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Abstract: - In this paper, we propose a novel angle tracking algorithm, called as FPAT, for tracking multiple 
narrowband targets. The proposed algorithm modifies the algorithm presented by Park, et al. in two ways by 
using the sensor array output vector rather than the sample covariance matrix and by incorporating the extended 
Kalman filter instead of a simple Kalman filter. It also applies the prediction characteristic of Kalman filter to 
prevent the data association problem. The proposed algorithm requires lower computational complexity and also 
improves the tracking performance especially at lower number of snapshots. Combined with the coherent 
signal-subspace (CSS) method, the FPAT algorithm is extended to track the direction-of-arrival angles of 
wideband sources. We also extend the FPAT algorithm to track the range, azimuth, and elevation of each 
narrowband source in 3-D space. Through computer simulations, the effectiveness of each proposed algorithm is 
verified. 
 
Key-Words: - Array signal processing, Angle tracking, Extended Kalman Filter (EKF), Direction of arrival. 
 
1  Introduction 
Multiple targets tracking is often investigated in 
sonar, radar, earthquake exploration, air traffic 
control, remote sensing as well as wireless 
communications. Target angle-tracking methods, 
such as the maximum likelihood method [1], the 
adaptive algorithms [2] and the conjugate gradient 
search algorithm [3], are computationally very 
extensive. Sword [4] proposed a recursive 
angle-tracking method which is computationally 
simple and can avoid the data association problem. 
The algorithm, however, has the following 
disadvantages: (i) Due to recursive approximation 
used in the substitution process, it will produce the 
error propagation problem; (ii) Its general use for 
multiple sources with crossing angles is prohibited 
because of poor performance. Wang and Wee [5] 

proposed a simple source tracking scheme by 
exploiting the fact that the spatial samples on the 
same wave front have equal amplitude and thus 
minimum variance. Nikos et al. [6, 7] proposed a 
multistatic target tracking method based on the 
technique of singular-value decomposition. Marta et 
al. [8] suggested the use of particle filter to track a 
variable number of objects.  

Due to the nature of prediction-correction filtering 
process, Kalman filter (KF) can reduce estimation 
error when applied to angle estimation and tracking, 
as stated in several references, e.g., [9]-[13]. In [9], 
Rao, et al. proposed to estimate angles of targets 
based on maximum likelihood method as the 
measurements in KF, which computationally 
intensive. Besides, the assumption that the signal 
powers of the targets are all different makes the 
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algorithm impractical. Javier and Sylvie [10] 
suggested to estimate angles using the projection 
approximation subspace tracking algorithm with 
deflation (PASTd) [14] and a Newton-type method as 
the measurements in KF. It has lower computational 
load and better tracking performance than the Rao's 
algorithm. Park, et al. [11] modifies Sword's 
algorithm by using predicated angle estimates, 
instead of existing angle estimates, for calculation of 
angle innovations. In order to avoid abnormally large 
angle innovations when the target angles are very 
close, a modified least-squares solution is used. The 
resultant angle innovations are then used in KF to 
update the angle estimates for improving the tracking 
performance. However, tracking performance 
degrades seriously with an increasing number of 
crossing targets. As such, Ryu, et al. [12, 13] 
suggested to obtain the angle innovations of the 
targets from a signal subspace, instead of the sensor 
output covariance matrix, via PASTd algorithm [14]. 
In [15], the neural extended Kalman filter, which is 
an adaptive state estimation routine, was proposed to 
aid in the tracking through maneuvers in 
target-tracking systems.  

All the above algorithms are based on the sample 
covariance matrix or signal subspace made with a 
block of measurement snapshots from a sensor array. 
Some of them require the estimation of target angles 
as the measurement angles in the Kalman filter at 
each time step, resulting in large computational load 
especially when the number of snapshots increases. 
In order to relieve huge computational burden, the 
sensor array output is directly used as the 
measurement data in the extended Kalman filter 
(EKF), rather than the angle estimates are indirectly 
used as the measurement data in the Kalman filter. 
Kong and Chun [16] proposed a fast angle-tracking 
algorithm based on a single number of snapshot and 
EKF. However, the algorithm has low tracking 
success rate when targets approaches near the points 
of intersection. To overcome the drawbacks 
mentioned above, we firstly propose a fast predictive 
angle-tracking algorithm, named the FPAT algorithm, 
for tracking multiple narrowband sources in 2-D 
space. As demonstrated by computer simulations, it 
has lower computational complexity and better 
tracking performance than the Park's [11] and Kong's 
[16] algorithms. The FPAT algorithm is then 
extended to track narrowband sources in 3-D space. 

