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Abstract: A complex network of Euler-Bernoulli beams is studied in this paper. As for this network, the boundary
vertices are clamped, the displacements of the structure are continuous but the rotations of different beams are not
continuous at the interior vertices. The feedback controller are designed at the interior nodes to stabilize the elastic
system. The well-posed-ness of the closed loop system is proved by the semigroup theory. By complete spectral
analysis of the system operator, the distribution of spectrum, the completeness and the Riesz basis property of the
roots vectors of the system operator are given. As a consequence, the asymptotical stability of the system is derived
under certain conditions.
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1 Introduction
Many authors have studied the networks of various
flexible elements in recent years. For a multi-link
flexible structures, one studies not only its global dy-
namic motion but also has to take into account the in-
teraction and transmission of elastic elements. For ex-
amples, Dekoninck and Nicaise in [1] and [2] studied
control and eigenvalue problems of network of Euler-
Bernoulli beams; Ammari and Jellouli in [3] and [4]
studied the stabilization problem of tree-shaped net-
work of strings; Xu et al in [5] studied an abstract
second order hyperbolic system and applied the re-
sult to controlled network of strings. Xu and Yung in
[6] studied a star-shaped network of Euler-Bernoulli
beams with boundary dampings. Xu and Mastorakis
in [7] and [8] studied the stability and spectral distri-
bution of a hybrid network of strings and Euler beams
with boundary dampings. Guo and Wang made con-
tributions to the stabilization of a tree-shaped network
with three beams in [9], [10], and [11]. A general flex-
ible network of beams was investigated by Mercier
and Regnier in [12] and [13]. The more general differ-
ential equation on networks can refer to [14]. In the
present paper, we shall study a complex network of
Euler-Bernoulli beams which is different from those
mentioned above. For the network, we at first design
the nodal feedback controllers to stabilize the system,
and then analyze the closed loop system. Here we
shall carry out a complete spectral analysis for the
closed loop system. It is well known that the calcu-
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lation of the spectrum of a elastic network has been a
tough work because of its complexity. In the present
paper, we employ the asymptotic analysis technique to
get spectral distribution, the completeness and Riesz
basis property of the roots vectors of the system oper-
ator. Further,we derive the asymptotic stability of the
system.

Let us introduce the network under consideration.
Let G be a plane graph of the form as shown Fig. 1
in which the edge set E = {γ1, γ2, · · · , γ5}. The arc

γ1

γ2

γ3

γ4

γ5

0 1

Figure 1: A network of Euler-Bernoulli beams

length of each edge is 1. We parameterize each edge
by its arc length s as

πj : [0, 1] → γj , x|γj = πj(s)

so that the graph becomes a metric graph.
Suppose that the equilibrium position of the elas-

tic structure coincides with G. The elastic structure
undergoes a small vibration, denote by w(x, t) the dis-
placement depart from its equilibrium position in po-
sition x at time t. On each edge γj , j = 1, 2, · · · , 5,
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we parameterize it by wj(s, t) = w(πj(s), t). Then it
satisfies the differential equation

wj,tt(s, t) + ajwj,ssss(s, t) = 0, s ∈ (0, 1).

Suppose that the boundary vertices of the structure
are clamped, and at each interior vertex (i.e., common
node) the elastic elements are connected through some
conditions on wj(s, t) and its derivatives wj,sl , l =
1, 2, 3, 4. More precisely, we simply impose the con-
tinuity of wj(s, t) and wj,s(s, t) (representing the ro-
tation of the beam γj) is not continuous at the com-
mon nodes. There are two exterior forces at the com-
mon node ∩3

j=1γj , which is parameterized as 0; At the
common node ∩5

j=3γj , here we parameterize it as 1,
there is only one extra force.

By the action of the extra forces, the motion of the
elastic structure are governed by the partial deferential
equations




wj,tt(s, t) + ajwj,ssss(s, t) = 0, j = 1, 2, · · · , 5
w1(0, t) = w2(0, t) = w3(0, t)
3∑

i=1

aiwi,sss(0, t) = 0

w3(1, t) = w4(1, t) = w5(1, t)
5∑

i=3

aiwi,sss(1, t) = 0

w1,ss(0, t) = u0(t), w1(1, t) = w1,s(1, t) = 0
w2,ss(0, t) = w2(1, t) = w2,s(1, t) = 0
w3,ss(0, t) = u1(t), w3,ss(1, t) = u2(t)
w4,ss(1, t) = w4(0, t) = w4,s(0, t) = 0
w5,ss(1, t) = w5(0, t) = w5,s(0, t) = 0

(1)

Obviously, this is a complex network of Euler-
Bernoulli beams. Our purpose in the present paper
is to design the feedback controllers and to stabilize
the system.

The rest is organized as follows. In next section
we design the feedback controllers and then discuss
the well-posed-ness of the closed loop system. In
section 3, we carry out a complete asymptotic anal-
ysis for the spectrum of operator determined by the
closed loop system. we get the spectral distribution,
and then prove the completeness and the Riesz basis
property of root vectors (the eigenvectors and gener-
alized eigenvectors) of the system operator. Finally,
in section 4, we discuss the stability of the system.
Under the certain conditions we derive the asymptotic
stability of the system.

2 Design of Controllers and Well-
posed-ness

In this section, we shall design the feedback con-
trollers for the system (1) and then study the well-
posed-ness of the closed loop system.

