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Abstract: Nowadays, optimization problems with a few thousands of variables become more common. Population-
based algorithms, such as Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithms
(GAs), and Evolutionary Strategies (ES) are commonly used approaches to solve complex large-scale problem:
from science and engineering. These approaches all work with a population of candidate solutions. On the othel
hand, for high-dimensional problems, no matter what is the individuals’ distribution, the population is highly
sparse. Therefore, intelligent employment of individual candidates can play a crucial role to find optimal solu-
tion(s) faster. The most majority of population-based algorithms utilize pseudo-random population initialization
when there is no a priori knowledge about the solution. In this paper, a center-based population initialization is
proposed and investigated on seven benchmark functions. The obtained results are compared with the results «
Normal, Pseudo Random, and Latin Hypercube population initialization schemes. Furthermore, the advantage:
of the proposed center-based sampling method are investigated by a mathematical proof and also Monte Carl
(simulation) method. The detailed experimental verifications are provided for problems0yish0, and1000
dimensions.

Key—Words: Population Initialization, Center-Based Sampling, Evolutionary Algorithms, High-Dimensional
Search Spaces, Large-Scale Problems.

1 Introduction approach, called Center-Based Sampling, for high-
dimensional search spaces is proposed. Center-based

Population-based algorithms are utilized to sol@mpling tries to generate candidate solutions which
real-world complex problems. These algorithmi@Ve @ higher chance to be closer to an unknown
start with a randomly generated candidate solutiop@ution. Given mathematical proofs and reported
when there is no a priori knowledge about the locglmulation results in this paper support the proposed

tion of the global optima. We call this process pop§@MPling method. - Furthermore, this method has
lation initialization. een utilized to initialize the population for seven

benchmark functions (with dimensions &, 500,
1d1000), then its results have been compared with
She results of three other initialization methods. The

best found objective function value. Effects of pogilgamed results for the proposed method are promis-

ulation initialization are noticeable when we solve
real-life problems (mostly expensive optimizations) Sometimes the sampling methods are used not
and when the algorithm has been stopped prenoady in the initialization stage, but also during the
turely because of a long computation time [1]. Rearch, learning, and optimization processes. To
means the best found objective function value is difkention some examples, Random Search (RS) and
ferent just in early generations. Generally, the éfode-Pursing Sampling (MPS) methods [6, 7] use
fects of population initialization diminish when thesampling during the optimization process. The main
dimensionality of the search space increases andtbacern of this paper is that the use of the center-
population becomes highly sparse [1]. In the currefatcused populations can help us to solve large-scale
paper, to address this shortcoming, a new samplipgpblems more efficiently.

There are various sampling methods (such as N
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The paper is organized as follows: uniform cowlations. In order to tackle with high-dimensional
erage in high-dimensional search spaces is invesgtioblems efficiently, obviously, we must utilize pop-
gated in Section 2. The proposed sampling thearlation’s individuals smartly.
with all corresponding simulation results and a math-
ematical proof are presented in Section 3. Exper-
imental demonstrations for center-based population g
initialization are conducted in Section 4. The paper
is concluded in Section 5.
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Figure 1: Uniform coverage fot D search space

with 10 individuals.
2 Uniform Coverage in

High-Dimensional Search Spaces

In this section, the varying of population’s uniform BP0 0 0 0 0 0 0 0 0
coverage is investigated on different search space di- o 0 0 0 0 0 0 o o0
mensions. Assume the dimension of the problem is
D and the selected population sizeNg = 10 x D
(which generally is a large size for any population- p o 0o 0 o 0o 0 0 0 0
based algorithm). For one dimensional space, we
haveD = 1 andN,, = 10; suppose we distribute in-
dividuals of the population with equal distance (uni- p o 0o 0o 0 0 0 0 0 0
formly) over the search interval (e.glq,b], Fig- o o0 0 0 0o 0 o o o
ure 1) and assume that we want to keep the same
uniform coverage pattern for higher dimensions as

well, see Figure 2 as an example fab space. In o 0 0 0 0 0 0 0 0
order to have the same uniform coverage for a D- SN D D D S S Y
Dimensional spacel0” individuals are required; a b

whereas, our population size i® x D and not

10P (exponential growth vs. linear increase). Bligure 2: Uniform coverage fo2D search space

this way, the coverage percent can be calculatedvsigh 102 individuals.

