 inputs 
are taken into consideration (including received demand 
data) and Upstream Order Quantity is the output which 

tiiti FWSCDINV  , , x=

i t, t, xDLFWSD ii =
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determines the order quantity of the stage. The output of 
the generated FIS in the proposed model is the quantity 
of orders that will be placed to the upstream phase of the 
ScN. But, for the factory stage, the output represents the 
quantity of production for the current time period t . 

 

 
   Fig.7. FIS structure 
 

After the performed trials of the simulation the hybrid 
method (which is a combination of back propagation and 
least square estimation (the sum of the squared errors 
between the input and output)) is selected and used for 
membership function parameter estimation of FIS [46]. 

The hybrid method optimizes consequent parameter 
with the premise parameters fixed exploiting the least 
square estimation in forward pass and, exploiting the 
gradient in backward pass, adjusts the premise 
parameters corresponding to the fuzzy sets in the input 
domain [47]. The appropriate membership functions for 
the parameters are defined as Gaussian after trails. The 
selected inference system is Sugeno-type which also is a 
must arises from the restrictions of the ANFIS editor 
[46]. 

 

 
Fig.8. F The membership function editor of Matlab (Gaussian) 

 
The output membership functions of the FIS are 
evaluated with the performed trial and constant type is 
chosen.  

The following figure illustrates the GrGM process 
performed in each stage. 

 
 

         Fig.9. GrGM process  
 
4 Application   
For this specific application, number of randomly 
generated training data set ( trainD ) is 200 (periods), 

randomly generated demand data ( setD ) for 100 periods, 
time horizon for the simulation runs are the same as the 
time horizon of demand data. All delay functions 
(delivery, clerical and mailing) are 2 periods. Smoothing 
constant for ES, and the adjustment parameters 
inventory levels and supply lines are taken as 0.5. Safety 
stock time horizon is 5 periods. On hand inventory for 
all stages at the beginning are 100 units and factory 
capacity is 500 units per period. Number of fuzzy rules 
for ANFIS applied model in each stage are both 243. 
Number of epochs are 3500 and 655 for the stages 
respectively.  
The membership function selected for all inputs is 
Gaussian membership function and for output is 
constant. The partition method used is Grid partition. 
Generated and calculated demand values derived from 
the simulations are illustrated in the following figures.  

 
Fig.9. Base model output           
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Fig.10. Hybrid GrGM & ANFIS  model output 

 
 

The response of system are given with standard 
deviation values for customer orders ( cσ ), retailer 
demand ( rσ ) and factory production order ( fσ ) are 
illustrated with Table-2.   
 
 Table-2. Standard deviation values 

                 Model ( 50=µ ) 
 Base & ES GrGM & ANFIS 

cσ  8.685 8.685 

rσ  50.6 17.91 

fσ  72.2 20.25 

 
BE values for the base and proposed models are 
illustrated with the following table. 
 
 Table-3. BE values 

                 Model ( 50=µ ) 
 Base & E GrGM & ANFIS
Retailer 5.816 2.02 
Factory 8.126 2.33 

 
 
Two surface view examples from the hybrid approach; 
one for retailer and one for factory are illustrated with 
figure 11 and 12 respectively for the same inputs. 
 
        
 
 
 
 
 
 
 
 

 
 
 

              
 Fig.11. A surface view example for retailer stage 
 
 
 
 
 

 
 Fig.12. A surface view example for factory stage 

 
 
5 Research Findings and Conclusion 
Ordering decision and forecasting based demand 
variability is a major factor negatively influencing 
stability of ScNs. In this study, a hybrid approach 
consists of ANFIS and GrGM are used together for 
decision and forecasting processes in a simple two 
echelon ScN simulation and the response of BE is 
examined in terms of standard deviations. The simple 
application in Section 4 showed that; by comparing 
results gathered from ES  model and proposed 
application, usage of ANFIS together with GrGM 
forecasting model easily monitored the demand pattern 
and provided remarkable decreases in demand variability 
through the ScN which also result in cost and inventory 
level degreases. Another study; in which other fuzzy 
grey regression model is used together with ANFIS, is 
also made by us and similar results obtained, but those 
results are not illustrated as they are beyond the scope of 
this of paper. 
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    Further researches can be made using fuzzy cost, time 
and also inventory policies for improving proposed 
models applicability complex real ScNs. 
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