All the aforementioned methods are applicable to 
track narrowband signals but fail to track wideband 
signals. In many practical situations such as sonar, 
signals are wideband. For tracking wideband sources, 
we propose a method which combines the FPAT 
algorithm with the coherent signal subspace method 

(CSS) [17]. In the following context, section 2 first 
describes the FPAT algorithm for tracking multiple 
narrowband sources in 2-D space and then extended 
to narrowband sources in 3-D space. Section 3 
proposes a tracking algorithm for wideband sources. 
Section 4 demonstrates the tracking performances via 
computer simulations. Section 5 draws the 
conclusion.  
 
2 The Proposed Narrowband Tracking 

Algorithm  
2.1 Data model for narrowband sources in 

2-D space 
Consider that there are N moving targets from which 
narrowband signals of a common angular frequency 
ω are radiated, propagated and received by M(>N) 
sensors. The sensors are deployed as a uniform linear 
array with interelement spacing d. The output of the 
m-th sensor for the k-th sampling interval is  

( )

1
( ) ( ) ( )mi

N
j k

m i
i

r k e s k n k



  m  

where si(k) is the signal transmitted by the i-th source; 
( )mi k  is the difference in time delays of the i-th 

source to reach the first (reference) and the m-th 
sensors. nm(k) is the white Gaussian noise with zero 
mean and variance σ2, uncorrelated with the source 
signals. Assume all sources are coplanar with the 
sensor array and are in the far field. The time delay, 
expressed as a function of direction angle, is given by 

( )=(mi )( -1)sin( ( ))d
ick m k 

k

, where θi(k) is the 
direction angle of the i-th source and c is the wave 
speed. By using vector-matrix representation, the 
output of the sensor array is 
 

( ) ( ) ( ) ( )k k k r A s n                  (1) 
 

where  is the output 

vector,  is the signal 
vector, is the noise 
vector. The superscript T is the transpose operator. 
The M×N direction matrix A(k) is defined as 
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where 
( )sin ( )( )

d
icj k

i k e     for i =1, 2, …, N. 
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The process noise vector w(k) reflects the random 
modeling error, which is Gaussian distributed with 
zero mean vector and covariance 

Based on the data model of (1), we are to track the 
direction-of-arrival angles (DOAs) θi(k), i =1, 2, …, 
N. Suppose there are L measurements (snapshots) 
that are taken for each increment Ts, and the time 
increment is sufficiently small allowing us to 
approximate the target as stationary within each time 
increment. The tracking problem is aimed at 
estimating ( ),i t t=Ts, 2Ts,… (equivalently, ( ),i k  
k=1, 2,…), i =1, 2, …, N. from L snapshots of array 
data measured within each time increment Ts . 

1( , , )NdiagQ Q Q  
The matrices F  and Q  are all block diagonal. 
Although the process equation is a linear model, the 
measurement model of (1) is a vector nonlinear 
function of the target DOAs (and thus, of the target 
state vectors as well), which can be restated as 
 

 ( ) ( ( ), ( ), ( )) ( ( )) ( ) ( )k k k k k k r h x s n A x s n k   (5) 2.2 The Fast Predictive Angle Tracking 
(FPAT) algorithm  

,where n(k) is complex Gaussian noise process with 
the known covariance 2

n I , and is assumed to be 
uncorrelated with the process noise w(k). Under the 
assumption of a uniform linear array with a half 
wavelength of interelement spacing, the partial 
derivative matrix of the measurement model (5) is 
given by 

For tracking nonstationary targets efficiently and 
effectively, the Fast Predictive Angle Tracking 
(FPAT) algorithm is presented. In the proposed 
algorithm, the sensor array output is used as 
measurement data in EKF, instead of KF, since the 
measurement model is nonlinear in terms of angle 
estimates. Using the predicted angles, the FPAT 
algorithm modifies the Park's method to obtain 
angular innovation, from which the angle estimates 
are updated (smoothed) via Kalman gain. The FPAT 
algorithm is stated as follows. First, we describe the 
discrete-time state (process) model for the target 
motion described in the previous section. For each 
time index k, we define the state vector for the i-th 
target as , consisting of its 