10D 5100 (= 103~P x D) ; which indicates what

percent of the mentioned uniform coverage can be

satisfied by the current population size. This cov-

erage percent has been calculated for different di-

mensions and summarized in Table 1. As seen agd

not far from our expectation, this value decreases

sharply from100% for 1D to less thard.5% for 4D. o ]

The coverage percent fdd = 50, D = 500, and Before explaining the propo;ed sgmpllng theory,

D = 1000 are5.0000e — 46, 5.0000e — 495, and We nged to C(_)nduct some simulations to answer

1.0000e — 994, respectively, which are very smalfollowing questions:

or close to zero coverages. Nowadays, optimization

problems with a few thousands of variables becomel) For a black-box problem (no a priori knowledge

more prevalent (e.g., structural optimization). about the location of the solution), do all points in
As a consequence, for high-dimensional proBie search interval have the same chance to be closer

lems, regardless of population’s distribution pattert§ an unknown solution compared to a randomly

achieving a uniform coverage is almost meaningenerated point?

less because the population with a reasonable size

is highly sparse to support any distribution pattern. 2) If the answer for the first question is no, what

It seems, performance study of the different sarns-the pattern for this closeness probability? And

pling methods such as Uniform, Normal, Haltorwhether does this pattern remain the same for all

Sobol, Faure, and Low-Discrepancy [1] is valuablearch space dimensions? Following conducted sim-

only for low-dimensional (non-highly-sparse) popdlation will answer properly to all these questions.

Center-Based Sampling
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Table 1:D: Dimension,V,,: Population size)V: Re-
quired population size for mentioned uniform cover-
age, Coverage%: Percent of the coverage achieved
by given population sizey,.

D N, =10x D N =100 Coveragt = 105~ P x D
1 10 10 100
2 20 102 20
3 . . 1
i ig }84 200006701 Algorithm 1 Calculatingp, (probability of close-
5 50 10° 5.0000e — 02 ness ofr to a random solution) and, (average dis-
6 60 10° 6.0000e — 03 tance ofr from a random solution) by the simulation.
7 70 107 7.0000e — 04
8 80 108 8.0000e — 05
9 90 107 9.0000e — 06 1: x; € lai, bj] = [0,1] wherei = 1,2,3, ..., D
10 100 1010 1.0000e — 06 6
2: TRIALS « 10
50 500 1050 5.0000e — 46 3: for ¥ = ato b (stepsizel0~3, & is a vector with
500 1500 16500 = 00006 — 495 the same value for all elementk)
d,=0,d =0
1000 10000 101000 1.0000e — 994 en=0.c.=0
T YT T

for R =1to TRIALS do

Generate two random poingand+ in the
3.1 Closeness to Unknown Solution D-dimensional space (use intery@J 1] for
each dimension)
Calculate the Euclidean distancesandr
from solutions’(d, andd,)

N o gk

Let us start with the probability definitions which 8
have been calculated in our simulation. '

Definition: The probability of closeness to an un-9: d, —d, +d,
known solution (s) for the candidate solution () ando: d, —d.+d,
a random point (rare defined as follows: 11 if (d, <d,)then
12: Cr—cCp+1
b, = p[d(l’, S) < d(T, S)L (1) 13: else
14: cr—cr+1
p, = pld(r,s) < d(z,s)], (2 15 endif
16: end for
3 17 d, —d_/TRIALS
ptp. =1, ®) s 4 —d/TRIALS
whered is _E_uclidea_n distance function apdstands 1g. Pz — cz/TRIALS
for probability function. 20:  p, « ¢ /TRIALS

. . . . 21:  Saved, andd_ for

Algorithm 1 implements our simulation (Monte * " -
22:  Savep, andp, for &

Carlo method) to calculate,, p, and the av-

erage distance oft and r from the solutions, 23: end for

for D-dimensional search space (whereis a D-

dimensional vector with the same value for all el-

ements). Figure 3 and Figure 4 depict the results

for some sample dimensions (1D, 2D, 3D, 5D, ...,

1000D) graphicly.
As seen in Figure 3, the points which are closer to

the center of the search space have a higher chance

to be closer to the unknown solution. This chance in-

creases directly with the dimensionality of the search
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Figure 4: Average distance from random solution

