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Abstract— In the real situations, decision makers are often
faced to a plurality of objectives and constraints in a world of im-
precise data about the preferences of agents, the local constraints
and the global environment. In a fuzzy environment, fuzzy linear
programming (FLP) and fuzzy goal programming (FGP) prob-
lems incorporate fuzzy objective functions and constraints, fuzzy
parameters and variable sets. Mathematical operators are used
to aggregate the fuzzy objective functions and constraints. The
optimal solution corresponds to the maximum degree of the mem-
bership function in the decision set. The resolution of the multi-
objective FLP consists in reducing the vector optimization of
objective functions to a single objective. Weighted goal program-
ming problems consider the relative importance of objectives.
This contribution surveys essential techniques with numerical
applications to simple economic problems. The computations are
carried out using the software Mathematicar 7.0.1 and the
subpackage Fuzzy Logic 2, from which selected primitives are
proposed.

Index Terms— fuzzy linear programming problem, member-
ship function, decision set, multiobjective optimization

I. INTRODUCTION

DECISION makers (DMs) have often to decide in an
environment where the multiple objectives and con-

straints may be uncertain with mostly imprecise data. The
fuzzy multiobjective optimization modeling considers these
particular circumstances with fuzzy numbers, fuzzy objectives
and soft constraints. Basic problems and some extensions will
be presented with numerical examples, using the package
Mathematicar. The basic concepts are firstly considered
for single and multiple objectives problems with a simple
application to the well-known trade balance problem with
two fuzzy objectives. Secondly, the fuzzy multiobjective op-
timization model is presented in a context, where the fuzzy
numbers (FNs) and soft constraints are simply defined. Some
extensions are given with application. Thirdly, the presentation
is extended to fuzzy goal programming problems. Other shapes
for the fuzzy membership functions are introduced and the ob-
jectives are weighted. The well-known production-marketing
problem will illustrate this more realistic approach.

A. Fuzzy decision sets

In practical situations, DMs may not be able to specify exact
objectives and restrictions of a programming problem. Let X
be a set of possible actions, {G̃j (j ∈ Nn)} a set of fuzzy
objectives and {C̃i (i ∈ Nm)} a set of fuzzy constraints.

Definition 1: Fuzzy decision. Let the n fuzzy objectives
G̃1, . . . , G̃n with membership grades µG̃j

, j ∈ Nn and the
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m fuzzy constraints C̃1, . . . , C̃m in a space of alternatives X
with membership grades µC̃i

, i ∈ Nm. The decision set is the
intersection of the given fuzzy objectives and constraints. We
have a fuzzy set D̃ = G̃1∩G̃2∩ . . .∩G̃n∩ C̃1∩ C̃2∩ . . .∩ C̃m

with µD̃ = µG̃1
∧ µG̃2

∧ . . . ∧ µG̃n
∧ µC̃1

∧ µC̃2
∧ . . . ∧ µC̃m

.

Then, according to the Bellman - Zadeh symmetry princi-
ple [2], a fuzzy decision set is achieved by an appropriate
aggregation of the fuzzy sets, such as with a min-operator
[6]. In condensed form, the decision set is defined by D̃ =(⋂n

j=1 G̃j

)
∩

(⋂m
i=1

C̃i

)
, with a membership function (MF)

µD̃ : X 7→ [0, 1] given by µD̃(x) =
∧n

j=1 µG̃j
(x) ∧∧m

i=1
µC̃i

(x). One DM can determine x∗ ∈ X to be the
optimal solution when µD̃(x∗) = sup µD̃(x) for all x ∈ X .
Suppose (as in [2], [22], [24]) that the objective should be
”substantially larger” than 10 and that the constraint imposes
that x should be ”in the vicinity” of 10. The objective will
have a sigmoidal shaped MF µG̃, which expression is

µG̃(x) =

{
0, x ≤ 10
1/(1 + (x− 10)−2), x > 10.

The constraint will have a bell-shaped MF µC̃ which expres-
sion is

µC̃(x) =
1

1 + (x− 10)4
.

