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Abstract: - The Global Positioning System (GPS) is a satellite-based navigation system which allows the user
to determine position and time with high precision. However, phase measurements has an inherent difficulty,
which is the ambiguity determination in number of signal wavelengths. Once ambiguities are resolved to an
integer value, positioning can reach sub-meter level in accuracy. Sub-meter positioning accuracy is required
in many applications, such as aircraft navigation and landing, attitude and orbit determination of satellites,
navigating agricultural vehicles, among others applications. The purpose of this work is to evaluate performance
of LSAST and LAMBDA methods for real time integer ambiguity resolution in situations of static and kinematic
positioning. Position coordinates of a GPS receiver (“user”) are estimated using data of another receiver placed
on a landmark with known coordinates (“base”), using phase double difference positioning technique, and an
iterated least-squares as float solution estimator. Positioning errors are shown with half meter level for static and
less than meter level for kinematic positioning.

Keywords: - Ambiguity resolution, LSAST method, LAMBDA method, Least-squares, Relative positioning.

1 Introduction
The Global Positioning System (GPS) is a satellite-
based navigation system which allows the user to de-
termine position and time with high precision. GPS
measurements are subject to several error sources.
The combined effects of these errors in the propa-
gation signal cause a degradation in precision of po-
sitioning. However, using phase measurements, it is
possible in certain cases to increase positioning ac-
curacy up to 100 times, if compared with positioning
using code pseudorange [1].

However, phase measurements has an inherent
difficulty, which is the ambiguity determination in
wavelength number of signal. While signal phase
changes from epoch to epoch can be measured with
high accuracy, cycles integer number along propaga-
tion path (integer ambiguity) remains unknown. Once
the ambiguities are solved, phase measurements can
be used as very precise pseudorange measurements.
Therefore, ambiguity resolution is a fundamental is-
sue for sub-meter positioning.

Sub-meter accuracy is required in many appli-
cations. For aircraft navigation, high accuracy is re-
quired for landing, especially for automatic landings.
GPS antennas and receivers can also be mounted on
a vehicle or spacecraft so that orbit and attitude in-
formation of the vehicle can be derived [2], [3], [4].
Precise kinematic differential GPS will also be useful

in navigating agricultural vehicles, playing a role in
the distribution of work, navigation of the harvesters,
and the guidance of tractors. Vehicle control flow can
also be improved [5], as well as time synchronization
using GPS signals [6]. Therefore, the objective of this
work is to compare two methods of ambiguity res-
olution, LSAST and LAMBDA, in order to achieve
sub-meter accuracies in real time.

The double difference observables are attained
through measurements combination from two re-
ceivers referring to several GPS satellites simultane-
ously tracked. The advantage of this method is the
elimination of most part of measurements errors, such
clock bias, orbital errors and, if the baseline is short,
atmosphere errors. This method allows the baseline
estimation between receivers [7]. The “user” posi-
tion is given in relation to the known position of a
“base” receiver. Due to proximity between “base” and
“user”, the positioning principles by double differ-
ence presume that environmental effects (mainly tro-
posphere, ionosphere) are the same for short base-
lines.

In LSAST method (Least Squares Ambiguity
Search Technique), ambiguity parameters are divided
into two groups: primary ambiguities (typically three
double difference ambiguities), and the secondary
ambiguities. Only the primary ambiguities are fully
searched. For each set of the primary ambiguities,
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there is a unique set of secondary ambiguities. There-
fore, the search dimension is smaller and the compu-
tation time is significantly shorter than the full search
approach. LAMBDA method (Least-squares AMBi-
guity Decorrelation Adjustment) is a procedure to es-
timate ambiguities based on double difference mod-
els. This method uses a decorrelating transformation
followed by a integer search, reducing computational
time because it is not necessary a search through
whole space. The estimation is carried out in three
steps: float solution, integer solution, and correction
of position from resolved integer ambiguities.

In this work, positioning tests using double differ-
enced carrier phase measurements were carried out.
LSAST and LAMBDA methods were used in am-
biguity resolution process. Two tests were executed:
static and kinematic. Static test data were collected
by two dual frequency Trimble R8 GPS receivers,
and the kinematic test data were collected by two
Ashtech Z12 GPS receivers. The positioning errors in
these tests are shown to remain with magnitude less
than half a meter in static case, and with magnitude
less than a meter in kinematic case, using an iterated
least-squares estimator for both tests. The results were
compared to a known receiver position (in static test)
or a reference trajectory (in kinematic test). An off-
line adjustment, which leads to smaller errors, is also
made for comparison.

2 GPS System
Basically, GPS system consists of a constellation
of 27 operational satellites located in orbits around
20000 km altitude, orbital period of approximately 12
hours, and 55◦ inclination in relation to the equatorial
plan, distributed in 6 orbital planes, separated by 60o.
These satellites transmit the navigation signals gener-
ated on board in two frequencies L1 (1575.42 MHz)
and L2 (1227.6 MHz), and consisting of two codes
with high transmission rate, the C/A code (open) with
1 Mb/s in L1 and P-code (protected) with 10 Mb/s in
L1 and L2 frequencies. The GPS modernization pro-
gram aims to add new civilian signals in L2 (L2C)
and L5 (1176.45 MHz) frequencies, and implementa-
tion is planned to be complete in 2013. These signals
provide data on satellite ephemeris (GPS navigation
message) and information about atomic GPS time
and other informations considered relevant (satellite
health, almanac, on board clock derive etc.). The GPS
control segment, located in the USA, is responsible
for satellite monitoring, maintenance and control in
the GPS constellation, and the navigation messages.
The user segment is the community of civil and mil-
itary users, equipped with GPS receivers. The ac-
cess code signal C/A is open, but the P-code is re-
stricted. Therefore, as the majority of navigation sys-

tems, GPS provides distance measurements between
unknown user position and system references, i.e., the
GPS satellites [8], [9].