Figure 3: p,, probability of the closeness af = ~ 2% ,
d,, % =l[z,z,..x], z € [a,b]) for different search

[z,z,..,z], x € [a,b] = [0,1] (wherex is a D- _ )
dimensional vector with the same value for all efPace dimensions.
ements) to a uniformly generated random solution
compared to the closeness probability of a uniformly
generated second random point to that solution. Us-

ing a vector with the same value for all elemen@(()? 1), p,). The result is given in Figure 6. By
helps us to shoD map for higher dimensions. Bycomparing Figures 5 and 6, we notice that for the
this way, the points on the diameter are investigatefist onep, increases faster than the second one, al-
though, both of them converge to one for higher di-
mensions (D >30 andD > 100 for the firstand sec-
space. Accordingly, the average distance to the L?ﬁ}-d grgphs,frispectively). _Itwas predicgqble becI:ause
known solution is lower for points closer to the cer}-. axation of the center point over a sub-interval can
. . . . reduce the closeness probability value.
ter (Figure 4); and similarly such distances decrease
sharply for the higher dimensions as the points move
closer to the center. Obviously, the center point has
the maximum chance to be closer to an unknown s * 7"
lution and at the same time has the minimum avera
distance from the solution. That is a clear eviden°?
that shows why a center point is a valuable point.
Now, we want to investigate the probability of th¢*
closeness of the center point_Jpto the solution,
compared to a second random point. The simulati*’
results are presented in Figure 5. As shownin-
creases sharply with the dimension and interestin¢’
for the higher dimensions (D :30), it is very close
(converges) to one. "
Let us look at Figure 3 again, the middle part of th Dimension
graph is flat when the dimenSionality of the searc T EEE T T Ry
space increases toward a very big number (e.g., 500D
or 1000D). It happens in intervdl.2,0.8] which Figure 5: Probability of center-point closeness to so-
means60% of the interval’s middle portion. Now, lution (compared to a uniformly generated random
this time we generate a uniform random number Hbint,pc +p, = 1) versus dimension of search space.
this interval (110.2,0.8), p.) and compare its close-
ness to solution with a second uniform random num-
ber's closeness generated over the whole interval

c
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. ppm“"““v solution is far from the center, by this way, we give

more chance to other points in the search space to be
closer to an unknown solution than the center. Fig-
ure 7 presents this situation for a 1D search space.
As seen, the solution is located on the boundary and
for this casep, can be calculated as follows:

0.9

0.8

0.7

ISIINTIS

De(p=1) = I—==0.50 4)

0.6

Because all points on the illustrated line segment
(shadowed region/half of the interval) are closer to
the solution than the center point.

Dimension
0.4

c s

—

Figure 6: Probability of closeness to solution (a un'E ; !

form random point generated if0.2,0.8] and the

second one is generated(in1], p, +p, = 1) Versus rigyre 7: For 1D search space, the solution is located

dimension of search space. on the boundary. All points on the illustrated line
segment (shadowed region, whiclisare closer to
the solution, s, than the center point, c.

3.2 Result Analysis

Our simulation results confirm that when the sam- For higher dimensions, the calculation procedure
pling points are closer to the center of the searihstraightforwardly similar. For 2D, shown in Figure
space they have a higher chance to be closer tograll points inside the illustrated circle (shadowed
unknown solution. Also on average, their distancegion) are closer to the solution than the center
from the solution is lower as well. Furthermorgyoint. The solution on the boundary case for 2D is
for higher dimensions the mentioned advantages ghown in Figure 9; for this casg, can be calculated
crease sharply; and for very high dimensions (e.gs follows:
D > 1000) a specific sub-interval (i.e[0.2,0.8])
presents a flat area for the mentioned probability
value (p~ 1). Also, for these search spaces the pop-
ulation is highly sparse and individuals have a pattern Pe(p=2) =1 — (122 =0.61 (5)
free distribution. : e