Let us consider the energy function of (1), which
is given by

E(t) =
1
2

5∑

j=1

∫ 1

0
[ajw

2
j,ss(s, t) + w2

j,t(s, t)]ds

Differentiate it formally with respect to time t, we
have
dE(t)

dt
= −a1w1,ss(0, t)w1,st(0, t)

−a3w3,ss(0, t)w3,st(0, t) + a3w3,ss(1, t)w3,st(1, t)
= −a1u0(t)w1,st(0, t)− a3u1(t)w3,st(0, t)
+a3u2(t)w3,st(1, t).

So designing controllers as

u0(t) = w1,st(0, t), u1(t) = w3,st(0, t),
u2(t) = −w3,st(1, t)

yields
dE(t)

dt
≤ 0.

With these feedback controllers, the model (1) be-
comes a closed-loop system




wj,tt(s, t) + ajwj,ssss(s, t) = 0, j = 1, 2, · · · , 5
w1(0, t) = w2(0, t) = w3(0, t)
3∑

i=1

aiwi,sss(0, t) = 0

w3(1, t) = w4(1, t) = w5(1, t)
5∑

i=3

aiwi,sss(1, t) = 0

w1,ss(0, t) = w1,st(0, t),
w1(1, t) = w1,s(1, t) = 0
w2,ss(0, t) = w2(1, t) = w2,s(1, t) = 0
w3,ss(0, t) = w3,st(0, t),
w3,ss(1, t) = −w3,st(1, t)
w4,ss(1, t) = w4(0, t) = w4,s(0, t) = 0
w5,ss(1, t) = w5(0, t) = w5,s(0, t) = 0

(2)

Now we formulate the system (2) into an appropriate
Hilbert state space.

Let L2(G) and C(G) be defined as usual, we de-
fine linear space Hk(Ga), k ∈ N, by

Hk(Ga) =
{
f ∈ L2(G)

∣∣ f |γj = fj ∈ Hk(0, 1)
}

A function w(x, t) is said to be a solution to (2), it
means that, for each t > 0, w(x, t) ∈ H4(Ga) and
w(x, t) is continuously differentiable with respect to t
and wtt(x, t) exists in L2(G).

Denote the space W by
(
H2(0, 1) × L2[0, 1]

)5

and let the state space be

H =





(f, g) ∈ W

∣∣∣∣∣∣∣∣∣∣∣∣

f1(0) = f2(0) = f3(0),
f1(1) = f2(1) = 0,
f3(1) = f4(1) = f5(1),
f4(0) = f5(0) = 0,
f1,s(1) = f2,s(1) = 0,
f4,s(0) = f5,s(0) = 0




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equipped with inner product

〈(f, g), (u, v)〉H

=
5∑

j=1

∫ 1

0
[ajfj,ss(s)uj,ss(s) + gj(s)vj(s)]ds

Obviously, H is a Hilbert space.
Denote the space V by (H4(0, 1) × H2(0, 1))5

and define the operator A in H by

D(A) =





(w, z) ∈ V,
3∑

l=1

alwl,sss(0) = 0,

w1,ss(0) = z1,s(0), w3,ss(0) = z3,s(0)

w2,ss(0) = 0,
5∑

l=3

alwl,sss(1) = 0,

w3,ss(1) = −z3,s(1),
w4,ss(1) = w5,ss(1) = 0





A(w, z) = {(zj ,−ajwj,ssss)} ∈ H, ∀(w, z) ∈ D(A).

With the help of these notations we can rewrite
(2) into an evolutionary equation in H





dW (t)
dt

= AW (t), t > 0

W (0) = W0 ∈ H.
(3)

where W (t) = {(wj(s, t), wj,t(s, t)}, W0 ∈ H is the
initial data given.

In what follows, we shall discuss the well-pose-
ness of the system (3). Firstly, we have the following
result.

Theorem 1 Let A be defined as above. Then A is
dissipative, 0 ∈ ρ(A) andA−1 is compact. Hence the
spectrum of A consists of all isolated eigenvalues of
finite multiplicity.

Proof: For any real (w, z) ∈ D(A), we have

〈A(w, z), (w, z)〉H

=
5∑

j=1

∫ 1

0

[
ajzj,ss(s)wj,ss(s)− ajwj,ssss(s)zj(s)

]
ds

=
3∑

j=1

ajwj,sss(0)zj(0)− a1w1,ss(0)z1,s(0)

−a3w3,ss(0)z3,s(0)−
5∑

j=3

ajwj,sss(1)zj(1)

+a3w3,ss(1)z3,s(1)
=−a1z

2
1,s(0)− a3z

2
3,s(0)− a3z

2
3,s(1).

The dissipatedness of A follows.

For any (f, g) ∈ H, we consider the resolvent
equation A(w, z) = (f, g), i.e.,





z1(s) = f1(s)
a1w1,ssss(s) = −g1(s)
w1(0) = w2(0)
w1,ss(0) = z1,s(0)
w1(1) = 0
w1,s(1) = 0





z2(s) = f2(s)
a2w2,ssss(s) = −g2(s)
w2(0) = w3(0)
w2,ss(0) = 0
w2(1) = 0
w2,s(1) = 0




z3(s) = f3(s)
a3w3,ssss(s) = −g3(s)
3∑

j=1

ajwj,sss(0) = 0

w3,ss(0) = z3,s(0)
5∑

j=3

ajwj,sss(1) = 0

w3,ss(1) = −z3,s(1)



z4(s) = f4(s)
a4w4,ssss(s) = −g4(s)
w4(1) = w3(1)
w4,ss(1) = 0
w4(0) = 0
w4,s(0) = 0





z5(s) = f5(s)
a5w5,ssss(s) = −g5(s)
w5(1) = w4(1)
w5,ss(1) = 0
w5(0) = 0
w5,s(0) = 0.