The MF of the fuzzy decision set D̃ will then be µD̃(x) =
µG̃(x) ∧ µC̃(x) such that

µD̃(x) =


1/(1 + (x− 10)4), x > 11
1/(1 + (x− 10)−2), 10 < x ≤ 11
0, x ≤ 10.

The highest degree of the MF is

x∗ = arg maxx

(
min{µG̃(x), µC̃(x)}

)
. A maximum,

reached at (11, 1
2 ) is shown in Fig.1. The Mathematica

primitives of this figure are framed hereafter.

B. Fuzzy vector-maximum problem
The classical maximizing LP problem states : maximize a

single objective linear problem over a bounded feasible region
X = {x | A.x ≤ b}(x ∈ Rn

+, b ∈ Rm, A ∈ Rm×n) defined
by all the constraints. We have the problem : maxx∈X z =
c>.x (c, x ∈ Rn). However, in the practical situations
DMs are confronted to uncertainties about the objectives and
constraints. Thus, the value z = c>.x will ”exceed at least”
a given objective, and the restrictions 1 Ai.x ≤ bi (i ∈ Nm)

1The symbol Ai (i ∈ Nm) denotes the ith row of the matrix Am×n.
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Fig. 1. Fuzzy decision set

will be ”almost satisfied”. The fuzzy LP problem (FLP) may
be written : m̃ax c>.x subject to Ai.x . bi, x ≥ 0. With
the same MFs, the FLP may also be written : m̃ax c>.x
subject to Ai.x ≤ b̃i, x ≥ 0, where the linguistic ”roughly
less than bi” has been replaced by the ”vicinity of bi”.
In vector-maximum problems, multiple objectives are max-
imized over a bounded feasible region of constraints. The
multiobjective problem (MOP) [11], [15] is maxx∈X Z(x) =
Ck×n.x where Z(x) states a k-vector valued objective function
(z1(x), . . . , zk(x))>.

Definition 2: Pareto optimal solution. Let {Z(x)|x ∈ X}
be a vector-maximum problem, x∗ ∈ X is an efficient Pareto
optimal solution, if and only if, there is no x such that zj(x) ≥
zj(x∗)(j ∈ Nk) and zj(x) > zj(x∗) for at least one j.

Theorem 3: Scalarization Theorem. A solution x∗ ∈ X is
efficient, if and only if, there is a vector λ ∈ Rk, λj > 0 (j ∈
Nk) such that x∗ solves maxx∈X

∑k
j=1 λjCjx.

Given a problem {C.x & Z, s.t. A.x ≤ b, x ≥ 0} with
fuzzy objective functions and crisp constraints, the resolution
may consist in solving single objective linear programs using
each objective Cj .x, (j ∈ Nk). We can obtain an upper bound
U0

j and a lower bound L0
j of the jth Cj .x over the feasible

region X ⊂ Rn. The jth MF (j ∈ Nk) is expressed as

µG̃j
(Cj .x) =


1, Cj .x ≥ U0

j

(Cj .x− L0
j )/(U0

j − L0
j ), L

0
j ≤ Cj .x ≤ U0

j

0, Cj .x ≤ L0
j .

The fuzzy set of objectives 2 is G̃ =
⋂k

j=1 G̃j and µG̃(x) =∧k
j=1 µG̃j

(x). The decision set is defined by D̃ = G̃∩X. The
optimal solution maxx∈X µD̃(x) is an efficient solution, which
is obtained for the greatest degree of satisfaction α.

Theorem 4: Weak potential solution. If the solution x∗ can
be obtain from solving:

maxx,α α

subject to
Cj .x− L0

j

U0
j − L0

j

≥ α, (j ∈ Nk)

x ∈ X, x ≥ 0, α ∈ (0, 1],

then x∗ ∈ X is a weak potential solution of the problem 3 4.