It seems, at least for high-dimensional searthe 1-sphere inside 2-cube)
spaces, staring with candidate solutions which are . .
biased toward the center of search space, provide or other dimensions, actually, we should work

a higher chance to be closer to an unknown solutiof. hypercubes (i.e., search spaces) and hyper-

Converging this probability te- 1 when the dimen- spheres (i.e., sub-spaces where the center is loser for

sion increases is a strange phenomenon. In the ntQQt mentioned scenario). For hypercubes, the edge

section, we demonstrate this phenomenon mathemats > eaqual t@, and fqr hype_rspheres, the radius is
equal tog. ForD > 2 dimensions, we can calculate

mx(§)?

p.. as follows:
3.3 Mathematical Demonstration Loy
37x(5

In this se_ction, we will r_nathematically show that Pe(p=g) = 1 — % = 0.74 (6)
grows with the dimension of the search space and o a
also for higher dimensions it converges to one.  (i.e., 2-sphere inside 3-cube)

Our calculations are based on the scenario, in ) .
which solution is located on border or center of the w
search spaces (worse case scenarios). This meansthe  Pe(p—4) =1 — - 0.85 (7
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a
Figure 8: 2D search space. All points inside the il-
lustrated circle (shadowed region) are closer to thgyure 9: For 2D search space, the solution is located
solution, s, than the center point, c. on the border. All points inside the illustrated circle
(shadowed region) are closer to the solution, s, than
the center point, c.

(i.e., 3-sphere inside 4-cube)

8><7r2 5
15— *(3)

S - 1
Pe(p=5) = 1 P 0.92 (8) F(g +1) =7 x %, (13)
272

2
(i.e., 4-sphere inside 5-cube)

whereN!! denotes the double factorial.

3
T x(3)°
Pe(p=g) = 1 — 26 = 0.96 9) Hence, for a very big N (very high dimensions),
a we have:
(i.e., 5-sphere inside 6-cube)
Vn (%)
, 2
And finally, N 0, (14)
and so:
Vn (%)
Pe(p=N) = 1- (I2N (10) pe~ L. (15)
Or See Figure 10, for solution-on-corner scenario
N (this time hyperspheres radius would Be*< in-
ﬁ]xv(g)N stead ofg, but we havé;— of the hyperspheres instead
RS i of 1). Similarly, we have:
DPe(p=N) = 1- TGNV (11)
(i.e., (N-1)-sphere inside N-cube) Lﬂ;)
€., Pe(p=ny = 1— # (16)
N . . Or
wherel'(5 + 1) is a Gamma Function, for an even
N’ 71,%><<\/§><¢1)N
2
N
N N L S
F(; +1) = (5)5 (12) Pe(p=n) =1 — TGN (17)
and for an oddV, So for this case, we have:
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a 4 Center-Based Population
Initialization

In this section, we want to compare four sampling
methods, namely, Center-Based, Pseudo-Random,
Latin Hypercube [8], and Normal (or Gaussian) sam-
plings. The center-based sampling is similar to
Pseudo-Random sampling but the sampling is per-
formed over a center-focused sub-interval instead of
s the whole interval. Normal (or Gaussian) sampling
is a sort of the center-based sampling because it bi-
ases the sampling around the center point. Latin Hy-
percube Sampling (LHS) ensures that the ensemble
of random numbers is representative of the real vari-
ability whereas Pseudo-Random sampling is just an
ensemble of random numbers without any guaran-
tees. LHS is a highly time consuming method (es-
_ pecially for high-dimensional spaces) compared to
Pe(p=2) = 0.61 (18) three other sampling methods.

By the mentioned sampling methods, we initial-
ize a population (size1000 x D) for each of seven
benchmark functions (with highly different land-
scapes, for dimensiors$), 500, and1000). Then, we
compare fitness values of the individuals in order to
Pe(p=4) = 0.69 (20) compare sampling methods. In the next section, we
briefly review the features of the employed bench-
mark functions.

Figure 10: For 2D search space, the solution is |
cated on the corner.