DOA and angular speed. The target motion can lead 
to the process equation [11] 

( ) ( ) ( )
T

i i ik k k  x 

( | 1)( ) | k kk  



 x x
hH
x ( | 1)1[ ( ),..., ( )] |

k kNk k
 


x x

H H  

By augmenting the real and imaginary parts of each 
complex matrix Hi(k), we have the composite real 
matrix of dimension 2M×2N 

1

1
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which can be expressed as 
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( 1) ( ) (i ik k  x Fx w                 (3) 

1
0 1

sT 
  
 

F  

 
where wi(k) is the process noise vector and is 
assumed to be Gaussian distributed with zero mean 
and covariance  

3 2

2

2 3 2

2

s s

s

T T

i w T
sT

Q 
 
 
  

 where 
, sin( sin( ( )))cos( ( )) ( )i b i i ig b k k s k         (6) 

, cos( sin( ( )))cos( ( )) ( )i b i i ic b k k s k         (7) Assume that the motion of each target is mutually 
independent. By defining the composite state vector 
as , the system dynamics is 
governed by the process model 

1( ) ( ),..., ( )
TT T

Nk k k x x x

i=1, …, N, b=1, …, M-1. 
      Initially (at k=0), the target DOAs, { ˆ ( 1)i  } and 
{ } at two successive time instants, k=-1 and k=0, 
are assumed to be available, which can be estimated 
by any kind of angle estimation algorithm (for 
instance the MUSIC algorithm [18]). Thus, the initial 
state vector estimate can be set 
as

ˆ (0)i

ˆ(0x 1̂| 0) [ (0) 1̂( (0)  1̂( 1)) /T  , ,s  ̂

 
( 1) ( ) (k k  x Fx w )k                   (4) 

( , , )
N

diagF F

 F  

 
(0)N
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ˆ( (0)N  ˆ ( 1)) / ]T
N T  s with its covariance matrix 

P(0|0), given by 

2

2

1

1 2

1

1 2

0

| 0)

1
0

s

s s

s

s s

T

T T

v

T

T T



 
 
 
 
 

  
 
 
 
   




2

1

(0P  

The proposed tracking algorithm can be summarized 
in the following four steps. 
 
Step I. Prediction of angles 

The prediction of the state vector and its 
covariance matrix can be obtained from the existing 
estimates by the equations 

 
ˆ ( | 1)k k x ˆ ( 1| 1k k  Fx )               (8) 
( | 1) ( 1| 1) Tk k k k    P FP F Q      (9) 

 
The first element of each state vector ˆ ( | 1)i k k x  is 
the predicted estimate  of θi(k). The 
predicted direction matrix A(k|k-1) can be obtained 
by (2) using  for θi(k). From (1), the 
predicted output of the sensor array becomes 

ˆ ( | 1)i k k 

1)ˆ ( |i k k 

 
( | 1) ( | 1) ( )k k k k k  r A s

r

             (10) 
 

Using maximum likelihood method, s(k)=[s1(k),…, 
sN(k)]T  in (10) can be estimated by 
 

ˆ( )k s ˆ( ( | 1))H k k A
1ˆ( ( | 1))k k

 A ˆ( ( | 1)) ( )H k k k A  

(11) 
Step II. Computations of the angle innovation 

After time Ts, the direction matrix is obtained from 
a new array output as 

 
( ) ( | 1) ( )k k k k  A A A              (12) 

 
where δA(k) is the error matrix which can be derived, 
according to Sword [4], as  
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(13) 

( ) cos ( ) ( ) ( )i i ik j k k              (14) 
 

Based on (1), the residual array output Δr(k) can be 
obtained from (10) as 
 

( ) ( ) ( | 1) ( ) ( ) ( )k k k k k k k     r r r A s n   (15) 
 