(4)

Solving the differential equation in (4) yields

wj(s) = wj(0) + swj,s(0) +
s2

2
wj,ss(0)

+ s3

3! wj,sss(0)− ∫ s

0
(s−r)3

3!aj
gj(r)dr

(5)

and

wj,s(s) = wj,s(0) + swj,ss(0) + s2

2 wj,sss(0)
− ∫ s

0
(s−r)2

2!aj
gj(r)dr

wj,ss(s) = wj,ss(0) + swj,sss(0)− ∫ s
0

s−r
aj

gj(r)dr

wj,sss(s) = wj,sss(0)− ∫ s
0

gj(r)
aj

dr.

Thus

wj(1) = wj(0) + wj,s(0) + 1
2wj,ss(0)

+1
6wj,sss(0)− ∫ 1

0
(1−r)3

3!aj
gj(r)dr

wj,s(1) = wj,s(0) + wj,ss(0) + 1
2wj,sss(0)

− ∫ 1
0

(1−r)2

2!aj
gj(r)dr

wj,ss(1) = wj,ss(0) + wj,sss(0)− ∫ 1
0

1−r
aj

gj(r)dr

wj,sss(1) = wj,sss(0)− ∫ 1
0

gj(r)
aj

dr

Substituting above into the boundary conditions in
(4), we can determine the wj(0), wj,s(0), wj,ss(0) and
wj,sss(0). Substituting them into (5), we can get
unique functions wj(s), j = 1, 2, · · · , 5. Set z = f ,
then we have (w, z) ∈ D(A) and A(w, z) = (f, g).
The Inverse Operator Theorem asserts 0 ∈ ρ(A).
Note thatD(A) ⊂ H2(Ga)×H4(Ga). The Sobolev’s
embedding Theorem ensures that A−1 is compact on
H. ut
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As a direct consequence of Theorem 1 and
Lumer-Phillips Theorem (e.g. see,[19]), we have the
following result.

Corollary 2 LetA be defined as above. Then the sys-
tem (3) is well-posed in H.

3 Spectral Analysis
In order to investigate the properties of the semigroup
T (t) generated by A, we need to find out some spec-
tral properties of A. From Theorem 1, we know that
σ(A) = σp(A). In this section, we shall discuss the
eigenvalue problem ofA and give its asymptotical dis-
tribution.

Let λ ∈ C, we consider the solvability of nonzero
solution of the equation A(w, z) = λ(w, z) in H.
For the sake of simplicity, we assume ai = 1, i =
1, 2, · · · , 5. From the representation of A, we know
that A(w, z) = λ(w, z) implies that z = λw and w
satisfy the differential equations





wj,ssss(s) = −λ2wj(s), j = 1, 2, 3, 4, 5
w1(0) = w2(0) = w3(0)
3∑

i=1

wi,sss(0) = 0

w3(1) = w4(1) = w5(1)
5∑

i=3

wi,sss(1) = 0

w1,ss(0) = λw1,s(0), w1(1) = w1,s(1) = 0
w2,ss(0) = w2(1) = w2,s(1) = 0
w3,ss(0) = λw3,s(0), w3,ss(1) = −λw3,s(1)
w4,ss(1) = w4(0) = w4,s(0) = 0
w5,ss(1) = w5(0) = w5,s(0) = 0

(6)

In order to discuss the existence of nonzero solution of
(6) and distribution of the eigenvalues ofA, we divide
the discussion into the following several subsections.

3.1 Fundamental matrix and distribution of
eigenvalues

In this subsection we discuss existence of nonzero so-
lution of (6) and distribution of the eigenvalues of A.
To this end, we formulate equations (6) into the nor-
malized boundary value problem. Let

{
Wj = [wj , wj,s, wj,ss, wj,sss]T , j = 1, 2, . . . , 5
W (·) = [W1,W2,W3,W4,W5]T

(7)

Then (6) can be written as




dW (s)
ds

= A(λ)W (s)

B0(λ)W (0) + B1(λ)W (1) = 0
(8)

where

A(λ) =




A1(λ) 0 0 0 0
0 A2(λ) 0 0 0
0 0 A3(λ) 0 0
0 0 0 A4(λ) 0
0 0 0 0 A5(λ)




B0(λ) =




B0
1(λ) 0 C1 0 0
0 B0

2(λ) C1 0 0
D1 D2 B0

3(λ) 0 0
0 0 0 B0

4(λ) 0
0 0 0 0 B0

5(λ)




B1(λ) =




B1
1(λ) 0 0 0 0
0 B1

2(λ) 0 0 0
0 0 B1

3(λ) D4 D5

0 0 C2 B1
4(λ) 0

0 0 C2 0 B1
5(λ)




with

Aj(λ) =




0 1 0 0
0 0 1 0
0 0 0 1
−λ2 0 0 0


 , j = 1, 2, · · · , 5

and

B0
1(λ) =




1 0 0 0
0 −λ 1 0
0 0 0 0
0 0 0 0


 , B1

1(λ) =




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




B0
2(λ) =




1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , B1

2(λ) =




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




B0
3(λ) =




0 0 0 1
0 −λ 1 0
0 0 0 0
0 0 0 0


 , B1

3(λ) =




0 0 0 0
0 0 0 0
0 0 0 1
0 λ 1 0




B0
4(λ) =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , B1

4(λ) =




0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




B0
5(λ) =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , B1

5(λ) =




0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




C1 =




−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , Di =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , i = 1, 2
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C2 =




0 0 0 0
0 0 0 0

−1 0 0 0
0 0 0 0


 , Dj =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , j = 4, 5

Lemma 3 Let A be defined as before, then the spec-
trum ofA distributes symmetrically with respect to the
real axis. Moreover λ ∈ σ(A) if and only if there is a
non-trivial solution W (s) to (8).