De(p=5) = 0.77 (21)
4.1 Benchmark Functions

Pe(p=¢) = 0.84 (22) For comparison of different population initialization
schemes, a recently proposed benchmark test suite
for the CEC-2008 Special Session and Competition
on Large Scale Global Optimization [5] has been uti-

And again for very high dimensions, we have:

V() lized. It includes two unimodal (#F5) and five
a% ~ 0, (23) multi-modal (5-F~) functions, among which four
of them are non-separableA i3, F5, Fr) and three
and so: are separable (£'F}, Fg). Function names and their
properties are summarized in Table 2. All bench-
per 1. (24) mark functions are well-known minimization prob-

lems. The location of the optimal solution(s) for each

All calculated values fop. (for different dimen- functlo_n is shifted to a random pomt(s) in the corre-
sions) by above mentioned approaches are less tRBANding search space. By this way, the closeness
the resuits obtained by the simulation method (Alg8! the optimal solution(s) to the center or the borders
rithm 1), the reason is that, the current mathema@€ Not known and therefore it supports a fair com-
cal calculations are based on the worst case sceff&"SOn-
ios for the center (the solution on the border or cor-
ner). ThL_Js, more accurate approxi_matio_ns forghe 4 > Experimental Verification
are obtained by the conducted simulation method.
The current mathematical demonstrations just supesults of Pseudo-Random, Latin Hypercube, Nor-
port our simulation results. mal, and Center-Based population initialization for
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Table 2: Seven well-known benchmark functions which are utilized for comparison of different population
initialization schemes. All of them are scalable and shifted.

Function  Name Properties Search Space
P Shifted Sphere Function Unimodal, Separable [-100, 100]P
F Shifted Schwefels Problem 2.21  Unimodal, Non-separable [~100, 100]P
F3 Shifted Rosenbrocks Function Multi-modal, Non-separable, A narrow valley from local optimum to global optinjur00, 100]?
Fy Shifted Rastrigins Function Multi-modal, Separable, Huge number of local optima [-5,5]P

Fs Shifted Griewanks Function Multi-modal, Non-separable [—600, 600] P
Fs Shifted Ackleys Function Multi-modal, Separable [-32,32]P

F; FastFractal DoubleDip Function  Multi-modal, Non-separable [-1,1]P

seven benchmark functions with the dimensionalibutperforms Normal Sampling over all performance
of 50 and 500 are reported in Table 3 and Table 4netrics (i.e., best, worst, mean, median, and Std.)
respectively. The best, worst, mean, median, aoder all functions. It means when the sampling fo-
Std. of the fithess values for the population indéuses around the center, then, it generates the indi-
viduals are reported in these tables. The populaduals with better fitness value.

tion’s size is equal td000 x D. The best result

for each case is highlighted in boldface. For the )

Normal Sampling, the mean and standard deviation Conclusion Remarks

are set t00.5 and0.15, respectively. The numbers ) o )

below the word “Center-Based” indicate the centef this paper, we showed that initial candidates that
focused sub-interval's size. For example, the val@E€ closer to the center also have a higher chance
0.90 means that the Pseudo-Random sampling is pé-Pe closer to an unknown optimal solution. Fur-
formed just ove0% of the whole interval (th€0% thermore, this chance increases by the dimension (_)f
of the interval's center-part in each dimension). BY}€ search space. This fact was demonstrated via
decreasing this value, we are increasing our safAté€ approaches, namely, the simulation, mathemat-

pling focus around the center point (generating mdf&! reasoning, and population initialization for seven
center-focused individuals). well-known benchmark functions. It is worthwhile