C. Trade balance problem with multiple fuzzy objectives

A manufacturer produces two goods A and B (taken from
[11], [23], [24]) : A yields a unit profit of 2 and B, a unit
profit of 1; A needs imported materials. The DMs have two
objectives : maximize the profit and maximize the performance
of the trade balance (in terms of net exports). The FLP problem
for x = (x1, x2)> is

maxx C.x & Z
subject to
A.x ≤ b,

x ≥ 0,

where

C =
(

2 1
−1 2

)
, A =


−1 3
1 3
4 3
3 1

, b =


21
27
45
30


The solution space 5 , is shown in Fig.2 with individual

optima in x1 and x4: x1 is optimum w.r.t. the second objective
z2(x) = −x1 +2x2 and x4 is optimum w.r.t. the first objective
z1(x) = 2x1 + x2. The optimal values are z1(x4) = 21 >
z1(x1) = 7 and z2(x1) = 14 > z2(x4) = −3. The
Mathematica primitives of this figure are framed hereafter.
Two figures are plotted successively : the first plot represents
the region corresponding to the constraints, the second plot
delimitates the feasible region of the problem. The A[[1]]
to A[[4]] are the rows of the matrix A and x states for the
vector of variables. The nondecreasing ramp-type MFs of the

2Other real-valued functions have been proposed in the literature : a
weighted sum of objectives

Pk
j=1 αj(zj(x))βj , αj > 0, βj > 0 or a

product of objectives
Qk

j=1 αj(zj).This aggregation may also be based on
the DM’s preferences with utility functions.

3The two-phase approach for solving FLP problems [8] does not only
achieve the highest membership degree (as with the max-min operator’
solution), but also realizes the better utilization of each constraint.

4Werners’interactive approach [20] for solving multiple objective FLP
problems considers a situation where the DM cannot determine the exact
membership function a priori. The system then suggests the functions given
the available information, according to interactive changes.

5The coordinates of the extreme points in the solution space are x0 =
(0, 0), x1 = (0, 7), x2 = (3, 8), x3 = (6, 7), x4 = (9, 3), x6 = (3.4, .2).
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Fig. 2. Feasible solution region

objectives (Fig.3) are

µ1(z1(x)) =


1, z1(x) > 21
(−7 + z1(x))/14, 7 ≤ z1(x) ≤ 21
0, z1(x) < 7

µ2(z2(x)) =


1, z2(x) > 14
(3 + z2(x))/17, − 3 ≤ z2(x) ≤ 14
0, z2(x) < −3

The Mathematica primitives for of this figure are framed
hereafter. Thus the preference µ1(x), w.r.t. the profit, rises
from 0 for a profit of 7 to 1 for a profit of 21, and similarly
the preference µ2(x), w.r.t. the trade balance, rises from 0 for
imports of 3 to 1 for exports of 14.

Using the Bellman-Zadeh’s max-min operator, the formal
problem which satisfies the constraints and the objective, with

Fig. 3. MFs of the objectives for a maximizing problem

the maximum degree α, is

maxx,α α

subject to

µ1(x) ≡ 1− 21− 2x1 − x2

14
≥ α,

µ2(x) ≡ 1− 14 + x1 − 2x2

17
≥ α,

g1(x) ≡ −x1 + 3x2 ≤ 21,

g2(x) ≡ x1 + 3x2 ≤ 27,

g3(x) ≡ 4x1 + 3x2 ≤ 45,

g4(x) ≡ 3x1 + x2 ≤ 30,

x ≥ 0.

The solution in Fig.4 is x∗ = {5.03, 7.32} with a satisfaction
level of α∗ = 74 per cent. The optimal solution yields a profit
of 17.38 and a net export of 4.48.

An animation of the 3D figure is obtained with the framed
primitives hereafter. The primitives render Fig.5.

II. FUZZY MULTIOBJECTIVE OPTIMIZATION

A. Basic model with application
Let a minimizing problem MOP with all crisp coefficients,

k objectives, m rigid constraints, and n variables [7], [12],
[21]. We have

min z = C.x (C ∈ Rk×n, x ∈ Rn
+)

subject to
B.x ≥ b0 (B ∈ Rm×n, b0 ∈ Rm).

In a cost minimizing problem, C will denote the k × n
matrix of costs, the m×n matrix B technical coefficients, b0

the m demands and x the n variables.
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Fig. 4. Solution set and maximizing solution

Fig. 5. Animation of the solution set

Definition 5: Efficient solution. Let x∗ and y∗ two feasible
solutions of a minimizing MOP, x∗ is more efficient than y∗
(x∗ � y∗) if zi(x∗) ≤ zi(y∗) for all k and zj(x∗) < zj(y∗)
for some j.