Thanks to Lemma 3, we consider only λ that are
located in the first and second quadrant of the complex
plane. Set λ = iρ2, ρ ∈ C. If 0 6 argλ <

π

2
,

choosing
3π

4
6 argρ < π, then we have

<(ρ) < 0, <(−ρ) > 0, <(iρ) < 0, <(−iρ) > 0 (9)

and if π
2 6 argλ < π, taking 0 6 argρ < π

4 , we have

<(ρ) > 0, <(−ρ) < 0, <(iρ) 6 0, <(−iρ) > 0 (10)

Define invertible matrices by

P (ρ) =




P1(ρ) 0 0 0 0
0 P2(ρ) 0 0 0
0 0 P3(ρ) 0 0
0 0 0 P4(ρ) 0
0 0 0 0 P5(ρ)




where

Pj(ρ) =




ρ ρ ρ ρ
ρ2 −ρ2 iρ2 −iρ2

ρ3 ρ3 −ρ3 −ρ3

ρ4 −ρ4 −iρ4 iρ4


 , j = 1, 2, · · · , 5.

Then, we have

P−1
j (ρ)Aj(iρ2)Pj(ρ) =




ρ 0 0 0
0 −ρ 0 0
0 0 iρ 0
0 0 0 −iρ


 .

Lemma 4 Let P (ρ) be defined as above, P (ρ)E(s)
is a fundamental solution matrix to system (8), where

E(s) =




E1(s) 0 0 0 0
0 E2(s) 0 0 0
0 0 E3(s) 0 0
0 0 0 E4(s) 0
0 0 0 0 E5(s)




(11)

with

Ej(s) =




eρs 0 0 0
0 e−ρs 0 0
0 0 eiρs 0
0 0 0 e−iρs


 , j = 1, 2, · · · , 5

Proof: The inverse matrix of P (ρ) is given by

P−1(ρ) =




P−1
1 (ρ) 0 0 0 0

0 P−1
2 (ρ) 0 0 0

0 0 P−1
3 (ρ) 0 0

0 0 0 P−1
4 (ρ) 0

0 0 0 0 P−1
5 (ρ)




Set

Ŵ (s) = P−1(ρ)W (s) (12)

and Â(iρ2) = P−1(ρ)A(iρ2)P−1(ρ), then we have

dŴ (s)
ds

= Â(iρ2)Ŵ (s). (13)

Since

Â(iρ2)=P−1(ρ)A(iρ2)P (ρ)

=




Â1(iρ2) 0 0 0 0
0 Â2(iρ2) 0 0 0
0 0 Â3(iρ2) 0 0
0 0 0 Â4(iρ2) 0
0 0 0 0 Â5(iρ2)




with

Âj(iρ2) = P−1
j (ρ)A(iρ2)Pj(ρ), j = 1, 2, · · · .5

Obviously, Â(iρ2) is a diagonal matrix. Hence, the
fundamental matrix to (13) can be written as E(s).
And by (12), we can assert that P (ρ)E(s) is a funda-
mental matrix to system (8). ut

Set

Ω(ρ) = B0(iρ2)P (ρ)E(0)+B1(iρ2)P (ρ)E(1) (14)

Before calculating the determinant of Ω(ρ), we put
forward some decompositions of E(1) and E(0) as

E(0) = E0 · E2, E(1) = E1 · E2

where E0, E1, E2 are diagonal matrices similar
to E(s) with their elements E0

j , E1
j , E2

j , j =
1, 2, · · · , 5, they will be defined according to the sign
of <(λ), respectively.

When <(λ) > 0, according to (9), we have

|eρ| → 0, |eiρ| → 0 as <(λ) → +∞.
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the entries Ei
j , i = 0, 1, 2, j = 1, 2, · · · , 5 are defined

as

E2
j =




1 0 0 0
0 e−ρ 0 0
0 0 1 0
0 0 0 e−iρ


 ,

E0
j =




1 0 0 0
0 eρ 0 0
0 0 1 0
0 0 0 eiρ


 ,

E1
j =




eρ 0 0 0
0 1 0 0
0 0 eiρ 0
0 0 0 1


 , j = 1, 2, · · · , 5.

When <(λ) < 0, we have

|e−ρ| → 0, |eiρ| → 0 as <(λ) → −∞.

we define

E2
j =




eρ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iρ


 ,

E0
j =




e−ρ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiρ


 ,

E1
j =




1 0 0 0
0 e−ρ 0 0
0 0 eiρ 0
0 0 0 1


 , j = 1, 2, · · · , 5.

Thus we get

Ω(ρ) = [B0(iρ2)P (ρ)E0+B1(iρ2)P (ρ)E1]E2 (15)

Obviously,(8) has a non-zero solution if and only if
det Ω(ρ) = 0.

Now we set

∆(ρ) = det[Ω(ρ)]/det[E2]
= det[B0(iρ2)P (ρ)E0 + B1(iρ2)P (ρ)E1].