to mention that the results of all three approaches
confirmed each other. According to presented ev-
4.3 Results Analysis idences in this paper, utilizing the center-focused
populations to solve large-scale problems is highly
As seen in Tables 3 and 4, the results for Pseugwemising. It can be expected to be used in many
Random and Latin Hypercube samplings are almgsipulation-based algorithms to increase their accel-
the same, although Latin Hypercube sampling ésation rate, solution accuracy, or robustness, which
computationally much more expensive. The Normhadilds the main directions for our future work. Com-
and Center-Based population initializations compdteing the opposition-based sampling [2, 3, 4] and
closely, but for the majority of the functions, Normathe proposed center-based sampling is another valu-
Sampling performs slightly better than Center-Basablle research area to pursue.
sampling. As mentioned before, both of them focus
sampling around the center (but with different intef*cknowledgement:  Authors would like to thank
sities in this experiment). For the dimensionality d#r- K. Tang et al. who shared the Matlab code for
1000, Table 5, over all functions (excegh), Nor- benchmark functions.
mal initialization performs better than others. For
center-based initialization (0.6) outperforms others.
Let us now increase the sampling intensity around
the center for the Center-Based sampling method by
changing the sub-interval’s size frobr6 to 0.2. Ta-
ble 6 reports the results for this experiment &
1000). As seen, this time, Center-Based sampling
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Table3: Results for Pseudo-Random, Latin Hypercube, Normal, and proposed Center-Based population initialization on seven benchmarkunctio
with the dimensionality o60. The best, worst, mean, median, and Std. of the objective values for the population individuals are _‘mcozma The
population size is equal ttHo0 x D. The best result for each case is highlightedatdface.

w
o
>
Methods Random Latin Hyper cube Normal Center-Based 52)
(D =50) 0.95 0.90 0.80 0.70 0.60 m
best 235,395 234,956 171,192 224,991 217,159 201,007 186,400 177,718 £
worse 475,432 475,950 294,295 451,828 429,150 388,912 348, 440 313,844
f1 mean 350,610 350,483 229,053 334,056 318,903 290, 802 265,533 243,834
median 349, 459 349,165 228,189 332,934 318,021 289,813 265, 004 243,374
Std 53,451 53,709 27,139 50,417 47,087 41,959 36,076 30, 360
best 144.83 144.69 108.88 140.96 137.31 130.13 122 116
worse 194.95 194.99 181.09 190.18 185.13 175.33 165 155
f2 mean 173.33 173.32 138.73 168.86 164.36 155.74 147 138
median 173.86 173.77 137.33 169.26 164.69 156 147 138
Std 11.86 11.81 15.84 11.63 11.38 10.78 10.20 9.56
best 2.036F + 11 2.048F + 11 7.296F + 11 1.844F + 11 1.658F + 11 1.342F + 11 1.091F + 11 8.856E + 10
worse | 7.055F + 11 7.066F + 11 2.688F + 11 6.326F + 11 5.673FE + 11 4.481F + 11 3.520F + 11 2.735E + 10
f3 mean 4.283F + 11 4.285FE + 11 1.483F + 11 3.849F + 11 3.446F + 11 2.748F + 11 2.178FE + 11 1.729E + 10
median | 4.222F + 11 4.221FE + 11 1.434F + 11 3.794F + 11 3.394F + 11 2.715FE + 11 2.150F + 11 1.710E + 10 %
Std 1.126F + 11 1.124F + 11 4.251FE + 10 1.003E + 11 9.018E + 10 7.00E + 10 5.443FE + 10 4.149E + 10 ®
best 1137 1131 971 1110 1085 1046 1011 984
worse 1824 1833 1372 1767 1712 1606 1509 1425
fa mean 1469 1470 1165 1427 1390 1319 1257 1203
median 1466 1468 1163 1425 1388 1318 1256 1202
Std 153.24 154.91 89.10 145.42 138.33 123.96 109.85 97.45
best 2027 2031 1440 1936 1855 1711 1588 1496
worse 4138 4132 2507 3907 3714 3338 2998 2676
fs mean 3033 3035 1938 2887 2750 2493 2268 2074
median 3021 3024 1932 2878 2743 2487 2263 2070
Std 468.84 467.78 236.07 438.93 411.74 363 312.57 263.72
best 21.28 21.28 20.96 21.25 21.22 21.16 21.08 21.01
worse 21.81 21.80 21.61 21.79 21.78 21.74 21.70 21.65
fe mean 21.57 21.57 21.32 21.55 21.53 21.49 21.43 21.37
median 21.58 21.58 21.33 21.56 21.54 21.50 21.44 21.38
Std 0.11 0.11 0.14 0.11 0.12 0.12 0.13 0.13
best —415 —415 —416 —415 —414 —415 —415 —415
worse —255 —255 —255 —256 —255 —256 —255 —255 ~
fr mean —333 —334 —333 —333 —333 —333 —333 —333 X
median —333 —333 —332 —333 —333 —333 —333 —332 N
Std 35.65 35.51 35.72 35.36 35.42 35.32 35.18 35.38 m
=
7}
2]