Notice that the first row vector of δA(k) in (13) is a 
null vector. In order to reduce the computation, the 
null vector allows us to define a (M-1)×1 vector r , 
which is obtained by removing the first element of Δr 
in (15). By substituting (14) into (13), r  can be 
represented by (dropping k temporarily) 
 

  r B n                           (16) 
 

where the (M-1)×N matrix B is 
1 1 1

2 2
1 1 1

1 1
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ˆ ( | 1)i k k
wherein θi is substituted with the predicted angle 

 , and δθ = [δθ1(k), δθ2(k),…, δθN(k)] is the 
unknown angle innovation vector to be estimated. In 
general, a least-squares solution, , 
can be obtained using (16). However, a modified 
solution 

1( )H H  B B B r

 
1( )H  H B B L B r                  (17) 

 
as suggested in Park's algorithm, will be used to 
constrain the absolute values of innovations for the 
cases of nearby targets, where L is a weighting 
matrix with diagonal form. It should be noticed that si, 
i=1,…, N, in B are obtained from (11).  
 
Step III. Estimation of the angles 

The estimated angle can be obtained as 
 

ˆ ( )i k ˆ ( | 1) ( )i k k k    i                (18) 
 

Furthermore,  and ˆ ( )i k ˆ ( )is k  are substituted into (6) 
and (7) to update the matrix (k)H . 
 
Step IV. Smoothing the estimated angles 
   Since the state vector is real-valued, we formulate 
the state estimation equation as 
 

ˆ ( | )k k x ˆ ( | 1) ( )k k k  x K r          (19) 
         

wherein 
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where ( )kr =[ΔrR ΔrI]T is a real vector; ΔrR and ΔrI 
are the real and imaginary parts of Δr(k) from (15). K 
is the Kalman Gain matrix, given by 

1
( ) ( ( )) ( ) 1,2, ,

N

m i mi m
i

r k s k k n k m M


      (22) 

 
 

12( | 1) ( | 1)T T
nk k k k 


    K P H HP H I (20) 

From the array and source configurations shown in 
Fig. 1, τmi(k) can be expressed as 

2 2 21( ) ( ) ( ) ( )mi i m i m i m ik p x q y l z
c

         
where (xm, ym, zm) is the m-th sensor position relative 
to the reference sensor. Here xm=(m-1)d, ym=0, and 
zm=0. The location coordinate of the i-th signal 
source is given by 

 
The covariance matrix of  is given by  ˆ ( | )k kx
 

( | ) ( | 1)k k k k    P I KH P                    (21) 
         

sin cosi i ip i    The proposed FPAT algorithm requires the 
number of 7MN2+16M2N+MNL real multiplications, 
whereas the Park's algorithm [11] and the Kong's 
algorithm [16] require the numbers of 
3MN2+L(3M2+MN) and 5N3+10MN2+8M2N+MNL 
real multiplications respectively (L is the number of 
snapshots). Table 1 shows the comparison of 
computational complexity among these algorithms 
for N=3, M=8 and different number of snapshots. It is 
evident that the FPAT algorithm has lower 
computational complexity than Park's algorithm for 
L 30, where L 30 is often needed for acceptable 
tracking performance. Although the computational 
complexity is higher than the Kong's algorithm, the 
proposed method has much better performance as 
demonstrated by the simulations. 

 

sin sini i iq i    
cosi il i   

Assume that all the signal sources are narrowband 
with a common angular frequency ω. Then 

( )( ( )) ( ) mij k
mis k k s k e     

Therefore, (22) becomes  
( )

1
( ) ( ) ( ) 1,2, ,mi

N
j k

m i m
i

r k e s k n k m M



     

In vector-matrix notation, the received output vector 
of the sensor array is , where  ( ) ( ) ( ) ( )k k k r A s n k

k

21 22 2
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Table 1. Computational complexity comparison for 

N=3, M=8 and different L values. and  
( )( ) mij k

mi k e    Algorithm FPAT Park's Kong's
 
Number of real 
multiplications 
 

L=1 
L=10 
L=30 
L=50 

3600 
3816 
4296 
4776 

432 
2376 
6696 
11016 

2415 
2631 
3111 
3591 

 
Let δρ(k), δφ(k), and δθ(k) be the unknown variations 
of ρ(k), φ(k), θ(k) respectively, from time k-1 to time 
k. These variations will produce the variations Δr(k) 
and δA(k), where Δr(k)=r(k)-r(k|k-1), and δA(k)= 
A(k)-A(k|k-1). Basically, the equations (8)-(12), (15) 
and (19)-(21) remain unchanged except (13)-(14) and 
(16)-(18) are changed as follows. 