In order to calculate ∆(ρ), we need some transforma-
tions. Let

B̂0(iρ2) =
[

B0(iρ2) 0
0 I0

]
, B̂1(iρ2) =

[
B1(iρ2) 0

0 I1

]

Ê0 =
[

E0 0
0 E0

3

]
, Ê1 =

[
E1 0
0 E1

3

]

P̂ (ρ) =
[

P (ρ) 0
0 P3(ρ)

]

and

Ω̂(ρ) = B̂0(iρ2)P̂ (ρ)Ê0 + B̂1(iρ2)P̂ (ρ)Ê1 (16)

where

I0 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , I1 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 .

Set ∆̂(ρ) = det[Ω̂(ρ)], obviously

∆(ρ) = ∆̂(ρ)/det[I0P3(ρ)E0
3 + I1P3(ρ)E1

3 ]
= ∆̂(ρ)/[2iρ10 + O(ρ9)].

After some elementary transformation to Ω̂(ρ), we get

∆̂(ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣

M1 0 0 0 0 L1

0 M2 0 0 0 L2

0 0 M3 0 0 L3

0 0 0 M4 0 L4

0 0 0 0 M5 L5

N1 N2 N3 N4 N5 Q

∣∣∣∣∣∣∣∣∣∣∣∣

where

Mj = B0
j (iρ2)Pj(ρ)E0

j + B1
j (iρ2)Pj(ρ)E1

j , j = 1, 2, 4, 5

M3 =




1 0 0 0
0 −iρ2 1 0
0 0 0 0
0 0 0 0


P3(ρ)E0

3 +




0 0 0 0
0 0 0 0
0 0 1 0
0 iρ2 1 0


 P3(ρ)E1

3

Nj =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 Pj(ρ)E0

j + 0 · Pj(ρ)E1
j , j = 1, 2

N3 =




0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0


 P3(ρ)E0

3 +




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1


 P3(ρ)E1

3

Nj = 0 · Pj(ρ)E0
j +




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 Pj(ρ)E1

j , j = 4, 5

WSEAS TRANSACTIONS on SYSTEMS Kui Ting Zhang, Gen Qi Xu, Nikos E. Mastorakis

ISSN: 1109-2777 384 Issue 3, Volume 8, March 2009



Lj =




−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 P3(ρ)E0

3 + 0 · P3(ρ)E1
3 , j = 1, 2

L3 =




−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 P3(ρ)E0

3 +




0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


 P3(ρ)E1

3

Lj = 0 · P3(ρ)E0
3 +




0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0


 P3(ρ)E1

3 , j = 4, 5

Q =




0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 P3(ρ)E0

3 +




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 P3(ρ)E1

3 .

Furthermore,

∆̂(ρ)=
5∏

j=1

det(Mj)∆̂(ρ)

∣∣∣∣∣∣∣∣∣∣∣

M−1
1 0 · · · 0 0
0 M−1

2 · · · 0 0
...

...
. . .

...
...

0 0 · · ·M−1
5 0

0 0 · · · 0 I

∣∣∣∣∣∣∣∣∣∣∣

=
5∏

j=1

det(Mj)

∣∣∣∣∣∣∣∣∣∣∣

I 0 · · · 0 L1

0 I · · · 0 L2

...
...

. . .
...

...
0 0 · · · 0 I L5

N1M
−1
1 N2M

−1
2 · · · N5M

−1
5 Q

∣∣∣∣∣∣∣∣∣∣∣

=
5∏

j=1

det(Mj)

∣∣∣∣∣∣∣∣∣∣∣∣∣

I 0 · · · 0 L1

0 I · · · 0 L2

...
...

. . .
...

...
0 0 · · · I L5

0 0 · · · 0 Q−
5∑

j=1

NjM
−1
j Lj

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
5∏

j=1

det(Mj) · det[Q−
5∑

j=1

NjM
−1
j Lj ]

A direct computation shows

∆̂(ρ) =
∏5

j=1 det(Mj) · det[Q−∑5
j=1 NjM

−1
j Lj ]

=
{−1280(1− i)ρ55 + O(ρ54), <(λ) > 0,
−256(1 + i)ρ55 + O(ρ54), <(λ) < 0.

So

∆(ρ) = ∆̂(ρ)/[2iρ10 + O(ρ9)]

=
{

640(1 + i)ρ45 + O(ρ44), <(λ) > 0,
−128(1− i)ρ45 + O(ρ44), <(λ) < 0.

Thus

det[Ω(ρ)] = ∆(ρ) · det(E2) = ∆(ρ) ·∏5
j=1 det(E2

j )

=
{

[640(1 + i)ρ45+O(ρ44)]e−5(1+i)ρ, <(λ)>0,
[−128(1− i)ρ45+O(ρ44)]e5(1−i)ρ, <(λ)<0.

(17)

Therefore, we have

lim
<(λ)→+∞

det[Ω(ρ)]
ρ45 · e−5(1+i)ρ

= 640(1 + i) 6= 0 (18)

and

lim
<(λ)→−∞

det[Ω(ρ)]
ρ45 · e5(1−i)ρ

= −128(1− i) 6= 0. (19)

Hence, there are positive constants c1, c2 and h such
that

c1|ρ45e−5(i±1)ρ| 6 | det[Ω(ρ)]| 6 c2|ρ45e−5(i±1)ρ|
(20)

where ± = sign<(λ), |<(λ)| > h.
Eqs.(20) shows that | det[Ω(ρ)]| is a sine type

function on C (see [16, Definition II, 1.27, pp61]).
Levin theorem (see [16, Proposition II, 1.28]) asserts
that the set of zeros of det[Ω(ρ)] is a union of finitely
many separable sets. From the above analysis, we
have the following result.