According to the symmetric method, the solution algorithm
will have the following steps:

a) Step 1 : Fuzzify the objectives: The fuzzication of
the objectives consists in determining an acceptable level (or
aspiration level) for the achievement of the k objectives. For
each of the k objectives, one aspiration level may be obtained
when solving k LP problems. Each single-objective problem

will determine a lower bound z∗j from min
{

z∗j = Cj .x | B.x ≥

b0, x ≥ 0
}

. The jth cost objective will be replaced by the

fuzzy objective Cj .x . z∗j . The overall objective will then be
to find a solution which minimizes the single worst deviation

of Z from the aspiration level Z∗. Let A =
(

C
−B

)
and

b =
(

Z∗
−b0

)
, we have the FLP problem:

min {”the single worst deviation of Z from Z∗”}
subject to
A.x . b,

x ≥ 0.

b) Step 2 : Define one MF for each objective: Let z∗j
be the lower bound (the best possible value) and z′j the worst
possible value (upper bound), the jth fuzzy objective may be
characterized by the following linear MF:

µj(zj) =


1, zj ≥ z∗j , (j ∈ Nk)
1− (z∗j − zj)/(z∗j − z′j), z′j ≤ zj ≤ z∗j (j ∈ Nk)
0, zj ≤ z′j , (j ∈ Nk).

Let δj be the deviation of an isosceles triangular b̃j , the MF
of the jth objective would be defined by

µj(Cj .x) =


1−

∣∣(Cj .x− bj)/δk

∣∣,
if Cj .x ∈ [bj − δj , bj + δj ] (j ∈ Nk)

0, otherwise.
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c) Step 3 : Solve using the max-min operator: The prob-
lem is solved by maximizing the minimum MF. Introducing
α =

⋂k
j=1 µj(Cj .x), the FLP problem with linear MFs is

converted to the crisp equivalent LP problem:

maxx,α α

subject to

µj(Cj .x) = 1−
z∗j − Cj .x
z∗j − z′j

, (j ∈ Nk)

B.x ≥ b0,

x, α ≥ 0.

B. Parametric programming in fuzzy optimization

Let a vector-maximum linear problem with k fuzzy objec-
tives of n crisp variables and linear constraints, such as

m̃axx Z(x) = Cj .x (j ∈ Nk, x ∈ Rn
+, C ∈ Rk×n)

subject to
Ai.x ≤ bi (i ∈ Nm).

This problem may be transformed to a partially FLP problem
with only one of the k objective functions, the remaining
k− 1 fuzzy objectives being placed into the set of constraints
(according to [3]). Choosing the first objective and transferring
the other objectives, we have to consider:

m̃axx z1(x) = C1.x,

subject to
Cj .x & z∗j , (j ∈ Nk \ {1})

Ai.x ≤ bi, (i ∈ Nm)
x ≥ 0,

where the aspiration level equals the upper value of z∗1 with a
tolerance of z∗1 − z′1, the tolerances in fuzzy constraints being
pl = z∗l − z′l. The MFs of the objectives are defined by

µj(Cj .x) =


1, Cj .x ≥ z∗j
1− (z∗j − Cjx)/(z∗j − z′j), z′j ≤ Cj .x ≤ z∗j
0, Cjx ≤ z′j

Then we have to solve the parametric programming problem:

maxx z1(x) = C1.x,

subject to
Cj .x ≥ z∗j − α(z∗j − z′j), (j ∈ Nk \ {1})

Ai.x ≤ bi, (i ∈ Nm)
x ≥ 0.

This programming technique will provide a fuzzy decision
dependent on the preference parameter α.

C. Reexamination of the trade balance problem

Suppose that the DM decides to transfer the second ob-
jective (trade balance performance) into the crisp constraints
set of the problem. Since we have calculated the objectives
intervals z′1 = 7 to z∗1 = 21 for profits and z′2 = −4 to

z∗2 = 14 for the performance of the trade balance, we have to
solve the crisp problem

maxx 2x1 + x2

subject to
−x1 + 2x2 ≥ 14− 17α,

−x1 + 3x2 ≤ 21,

x1 + 3x2 ≤ 27,

4x1 + 3x2 ≤ 45,

3x1 + x2 ≤ 30,

x1, x2 ≥ 0.