 
2.3 The FPAT algorithm for tracking targets 

in 3-D space 
The (m,n) element of δA(k) can be derived as The FPAT algorithm is now extended to track 

narrowband targets in 3-D space, where the 
coordinate system is shown in Fig. 1. si(k) is the 
signal transmitted by the i-th target of which φi and θi 
are the azimuth and elevation respectively. ρi is the 
range from the i-th target to the first (reference) 
sensor in the uniform linear array. To be explained 
later, the number of sensors M must satisfy the 
condition M  3N+1, where N is the number of 
targets. All the targets can be located in the near field 
or far field. In the following formulations, far-field 
targets are treated. 
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22 2 21 sin cos ( 1) sin sin cos

( 1) cos cos

mn

n n n n n n n n n

n n n

m d
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and The output of the m-th sensor for the k-th sampling 
interval can be expressed as 
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where the matrix B is a (M-1) × 3N matrix, given by where the matrix B is a (M-1) × 3N matrix, given by 
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δρ(k)=[ δρ1(k), … , δρN(k)]T, δφ(k)=[ δφ1(k), … , 
δφN(k)]T,  and δ  (k)=[ δθ1(k), … , δθN(k)]T are 
obtained by 

1

( )
( ) ( )
( )

H H

k
k
k

B B L B r






 
    
  



k
k

 

and used to update the state estimation according to 
ˆ ˆ( ) ( | 1) ( )i i ik k k      
ˆ ˆ( ) ( | 1) ( )i i ik k k     

k
 

ˆ ˆ( ) ( | 1) ( )i i ik k k       
It should be noted that there is one limiting 

condition, i.e., M-1 3N, under which the M-1 linear 
equations are used for solving 3N unknown variables.  



 
3 The Proposed Wideband Tracking 

Algorithm  
3.1 Data model for wideband sources in 2-D 

space 
For a narrowband source, the phase delay of the 
received signal is only related to the distance between 
the receiving sensor and the reference sensor as well 
as the bearing of the source. However, for a wideband 
source, the phase delay of the received signal is also 
related to frequency. Therefore, the data model 
represented in frequency domain is more appropriate. 
Considering that signals from N far-field wideband 

sources with bandwidth Bw are received by a uniform 
linear array with M (>N) sensors. The signal received 
by the m-th sensor can be represented as follows 

 
Fig. 1 Sensor array and source configurations in 3-D 

space. 
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where f0 is the center frequency of the entire band and 
λ0 is the wavelength associated with the center 
frequency. By taking Fourier transform on both sides 
of (24), the j-th frequency component of rm(k) is 
given by: (assume d= 1
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The vector representation is shown as 
 

( ) ( ) ( ) ( )j j j jf f f f r A s n                (25) 
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The M×N direction matrix A(fj) is defined as: 
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where 
0

( )sin( )
f j

ifj
i jf e   

   i=1, 2, …, N. 
The covariance matrix of r(fj) is 
 

2( ) [ ( ) ( )] ( ) ( ) ( ) ( )H H
j j j j j j jf E f f f f f f  R r r A S A I

(27) 
where S(fj) is the covariance matrix of s(fj). 
 
3.2 Coherent Signal-Subspace (CSS) method 
The main idea of the coherent signal-subspace 
method [17] is to utilize the focusing matrix which 
transfers the direction matrix at each sub-band 
frequency to the one at the center frequency f0, so that 
the covariance matrix in (27) is transformed 
accordingly. By averaging the transformed 
covariance matrix for each band, the resultant 
covariance matrix can be used by any high resolution 
narrowband bearing estimating algorithm to 
determine the directions of all sources. 
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The CSS method, in theory, is to use the focusing 
matrix T(fj), satisfying [17] 

and the predicted array output is 
 

 ( | 1, ) ( | 1, ) ( )j j jk k f k k f fr A s            (32) 
( ) ( ) ( )j j 0f f A fT A  j=1, 2, …, J.         (28)  