Theorem 5 LetA be defined as before, then the spec-
trum of A distributes in a strip parallel to the imagi-
nary, that is, there is a positive constant h such that

σ(A) ⊂ {
λ ∈ C∣∣− h 6 <(λ) 6 0

}

In particular, σ(A) is an union of finite many sepa-
rated sets.

Proof: Under the assumption, we always have in-
equality (20). This together with dissipatedness of A
asserts that the spectrum ofA distributes in a strip par-
allel to the imaginary axis. In particular, the Levin’s
Theorem says that the set of zero of det[Ω(ρ)] is an
union of finite separated sets. ut

3.2 Completeness and basis property of
eigenvectors

In this subsection, we shall discuss the completeness
and Riesz basis property of (generalized) eigenvectors
of A, Firstly, we establish the completeness of (gen-
eralized) eigenvectors of operator A and then use the
spectral distribution ofA to obtain the Riesz property.
We need the following lemma

Lemma 6 Let A be the generator of a C0-semigroup
in a Hilbert space H. Assume that A is discrete and
for λ ∈ ρ(A∗), R(λ,A∗) is of the form

R(λ,A∗)x =
G(λ)x
F (λ)

, ∀x ∈ H
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where G(λ)x for each x ∈ H is a H-valued en-
tire function with order less than or equal to ρ1 and
F (λ) is a scalar entire function of order ρ2. Let
ρ = max{ρ1, ρ2} < ∞ and an integer n so that
n − 1 6 ρ < n. If there are n + 1 rays γj , j =
0, 1, . . . , n, on the complex plane

argγ0 =
π

2
< argγ1 6 argγ2 6 . . . 6 argγn =

3π

2

with arg γj+1 − argγj 6 π
n , 0 6 j 6 n − 1 so that

R(λ,A∗)x is bounded on each ray argγj , 0 6 j 6 n
as |λ| → ∞ for any x ∈ H, then Sp(A) = Sp(A∗) =
H where Sp(A) be the closed subspace spanned by all
generalized eigenvectors of A.

Now we can prove the completeness of general-
ized eigenvectors of A.

Theorem 7 Let A be defined as before. Then the
generalized eigenvectors of A is complete in H, i.e,
Sp(A) = H.

Proof: we prove the assertion by the following four
steps:
Step 1. The adjoint operator of A, A∗, has the form:

A∗(w, z) = −{(zj ,−ajwj,ssss)},∀(w, z) ∈ D(A∗)

D(A∗) =





(w, z) ∈ V,
3∑

l=1

alwl,sss(0) = 0,

w1,ss(0) = −z1,s(0), w2,ss(0) = 0,
w3,ss(0) = −z3,s(0),
5∑

l=3

alwl,sss(1) = 0,

w3,ss(1) = z3,s(1),
w4,ss(1) = w5,ss(1) = 0





.
(21)

This is a direct verification, we omit the detail. Due
to σ(A∗) = σ(A) and the symmetry of σ(A) with
respect to the real axis, we have σ(A∗) = σ(A).
Step 2. Let A0 be the operator defined by

A0(w, z) = {(zj ,−ajwj,ssss)},∀(w, z) ∈ D(A0)

D(A0) =





(w, z) ∈ V,
3∑

l=1

alwl,sss(0) = 0

w1,ss(0) = w2,ss(0) = w3,ss(0) = 0
5∑

l=3

alwl,sss(1) = 0

w3,ss(1) = w4,ss(1) = w5,ss(1) = 0





.
(22)

Then A0 is a skew adjoint operator, i.e., A∗0 = −A0.
Step 3. For λ ∈ ρ(A) and F ∈ H, R(λ,A)F
and R(λ,A∗)F are meromorphic function of
finite exponential type, i.e., ρ1 6 1, ρ2 6 1
since R(λ,A∗)F, R(λ,A)F consist of functions
sinh

√
iλ ωj , cosh

√
iλ ωj , sin

√
iλ ωj , cos

√
iλ ωj

as well as their integrations.

Step 4. The root vectors of A is complete in H.
In fact, we can assume without loss of generality that
R− ∈ ρ(A). Let λ ∈ R−, for any given F ∈ H, set
Y1 = R(λ,A∗)F, Y2 = R(λ,A∗0)F and Φ = Y1 −
Y2. Denote Φ = (w, z), Y2 = (u, v). Then Φ + Y2

satisfies (21), and Φ = (w, z) satisfies z = λw and w
satisfying





wj,ssss(s) = −λ2wj(s), j = 1, 2, · · · , 5
w1(0) = w2(0) = w3(0)
3∑

i=1

wi,sss(0) = 0

w3(1) = w4(1) = w5(1)
5∑

i=3

wi,sss(1) = 0

w1,ss(0)− λw1,s(0) = −v1,s(0)
w1(1) = w1,s(1) = 0
w2,ss(0) = w2(1) = w2,s(1) = 0
w3,ss(0)− λw3,s(0) = −v3,s(0)
w3,ss(1) + λw3,s(1) = v3,s(1)
w4,ss(1) = w4(0) = w4,s(0) = 0
w5,ss(1) = w5(0) = w5,s(0) = 0

(23)

Therefore, we have

‖Φ‖=
5∑

j=1

∫ 1

0

[
w2

j,ss(s) + z2
j (s)

]
ds

=
5∑

j=1

∫ 1

0

[
w2

j,ss(s) + λ2w2
j (s)