rch 2009

Table4: Results for Pseudo-Random, Latin Hypercube, Normal, and proposed Center-Based population initialization on seven benchmarkunctio
with the dimensionality o600. The best, worst, mean, median, and Std. of the objective values for the population individuals are qm_oo:ma The
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population size is equal ttHo0 x D. The best result for each case is highlightedatdface.

w
o
>
Methods Random Latin Hyper cube Normal Center-Based 52)
(D = 500) 0.95 0.90 0.80 0.70 0.60 m
best 2,930, 781 2,931,136 1,962,733 2,796,237 2,672,102 2,444,457 2,243,323 2,079,971 £
worse 3,948,181 3,946,021 2,476,166 3,755,972 3,569, 637 3,230, 359 2,922, 984 2,655, 057
f1 mean 3,429,042 3,429,638 2,212,550 3,266,831 3,112,830 2,829,643 2,579,397 2,362,917
median | 3,427,904 3,428,470 2,211,681 3,265, 726 3,111,654 2,828,928 2,578,819 2,362,505
Std 167,023 167,131 84,505 157,681 148,017 129, 868 112,005 95,064
best 178.03 178.1 140.23 173.42 169 160.40 151.72 143.15
worse 199.65 199.66 219.76 194.67 189.68 179.69 169.70 159.72
f2 mean 192.44 192.45 168.57 187.65 182.84 173.23 163.65 154.09
median 192.92 192.93 167.13 188.09 183.25 173.57 163.95 154.35
Std 3.78 3.78 12.58 3.67 3.57 3.35 3.12 2.89
best 3.2376F + 12 3.241F + 12 1.101E + 12 2.906F + 12 2.604F +12 2.085E + 12 1.666F + 12 1.344F + 12
worse | 5.3847F + 12 5.385F + 12 1.924E +12 | 4.825FK +12 4.312FE+12 3.430E+12 2.707E + 12 2.125F + 12
f3 mean 4.2611F + 12 4.262F + 12 1.468E + 12 | 3.821E+ 12 3419FE+12 2.727TE+12 2.164FE + 12 1.713FE + 12
median | 4.2548F + 12 4.255FE + 12 1.463E +12 | 3.815FK +12 3.414FE+12 2.723E+12 2.161E + 12 1.711FE + 12 M
Std 3.56541F + 11 3.552F + 11 1.342F + 11 3.179FE + 11 2.826F + 11 2.219F + 11 1.717E + 11 1.306E + 11 ®
best 12063 12062 9561 11727 11410 10807 10309 9862
worse 14737 14736 11144 14250 13805 12971 12213 11583
fa mean 13381 13381 10340 12971 12589 11881 11256 10715
median 13378 13378 10339 12969 12588 11880 11255 10714
Std 441 439 260.77 417.24 394.74 356.28 315.24 283.10
best 24755 24784 15919 23548 22395 20322 18505 17000
worse 33412 33404 20294 31681 30055 26995 24289 21868
fs mean 29003 28999 18050 27538 26148 23602 21349 19402
median 28992 28989 18041 27526 26140 23593 21344 19396
Std 1429 1426 719 1343 1261 1104 952.21 806.18
best 21.46 21.46 21.14 21.44 21.41 21.35 21.28 21.21
worse 21.68 21.68 21.42 21.66 21.64 21.60 21.54 21.48
fe mean 21.57 21.57 21.29 21.55 21.53 21.46 21.42 21.35
median 21.58 21.58 21.29 21.56 21.53 21.48 21.42 21.35
Std 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.04
best —3300 —3301 —3300 —3299 —3299 —3302 —3297 —3299
worse —2688 —2690 —2688 —2686 —2690 —2690 —2689 —2687 ~
fr mean —2992 —2992 —2992 —2991 —2992 —2992 —2990 —2991 X
median —2991 —2992 —2991 —2991 —2991 —2992 —2989 —2991 N
Std 100.92 100.71 100.78 100.72 100.58 100.61 100.48 100.50 m
=
17}
2]
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Table5: Results for Pseudo-Random, Latin Hypercube, Normal, and proposed Center-Based population initialization on seven benchmarkunctio
with the dimensionality ofl 000. The best, worst, mean, median, and Std. of the objective values for the population individuals are qm_oo:m@
population size is equal ttHo0 x D. The best result for each case is highlightedatdface.