The α-parameterized solutions xα = (x1α, x2α) are

xα =


( 48+51α

11 , 101−68α
11 ), 6

17 < α ≤ 1
( 12+51α

5 , 41−17α
5 ), 1

17 < α ≤ 6
17

(51α, 7 + 17α), 0 < α ≤ 1
17 .

Fig. 6. Fuzzy decision set

The fuzzy decision set is shown in Fig.6. The Mathematica
primitives for this figure are framed hereafter.

The mu01, mu02 and mu03 are the (linear) pieces of a
nonlinear objective function with parameter α. The manufac-
turer’s decision is to produce 5.03 of good A and 7.32 of good
B, with a satisfaction degree of 74.2 per cent.
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III. FUZZY GOAL PROGRAMMING

A. Goal programming with fuzzy triangular numbers

A fuzzy goal programming (FGP) problem consists [1], [9]
in the following problem with fuzzy equality constraints:

find x
such that

Ai.x ∼= bi, (i ∈ Nm)
x ≥ 0,

where A states a matrix of unit costs or profit and technical
coefficients, and b a vector of goal and available resources.
The MFs µi(Ai.x) are assumed to be symmetrically triangular
such as with

µi(Ai.x) =


1 + (Ai.x− bi)/di, bi − di ≤ Ai.x < bi

(bi − Ai.x)/di − 1, bi ≤ Ai.x ≤ bi + di

0, Ai.x < bi − di or Ai.x > bi + di

The Mathematica primitives of a triangular fuzzy number
(TFN) are framed hereafter. In Fig.7, a TFN is defined by

ũ = (u, u, ū) where u 6= ū. The crisp number u is the
most preferred value, u − u is the lower limit pessimistic
evaluation and u + ū is the upper limit optimistic evaluation
6.According to the MF for some i, the optimization problem

is : maxx,α

{
α = min

{
(Ai.x − bi)/di − 1

}}
such that

bi − di ≤ Ai.x < bi, x ≥ 0. The complete auxiliary program

Fig. 7. TFN ũ = (u, u, ū)

6The Fuzzy Logic subpackage provides a number of functions
to create particular fuzzy sets. Creating a triangular MF is
achieved by FuzzyTrapezoid[a,b,c,d]. Hence, we will have here
FuzzyTrapezoid[5,10,10,20] for the TFN ũ = (10, 5, 10).

is
maxx,α α

subject to
1 + (Ai.x− bi)/di ≥ α,

(bi − Ai.x)/di − 1 ≥ α,

bi − di ≤ Ai.x ≤ bi + di,

α ∈ (0, 1], x ≥ 0.

B. Fuzzy weighted goal programming problem

For the FGP problem ”find the variables x to satisfy the
goals gi(x) & gi, subject to the constraints A.x ≤ b, x ≥ 0”,
we may have the weighted additive model [8], [13], [19]

maxxV (µ) =
k∑

i=1

wiµi such that
k∑

i=1

wi = 1

subject to

µi = (gi(x)− L0
i )/(gi − L0

i ), (i ∈ Nk)
A.x ≤ b,

x ≥ 0, µi ∈ [0, 1] (i ∈ Nk),

where V (µ) is a weighted decision function, L0
i the lower

tolerance limit of the fuzzy goal gi(x) . gi. DMs may be
able to provide relative weights wi for the fuzzy goals. Their
importance will be reflected in the composite MF µwi(x), x ∈
R. The weighted contribution of the ith goal is denoted by
µwi

(µi(x)). Using the min-operator, the decision set’s MF will
be µD̃(x) =

∧m
i=1

µwi
(µi(x)), x ∈ R. The maximal decision

x∗ is achieved for maxx≥0{mini{(µwi
◦ µi)(Ai.x)}}.