]
ds

=−w1,ss(0)w1,s(0)− w3,ss(0)w3,s(0)
+w3,ss(1)w3,s(1)

= λw2
1,s(0) + w1,s(0)v1,s(0) + λw2

3,s(0)
+w3,s(0)v3,s(0) + λw2

3,s(1) + w3,s(1)v3,s(1)

To calculate w1,s(0), w3.s(0) and w3,s(1), we as-
sume that P (ρ)E(s) is the fundamental matrix, then
Φ = P (ρ)E(s)C. Substitute it into the boundary con-
ditions of (6) and use (14), we get

[
B0(iρ2)P (ρ)E0 + B1(iρ2)P (ρ)E1

]
E2C = F0

with F0 = [V1, V2, V3, V4, V5]T , in which V1 =
[0,−v1,s(0), 0, 0] ,V3 = [0,−v3,s(0), 0, v3,s(1)] and
V2 = V4 = V5 = [0, 0, 0, 0]. Thus

C = [E2]−1[B0(iρ2)P (ρ)E0+B1(iρ2)P (ρ)E1
]−1

F0.

Set ρ = a + bi, if λ are located in the first quadrant of

the complex plane, ρ satisfies that
3π

4
6 argρ < π.

It’s obvious that a < 0 and b > 0. Therefore,

|eρ| → 0, |eiρ| → 0 as |λ| → +∞
and

|e−5(1+i)ρ| = |e5(b−a)−5(a+b)i| = |e5(|b|+|a|)| > e5|ρ|.
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If λ are located in the second quadrant of the complex
plane, ρ satisfies that 0 6 argρ <

π

4
. We have

|e−ρ| → 0, |eiρ| → 0 as |λ| → +∞
and

|e5(1−i)ρ| = |e5(a+b)−5(a−b)i| = |e5(|b|+|a|)| > e5|ρ|.

Similar to (17), there exists positive constants h
and M such that ‖Ω(ρ)‖ > M · |ρ45| · e5|ρ| where
|λ| > h. Hence,

‖Φ‖6‖P (ρ)‖ · ‖E(s)‖ · ‖Ω(ρ)‖−1 · ‖F0‖
6 |165ρ50i|

M · |ρ45| · e5|ρ| ·‖F0‖ 6 M1 · ‖F0‖

where |λ| > h and M1 is a positive constant. Since
the operator V defined by

V : F → F0 = V (R(λ, A∗)F ) ∈ C20

is a bounded linear operator on H, there exists a con-
stant M2 such that ‖F0‖ 6 M2‖F‖. So we have
‖Φ‖ 6 M1M2‖F‖. Therefore,

‖R(λ, A∗)F‖ = ‖Y1‖ 6 ‖Y2‖+ ‖Φ‖
6 ‖R(λ, A∗0)F‖+ M1M2‖F‖
6

( 1
|λ| + M1M2

)‖F‖, |λ| > h

This means that R(λ, A∗) is bounded on the negative
real axis. By now all conditions in Lemma 6 are veri-
fied. The desired result follows from Lemma 6. ut

To obtain the basis property of generalized eigen-
vectors of A, we need the following lemma, which
from [17] and [18].

Lemma 8 Let A be the generator of a C0-semigroup
in a Hilbert space H. Suppose that the following con-
ditions are satisfied:
1). The spectrum of A has the decomposition

σ(A) = σ1(A)
⋃

σ2(A);

2). There exists a real number α ∈ R such that

sup{<λ;λ ∈ σ1(A)} ≤ α ≤ inf{<λ;λ ∈ σ2(A)}
3). The set σ2(A) = {λk}k∈N consists of eigenval-
ues of A and is essential space finite separated (or
equivalent saying that it is an union of finitely many
separated sets).
Then there exists two T (t)-invariant closed subspaces
H1 and H2

H1 = {f ∈ H : E(λ,A)f = 0, ∀λ ∈ σ2(A)}

H2 = span{
m∑

k=1

E(λk,A)H, ∀m ∈ N}

and H1
⋂H2 = {0} with property that σ(A|H1) =

σ1(A) and σ(A|H2) = σ2(A). Moreover, there exists
a finite collection Ωk of elements in σ2(A), the corre-
sponding Riesz projector

E(Ωk,A) =
∑

λ∈Ωk

E(Ω,A)

such that {E(Ωk,A)H2}k∈N forms a subspaces Riesz
basis for H2.

As a direct application of Lemma 8, we have the fol-
lowing result.

Theorem 9 Let A be defined as above, then there ex-
ist a collection of generalized eigenvectors of A such
that it forms a Riesz basis with parentheses for H.

Proof: Set σ2(A) = σ(A) and σ1(A) = {∞}, Theo-
rem 5 ensures that all conditions in Lemma 8 are sat-
isfied. By Lemma 8, there is a finite collection Ωk of
elements in σ(A) such that {E(Ωk,A)H2}k∈N forms
a subspaces Riesz basis for H2. Theorem 7 reads that
H = H2. Therefore {E(Ωk,A)H}k∈N is a subspace
Riesz basis. ut

4 Stability Analysis
In this section, we discuss the stability of the system.
Based on Theorem 9, we need only to determine the
location of the eigenvalues of A. Firstly we study
eigenvalues of A on the imaginary axis.