 Step II. Computations of the angle innovation 
The direction matrix at time k is updated as Hung and Kaveh [19] proposed a unitary focusing 

matrix based on the following criterion:  
 ( , ) ( | 1, ) ( )j jk f k k f f j  A A A          (33) 

2

( )
( ) ( ) ( ) 1,2, ,

. . ( ) ( ) ( ) ( )
j

0 j j Ff

H H
j j j j

min f f f j J

s t f f f f

 

 

T
A T A

T T T T I


 (29) 

 
using a new array output of 
 

( , ) ( , ) ( ) ( , )j j j jk f k f f k fr A s n            (34)  
The solution for (29) is  
 Using the focusing matrix T(fj) of (30),  (32) and (34) 

become ( ) ( ) ( ) 1,2, ,j j jf f f j T V U  J        (30) 
  

0
1

0

( | 1, ) ( ) ( | 1, ) ( )

( | 1, )

J

j j j
j

k k f f k k f f

k k f


  

 

Y T A

A s

where V(fj) and U(fj) are the left singular and right 
singular vectors of A(f0)AH(fj). Finally, the 
coherently averaged covariance matrix 

s
(35) 

 

0 0
1

( , ) ( ) ( , ) ( , ) ( )
J

j j
j

k f f k f k f k


 Y T r A s  n    (36) 
1

( ) ( ) ( )
J

H
j j

j
jf f f



R T R T                (31) 

  
where 

1

( )
J

j
j

f


s s  and
1

( ) ( ) ( , )
J

j j
j

k f kn T n


is processed by a narrowband bearing estimation 
algorithm such as MUSIC [18]. 

f . 

 From (35) and (36), we have 
3.2 The wideband FPAT tracking algorithm  
For the purpose of tracking wideband signals, the 
traditional bearing estimation algorithms should 
perform eigendecomposition once a new single or 
block of data is available. It is very time-consuming. 
Besides, they fail to analyze the signals which are 
close to the crossing point. Consequently, in order to 
overcome the stated problems, a tracking algorithm, 

0 0( ) ( , ) ( | 1, ) ( ) ( )k k f k k f k k     Y Y Y A s n   (37) 
where 

1

1

1

2 2
1 1

0 0

( ) 2 2

( 1) ( 1)

N

N N

M M
N N

k

M M

 
    

    

 
 
 

  
 
 
   

A





  


 

which incorporates the CSS method with unitary 
focusing matrix into the FPAT algorithm, is 
proposed.  

The execution of the proposed wideband FPAT 
tracking algorithm is divided into four steps. 

and ( ) cos ( ) ( ) ( )i i ik j k k i k      . As discussed 
previously,   can be obtained from (17). 

  
Step I. Prediction of angles Step III. Estimation of the angles 

As described in Section 2, the predicted angle 
 can be obtained from (8). At time k, the 

predicted direction matrix A(k|k-1,fj) is given by 

ˆ ( | 1)i k k 
The estimated angle can be obtained according to 

(18). Furthermore,  is substituted into (6) and 
(7) to update the matrix 

ˆ ( )i k
(k)H . 

 
 

10

10

ˆ( )sin ( | 1)

( | 1, )

ˆ( 1)( )sin ( | 1)

1
f j
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f j
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k k f j
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e

e
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1
f j
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Nf

j k k

j M k k

e
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Step IV. Smoothing the estimated angles 
    The Kalman gain and state covariance matrix  are 
same as (20) and (21) respectively. The estimated 
state vector is given by 
 

ˆ ( | )k k x ˆ ( | 1) ( )k k k  x K Y              (38)  
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where ( )kY =[ΔYR ΔYI]T, ΔYR and ΔYI are the real 
and imaginary parts of ΔY(k) from (37).  
    The flow chart of the wideband FPAT tracking 
algorithm is shown in Fig. 2. In this figure, a 
delay-and-sum beamformer is used to coarsely 
estimate the β angle in each group. These β angles are 
then used to form focusing matrices. 
 