Methods Random Latin Hyper cube Normal Center-Based
(D =1000) 0.95 0.90 0.80 0.70 0.60
best 5,995, 251 5,989,976 3,928,389 5,706,025 5,438,263 4,957,475 4,531, 630 4,177,735
worse | 7,495,949 7,504,290 4,692, 386 7,129,062 6,777,715 6,128,899 5,545,797 5,035, 642
f1 mean 6,735,659 6,735,990 4,302,486 6,410,673 6,102,500 5,535,918 5,035, 886 4,602,915
median | 6,734,609 6,734,686 4,301,526 6,409, 455 6,101,372 5,534, 756 5,035, 234 4,602,572
Std 233,169 233,009 117,924 219,451 206,375 180,939 156,117 132,453
best 183.65 183.56 148 179 174.46 165.39 156.36 147.49
worse 199.84 199.84 229 194 189.85 179.86 169.86 159.87
f2 mean 194.71 194.71 175 189 184.98 175.28 165.58 155.92
median 195.02 195.02 174 190 185.28 175.56 165.84 156.14
Std 2.77 2.77 11.82 2.70 2.63 2.476 2.31 2.13
best 2.964F + 12 6.973E + 12 2.383E +12 | 6.251FE + 12 5.604F + 12 4.489F +12 3.583E+ 12 2.860F + 12
worse | 1.023F + 13 1.023F + 13 3.626E + 12 | 9.172F 4+ 12 8.200F +12 6.532E +12 5.164E+ 12 4.062FE + 12
f3 mean 8.544F + 12 8.543F + 12 2.951E + 12 7.660F +12 6.857TE+ 12 5472E+ 12 4.344FE +12 3.440FE + 12
median | 8.538F + 12 8.536F + 12 2.945E + 12 7.655F 4+ 12 6.853F + 12 5.468FE +12 4.341E+ 12 3.438E + 12
Std 5.056F + 11 5.046F + 11 1.909E + 11 | 4.515E + 11 4.018E + 11 3.159F + 11 2.446F + 11 1.861F + 11
best 24658 24655 19376 23932 23271 22041 20960 20022
worse 28683 28678 21772 27752 26869 25286 23848 22603
fa mean 26643 26642 20559 25828 25059 23642 22393 21309
median 26639 26640 20558 25825 25057 23641 22392 21308
Std 619.27 619.81 367.21 587 556 501.52 444.74 397.29
best 53463 53471 34875 50951 48513 44119 40331 37132
worse 66981 66992 41707 63625 60478 54603 49372 44759
fs mean 60108 60112 38210 57184 54410 49308 44809 40910
median 60095 60099 38202 57173 54403 49300 44803 40905
Std 2081 2081 1050 1960 1844 1613 1392 1180
best 21.50 21.50 21.23 21.48 21.46 21.41 21.35 21.28
worse 21.66 21.66 21.43 21.65 21.63 21.59 21.54 21.48
fe mean 21.59 21.59 21.33 21.57 21.55 21.50 21.45 21.39
median 21.59 21.59 21.33 21.57 21.55 21.50 21.45 21.39
Std 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03
best —6353 —6353 —6359 —6351 —6348 —6344 —6344 —6348
worse —5438 —5436 —5445 —5438 —5440 —5436 —5434 —5437
fr mean —5893 —5893 —5898 —b5891 —5890 —b888 —b885 —bH888
median —5892 —5892 —5897 —5891 —5889 —5888 —5885 —5888
Std 140.83 140.78 141.24 140.72 140.47 140.27 140.00 140.36
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