Let λ ∈ iR, λ 6= 0. Since for any (w, z) ∈ D(A),
we have

<(A(w, z), (w, z)) = −a1z
2
1,s(0)−a3z

2
3,s(0)−a3z

2
3,s(1)

this implies that A(w, z) = λ(w, z) has a nonzero
solution if and only if z1,s(0) = z3,s(0) = z3,s(1) =
0, and z(x) = λw(x), and w(x) satisfy





aj wj,ssss(s) = −λ2wj(s), j = 1, 2, · · · , 5
w1(0) = w2(0) = w3(0)
3∑

i=1

ai wi,sss(0) = 0

w3(1) = w4(1) = w5(1)
5∑

i=3

ai wi,sss(1) = 0

w1,ss(0) = w1,s(0) = w1(1) = w1,s(1) = 0
w2,ss(0) = w2(1) = w2,s(1) = 0
w3,ss(0) = w3,s(0) = w3,ss(1) = w3,s(1) = 0
w4,ss(1) = w4(0) = w4,s(0) = 0
w5,ss(1) = w5(0) = w5,s(0) = 0

(24)

WSEAS TRANSACTIONS on SYSTEMS Kui Ting Zhang, Gen Qi Xu, Nikos E. Mastorakis

ISSN: 1109-2777 387 Issue 3, Volume 8, March 2009



Set ωj = 4
√

1/aj , λ = iρ2, define functions:

vj1(s) =
1
2
[coshωjρs + cosωjρs],

vj2(s) =
1
2
[sinhωjρs + sinωjρs],

vj3(s) =
1
2
[coshωjρs− cosωjρs],

vj4(s) =
1
2
[sinhωjρs− sinωjρs].

Then the general solution to the differential equation
in (24) has the form

wj(s) = bj1vj1(s)+bj2vj2(s)+bj3vj3(s)+bj4vj4(s) (25)

Substituting (25) into the boundary condition of
w1(s) yields

w1(s) =





b11[v14(1)v11(s)− v11(1)v14(s)],
as sinhω1ρ sinω1ρ = 0;

0, otherwise
(26)

substituting (25) into the boundary condition of w3(s)
yields

w3(s) =





b31[v33(1)v31(s)− v34(1)v34(s)],
as coshω3ρ cosω3ρ = 1;

0, otherwise.
(27)

Similarly, we can get

w2(s) = b23[v22(1)v23(1−s)− v21(1)v24(1−s)]
w4(s) = b43[v42(1)v43(s)− v41(1)v44(s)]
w5(s) = b53[v52(1)v53(s)− v51(1)v54(s)].

We divide them into the following cases:
Case I. w1(s) = 0 (or w3(s) = 0). From the

connective condition

w1(0) = w2(0) = w3(0),
3∑

j=1
ajwj,sss(0) = 0

we can get

b11v14(1) = b31v34(1)
= b23[v22(1)v23(1)− v21(1)v24(1)] (28)

and

−b11v11(1)/ω1+b23v21(1)/ω2−b31v34(1)/ω3 = 0 (29)

If w1(s) = 0, then w3(0) = w1(0) = 0. According to
(28), b31 = 0, that is w3(s) = 0; Similarly, if w3(s) =
0, w1(s) = 0 holds. And if w1(s) = 0 or w3(s) =
0, using (29), we have b23 = 0, that is w2(s) = 0.
Further, using the connective conditions

w3(1) = w4(1) = w5(1),
5∑

j=3
ajwj,sss(1) = 0

we get

b43[v42(1)v43(1)− v41(1)v44(1)] = 0 (30)

b53[v52(1)v53(1)− v51(1)v54(1)] = 0 (31)

and

b43[ v42(1)v44(1)− v41(1)v41(1)]/ω4

+b53[v52(1)v54(1)− v51(1)v51(1)]/ω5 = 0 (32)

Obviously, if b43 = 0 or b53 = 0, then w4(s) =
w5(s) = 0. Hence, if

vj2(1)vj3(1)− vj1(1)vj4(1)

=
1
2
[sinωjρ coshωjρ− cos ωjρ sinh ωjρ] = 0, j = 4, 5

, there exist nonzero solutions. Define the solution set
D = {θi| tan θi = tanh θi, i = 1, 2, · · · }. If there
are no θm and θn such that θm/θn = ω4/ω5, eqs. (24)
has only zero solution.

Case II. ρ ∈ R satisfies

sinhω1ρ sinω1ρ = 0, coshω3ρ cosω3ρ = 1.

In this case, one may have that w1(s) 6= 0 and
w3(s) 6= 0. Then there exists a k ∈ N such that
ω1ρ = kπ and

cosh
ω3

ω1
kπ cos

ω3

ω1
kπ = 1.

From discussion we see that the following asser-
tion holds true.

Theorem 10 LetA and ωj , D be defined as before, if
the following conditions are satisfied:
1). There are no θm and θn such that θm/θn = ω4/ω5

2). There is no k ∈ N such that

cosh
ω3

ω1
kπ cos

ω3

ω1
kπ = 1

Then there exist no eigenvalues on the imaginary axis,
and hence the system is asymptotically stable.

5 Conclusion
In this paper, we design the feedback controllers for a
complex network of Euler-Bernoulli beams and then
proved that the closed loop system is well posed. We
show further that the root vectors of the system opera-
torA are completeness, and there exists a sequence of
the root vectors that forms a Riesz basis for the state
space H. By the detailed analysis we get the asymp-
totic stability of the system. Note that the Riesz basis
property implies that the system satisfies the spectrum
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determined growth condition. Hence the system is ex-
ponentially stable if and only if the imaginary axis is
not the asymptote of the eigenvalues. In further work
we shall analyze the exponential stability of the sys-
tem.
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