C. Production - Marketing Problem with fuzzy weights

A manufacturer (taken from [12]) produces two goods A and
B, whose unit profit are respectively 80 and 40. According to
a marketing survey, the sales for A and B would be about 6
for A and about 4 for B, with an identical maximum deviation
of 2. Moreover, the DMs anticipate a profit about 630 with a
maximum deviation of 10. The FGP problem of this example
is

find x
such that

g1(x) ≡ A1.x = 80x1 + 40x2 = 6̃30,

g2(x) ≡ A2.x = x1 = 6̃,

g3(x) ≡ A3.x = x2 = 4̃,

x ≥ 0,

where g1 is the profit, g2 and g3 the sales expectations. Let
the MFs of the fuzzy priorities be defined by:

µw1(x) =

{
5µ1(x)− 4, .8 ≤ µ1(x) ≤ 1
0, otherwise.

µwi(x) =


0, µwi

< .6, i = 2, 3
5µi(x)− 3, .6 ≤ µi(x) ≤ .8, i = 2, 3
1, µi(x) > .8, i = 2, 3

With the triangular MFs µ(g1) = (630, 10, 10), µ(g2) =
(6, 2, 2) and µ(g3) = (4, 2, 2), we then obtain the composite
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MFs of the Fig.8. The Mathematica primitives of this figure
are framed hereafter.

(µw1 ◦ µ1)(A1.x) =



316− 40x1 − 20x2,

630 < 80x1 + 40x2 ≤ 632
−314 + 40x1 + 20x2,

628 < 80x1 + 40x2 ≤ 630
0, elsewhere.

(µw2 ◦ µ2)(A2.x) =


1, 5.6 < x1 ≤ 6.4
17− 2.5x1, 6.4 ≤ x1 ≤ 6.8
−13 + 2.5x1, 5.2 ≤ x1 ≤ 5.6
0, elsewhere.

(µw3 ◦ µ3)(A3.x) =


1, 3.6 < x2 ≤ 4.4
12− 2.5x2, 4.4 ≤ x2 ≤ 4.8
−8 + 2.5x2, 3.2 ≤ x2 ≤ 3.6
0, elsewhere.

The auxiliary crisp goal programming is

Fig. 8. Composite MFs µw ◦ µ

maxx,α α

subject to
316− 40x1 − 20x2 ≥ α,

−314 + 40x1 + 20x2 ≥ α,

17− 2.5x1 ≥ α,

−13 + 2.5x1 ≥ α,

12− 2.5x2 ≥ α,

−8 + 2.5x2 ≥ α,

0 < α ≤ 1, x1 ≥ 0, x2 ≥ 0.

The company will then produce x∗1 = 6.1 of good A and
x∗2 = 3.6 of good B with a plenty satisfactory level (α∗ = 1).
This company earns a profit of 630.

IV. CONCLUSION

This introductive self-contained presentation is deliberately
application-oriented. It aims to be an useful and attractive
support for academicians and practitioners. The basic tech-
niques with some extensions and simple examples introduce
to a vast and various domain of Operations Research. This
presentation may be easily transposed to other examples and
larger concrete situations of the real world. The mathematical
software Mathematicar with its Fuzzy Logic 2 package,
will be adequate for these practical developments. Some
primitives of the software are given for illustrating the power
of such a software.

APPENDIX

A. Single objective reference model

1) Elementary single-objective FLP problem: Let the max-
imizing LP problem with fuzzy (imprecise) resources be

maxx c>.x, (c, x ∈ Rn)
subject to

Ai.x ≤ b̃i, (i ∈ Nm)
x ≥ 0.

In a production scheduling problem, c will denote the n
costs, the m × n matrix A technical coefficients, b the m
resources and x the n variables.

2) Solution algorithm: The algorithm of the symmetric
method consists in the following steps

a) Step 1 : Define the MFs and determine the fuzzy
feasible set: Let the ith resource bi being defined by the
interval [bi, bi +pi] with tolerance pi.The MFs of the fuzzy b̃i

are of the ramp-type (x ∈ R):

µi(x) =


1, x ≤ bi

1− (x− bi)/pi, bi ≤ x ≤ bi + pi

0, x ≥ bi + pi.