4  Computer Simulation Results 
In this section, tracking performances of the three 
tracking algorithms are compared for narrowband 
sources in 2-D space. A uniform linear array of eight 
sensors M=8 with half wavelength as the 
interelement spacing is used. Three moving targets 
on the plane are tracked over an interval of 180s with 
Ts=1. During each Ts interval, L(=1, 10, 30, 50) 
snapshots of sensors data are generated. The Monte 
Carlo simulations of 100 runs were carried out for 
each algorithm with various SNRs. In all algorithms, 
the measurement noise covariance matrix Q and the 
process noise covariance matrix R are respectively 
set as 0.1I and 0.2I , where I is the identity matrix. 
The weighting factors to constrain the absolute 
values of innovations in (17) are set to be li= 1

20  (i-th 
diagonal element of BHB), which is the same as in 
Park's algorithm. The signal-to-noise ratio for the i-th 
target is defined as SNR=10log(Sii/σ2), where Sii is 
the (i,i) element of source covariance matrix S and σ2 
=0.1 is the noise variance. 

 
Fig. 2 The flow chart of the wideband FPAT tracking 

algorithm. 

Fig. 3 Typical sample run for crossing tracks with 
three targets at SNR=10dB. (a)Kong's algorithm, 

(b)Park's agloritm, (c)FPAT algorithm. 

    Fig. 3 shows typical sample run for crossing tracks, 
all based on a single snapshot of data vector (L=1) at 
SNR=10dB of each target. The FPAT and Park's 
algorithms exhibit much better tracking capability 
than Kong's algorithm especially at the cross points 
in the trajectory. 

Table 2 gives the tracking results for various SNRs 
at L=30 snapshots. The FPAT algorithm shows the 
highest tracking success rate (true angle ±5°) for each 
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SNRs. Table 3 presents the tracking results for 
various number of snapshots at SNR=10dB. Again, 
the proposed algorithm shows the highest tracking 
success rate for each number of snapshots. 

 
Table 2. Tracking performance for various SNRs at 

snapshots=30. 
Tracking success rate (%) SNR 

(dB) FPAT Park’s Kong’s 
0 28 14 11 
5 62 44 34 

10 86 62 60 
 

Table 3. Tracking performance for various number of 
snapshots at SNR=10dB. 
Tracking success rate (%) Number of 

Snapshots FPAT Park’s Kong’s
1 70 45 43 
10 83 69 55 
50 88 81 66 

 
Two moving targets are tracked over an interval of 

20s with Ts=1 in 3-D space. During each Ts interval, 
L(=160) snapshots of sensors data are generated. Fig. 
4 shows the tracking performances of the 3-D FPAT 
algorithm for the combinations of range, elevation, 
and azimuth at 3dB of SNR. In this figure, dot 
represents the true angle and line represents the 
tracked angle. The 3-D FPAT algorithm is very 
effective in tracking the targets in 3-D space, even at 
low SNR. 

Two wideband coherent signals, with one being 
the delayed version of the other, are generated by 
passing a white Gaussion process through a 6th-order 
Butterworth bandpass filter with the bandwidth of 
40Hz and the center frequency of 100Hz. Both have 
the same power spectrum as shown in Fig. 5. The 
number of snapshots is 1024 and the sampling rate is 
400 samples per second. Fig. 6 shows the tracking 
curves of the wide-band FPAT algorithm for the 
bearing of the two coherent wideband signals at 10dB 
of SNR. It is clear that by using the wideband FPAT 
method, the target angles are very accurately tracked. 
 
5  Conclusion 
We have presented the FPAT algorithm based on 
extended Kalman filter for tracking multiple targets. 
The proposed algorithm modified Park's algorithm 
by using the sensor array output vector rather than the 
sample covariance matrix and incorporating EKF 
instead of KF. These modifications allow the 
proposed algorithm to lower computational load, and 

also improve the tracking success rate particularly at 
lower snapshots. The FPAT algorithm is then 
extnded to track the azimuth, elevation, and range of 

Fig. 4 The tracking curves of 3-D FPAT algorithm for 
the range, elevation, and azimuth of two targets at 

SNR=3dB. 
 

Fig. 5 The power spectrum of the wideband source 
with bandwidth of 40Hz and center frequency of 

100Hz. 
 

Fig. 6 The tracking curves of the wideband FPAT 
algorithm for the bearing angle of two wideband 

signals at SNR=10dB. 
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multiple targets in 3-D space. Combined with the 
CSS method, the FPAT algorithm can be further 
extended to track wideband sources. Through 
computer simulations, the effectiveness of each 
proposed algorithm is demonstrated. 
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