The degree Di(x) to which x satisfies the ith non rigid C̃i

constraint is then µi(Ai.x). All the µi’s define fuzzy sets on
Rn and the MF of fuzzy feasible set is

∧m
i=1

µi(Ai.x).
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b) Step 2 : Define the fuzzy set of the optimal values:
The objective admits a lower and an upper bound respectively

equal to: max
{

z′ = c>.x | Ai.x ≤ bi (i ∈ Nm), x ≥ 0
}

and

max
{

z∗ = c>.x | Ai.x ≤ bi + pi (i ∈ Nm), x ≥ 0
}

. The

MF of the single fuzzy objective G̃ is then defined (x ∈ R)
by

µG̃(c>.x) =


1, c>.x ≥ bi

(c>.x− z′)/(z∗ − z′), z′ < c>.x < z∗

0, otherwise.

c) Step 3: Solve using the max-min operator: The prob-
lem max (

⋂m
i=1

Ci) ∩ G̃ is described by the equivalent crisp
LP [4], [10]:

maxx,α α

subject to

µG̃(c>x) = (c>.x− z′)/(z∗ − z′) ≥ α ,

µi(Aix) = 1− (Ai.x− bi)/pi ≥ α, (i ∈ Nm)
x, α ≥ 0.

3) Extension to nonsymmetric triangular fuzzy numbers:
Suppose that all the coefficients of the constraints are nonsym-
metric TFNs ãij = (aij , aij−aij , aij +āij), and b̃i = (bi, bi−
bij , bi + b̄i). According to the operations on the TFNs (using
a simple partial order such that ũ ≤ ṽ ⇔ max{ũ, ṽ} = ṽ), we
have to solve the following crisp LP:

maxx c>.x
subject to

Ai.x ≤ bi, (i ∈ Nm)
(Ai − Ai).x ≤ bi − bi, (i ∈ Nm)
(Ai + Āi).x ≤ bi + b̄i, (i ∈ Nm)

x ≥ 0.

4) Extension to soft constraints: Let a maximizing problem
with triangular coefficients (excluding the objective function)
and soft constraints. We have

maxx c>.x (c, x ∈ Rn)
subject to

Ãi.x . b̃i, (i ∈ Nm)
x ≥ 0.

A DM will admit that the constraints may not be completely
satisfied. The FNs t̃i will represent the allowed maximum
violation of the ith constraint. Let << be a ranking relation
between FNs, the auxiliary parametric LP problem is

maxx c>.x (c, x ∈ Rn)
subject to

Ãi.x << b̃i + t̃i(1− α), (i ∈ Nm)
x ≥ 0, α ∈ (0, 1].

The DM may choose different rules to compare FNs [6], [16],
[17]. For ordering the FNs taken from F(R), a ranking function
< is defined, which maps each FN into the real line such as

< : F(R) 7→ R. We can then define some orders on F(R) by
the following rules <1 and <2: x̃ <<1 ỹ ⇔ x ≤ y (rule 1)
or x̃ <<2 ỹ ⇔ x̄ ≤ y (rule 2). Different solutions will then
be obtained according to each rule.

5) Numerical example: This numerical example is due to
Delgado et al.[5]. The FLP problem is

maxx1,x2 z = 5x1 + 6x2

subject to

3̃x1 + 4̃x2 . 1̃8,

2̃x1 + 1̃x2 . 7̃,

x1, x2 ≥ 0.

The data may take the form of tensors, such as in Mathematica
in the frame hereafter. According to the rule that the DM

will choose, two different auxiliary problems and solutions
are obtained. We have
rule 1 : x̃ <<1 ỹ ⇔ x ≤ y.

maxx1,x2 z = 5x1 + 6x2

subject to
3x1 + 4x2 ≤ 18 + 3(1− α),

2x1 + x2 ≤ 7 + (1− α),
x1, x2 ≥ 0, α ∈ (0, 1]

The parametrized solution with rule 1 given by Mathematica
is shown hereafter.
rule 2 : x̃ <<2 ỹ ⇔ x̄ ≤ y.

maxx1,x2 z = 5x1 + 6x2

subject to
4x1 + 5.5x2 ≤ 16 + 2.5(1− α),

3x1 + 2x2 ≤ 6 + .5(1− α),
x1, x2 ≥ 0, α ∈ (0, 1]

The parametrized solution with rule 2 given by Mathematica
is shown hereafter.
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B. Extensions of the basic multiobjective model

Any S-shaped piecewise linear MF can be expressed
uniquely as a union of only concave subfunctions [14], [21].
A piecewise linear concave MF of type I (union of concave
subfunctions) is represented in Fig.9A. This nonlinear MF is
the intersection of two ramp-type MFs in Fig.9B and Fig.9C.
Let b′1k = b1k − δ1k, b′2k = b2k − δ2k, where δ1k and δ2k

Fig. 9. Concave piecewise linear MF decomposition

denote deviations. The nonlinear concave MFs will then be
written

µk(Ck.x) =


1, Ck.x ≥ b2k

1− (b2k − Ck.x)/δ2k, Ck.x ∈ [b0k, b2k),
1− (b1k − Ck.x)/δ1k, Ck.x ∈ [b1k − δ1k, bk),
0, otherwise.

C. Fuzzy Logic package in Mathematica

The Fuzzy Logic 2 package [18] allows the Mathematica
software to work with fuzzy sets and fuzzy relations. This
introductive presentation will be limited to our examples. It
will be centered on the following two classes of questions :
How to create, to plot and to intersect fuzzy sets ? How to
create, to plot and to intersect fuzzy relations ?

1) Fuzzy sets: The Fuzzy Logic package provides
a number of functions to create different types of
fuzzy sets. A fuzzy set object is of the form :
FuzzySet[{{x1, µ(x1)}, . . . , {xn, µ(xn)}}], where x1, . . . , xn

are the elements of the universal space and µ(x1, . . . , µ(xn)
the membership grades.

The framed primitives for plotting such fuzzy sets are shown
thereafter. The types A to F of fuzzy sets are shown in Fig.10.
The fuzzy set A corresponds to a user-defined ramp-type MF.
The fuzzy set B has a sigmoidal MF with parameters c and s,
where s controls the slope at the crossover point c. The fuzzy
set C shows a bell-shaped MF centered at c, with crossover
points c ± w and slopes of ±s/(2w) at these points. The
fuzzy set D has a trapezoidal MF with parameters a,b,c,d in
increasing order, and h in the interval [0,1]. The fuzzy sets E
and F have a triangular MF with two presentations since the
plot may be joined or unjoined. The primitives corresponding

Fig. 10. Different types A to F of fuzzy sets

to such cases are framed hereafter. The intersection of the
fuzzy sets FS2 and FS3 (as in Fig.1) is shown in Fig.11, using
the standard type Min 7. The Mathematica Epilog function
shows the plot of the original fuzzy sets in Fig.11.

2) Fuzzy relations: A fuzzy relation R is defined in the
Cartesian product of two fuzzy sets V and W . The product
V ×W takes values from the closed interval [0, 1]. A fuzzy
relation can be represented by pairs of elements and member-

ship pairs R =
{
{{vi, wj}, R(vi, wj)}, i ∈ Nn, j ∈ Nm

}
.The

elements are ordered pairs {v1, w1}, {v1, w2}, . . . , {vn, wm}.
These elements are again grouped with their membership
grades R11, R12, . . . , Rnm. The MFs of the trade balance
problem may illustrate these fuzzy relations. For the first
objective, a linear piecewise function is defined and a first
fuzzy relation R1 is created as with the framed primitive
hereafter. The surface plot of the first fuzzy relation is shown
in the 3D Fig.12. For the second objective, a linear piecewise
function is also defined and a second fuzzy relation R2 is

7Other intersection types are given in Fuzzy Logic : Hamacher[v],
Frank[s], Yager[w], DuboisPrade[a] or Dombi[alpha].
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Fig. 11. Min intersection of fuzzy sets

Fig. 12. Surface plot of the first fuzzy relation

created as with the framed primitive hereafter. The surface

plot of the second fuzzy relation is shown in the 3D Fig.13.
The intersection of the two relations in V × W is a fuzzy
relation such that for all (u, v), we have (R1 ∩ R2)(v, w) =
min{R1(v, w), R2(v, w)}. The surface plot of the intersection
is shown in the 3D Fig.14.
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André A. Keller is Professor in Mathematical Eco-
nomics of the Université de Haute Alsace (UHA)
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