3 Double Difference Positioning
The mathematical model for phase pseudorange φiu
between satellite i and receiver u has the form [9]:

φiu = Di
u + c · (bu−Bi) +T iu− Iiu +λN i

u + εiu (1)

where Di
u = |Ri − ru| is geometric distance, Ri is

satellite position, ru is receiver antenna position, bu
is receiver clock bias, Bi is satellite clock bias, T iu
and Iiu are tropospheric and ionospheric errors, N i

u
is the ambiguity, εiu represents other unmodelled er-
rors, λ is the signal wavelength and c is light speed,
299792458 m/s.

The observable called single difference is formed
taking the difference of pseudorange measurements
between two receivers at a given epoch. Single differ-
ence for pseudorange measurement is given by [1]:

φiub = φiu − φib
= (Di

u −Di
b) + (bu − bb) + (T iu − T ib )+

+ (Iiu − Iib) + λ(N i
u −N i

b) + (εiu − εib)
= Di

ub + bub + T iub + Iiub + λN i
ub + εiub

(2)

where (·)ub = (·)u − (·)b.
The satellite clock bias term Bi, which is com-

mon for both measurements, is cancelled. The tro-
pospheric and ionospheric terms are differences from
corresponding errors at two receivers. The magnitude
of these terms depends mainly on separation distance
between receivers (baseline). When this distance is
small, the tropospheric and ionospheric effects are al-
most the same and the residuals become negligible, in
comparing with errors due to multipath and receiver
internal noise. Thus, for a short baseline, the single
difference for phase pseudorange is simplified to:

φiub = Di
ub + bub + λN i

ub + εiub (3)

Considering that the baseline is much shorter than
distances between receivers and satellites by orders of
magnitude, we can define the relation (Fig. 1):

Di
ub = Di

u −Di
b = 1ib · xub (4)

where 1ib =
[
−Xi−xb

ρi
b

−Y i−yb

ρi
b

−Zi−zb

ρi
b

]
is the

unity vector pointing from base to satellite i and xub
represents the baseline between receivers.
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Figure 1: Geometry of an observation [1].

The relative receiver clock bias term bub is com-
mon to all single difference measurements at each
epoch. This term may be canceled through double
difference measurements, which are formed by sub-
tracting two single differences referred to two distinct
satellites i and j:

φijub = φiub − φ
j
ub (5)

which may be rewrited in:

φijub = (Di
ub −D

j
ub) + λ(N i

ub −N
j
ub)

+ (εiφ,ub − ε
j
φ,ub)

= Dij
ub + λN ij

ub + εijφ,ub

(6)

The double difference observations are built
choosing a master satelliteM , generally by the higher
elevation criteria and performing subtractions with
the other measurements. This procedure assures a lin-
early independent double difference set [10]. The set
is formed by:

φMi
ub = (φMu −φMb )− (φiu−φib), i = 1 . . .m, i 6= M

(7)
wherem is the visible satellite number. Thus, we have
a set of m - 1 double difference measurements. This
equation can be written in function of geometric dis-
tances also:

φMi
ub = (DM

u −DM
b )−(Di

u−Di
b)+λN ij

ub+ε
Mi
ub (8)

Using the described approximation, (8) becomes
linear in relation with baseline xub:

φMi
ub = (1Mb − 1ib)xub + λN ij

ub + εMi
ub (9)

This equation constitutes the measurement model
to be considered for solving the problem. Therefore,
the application of double difference method performs
a relative positioning, because permits a baseline es-
timation.

The covariance matrix for one epoch double dif-
ference observation RDD, m − 1 ×m − 1, is given
by [11]:

RDD = 2σ2
0

2 . . . 1
...

. . .
...

1 . . . 2

 (10)

where σ2
0 is the variance of a pseudorange measure-

ment.

4 Iterated least-squares with orthog-
onal transformations

In non-linear least-squares method, the cost function
is euclidean weighted norm by a matrix W, and with
a priori information x̂0 and P0:

J = ‖δy −Hδx‖2W + ‖δx̂0 − δx‖2P−1
0

= (δy −Hδx)TW(δy − δHx)

+ (δx̂0 − δx)TP−1
0 (δx̂0 − δx)

(11)

where H is observation design matrix and y is mea-
surements vector. The minimization of cost function
gives:

δx̂ = P̂(P−1
0 δx0 + HTWδy)

P̂ = (P−1
0 + HTWH)−1

(12)

where x̂ = x̄ + δx̂ is the final estimate, and P̂ is the
covariance matrix.

The normal equations solution must invert a n ×
n matrix, where n is the number of parameters in
x̂. These inversions are a potential numerical error
source, especially when the matrix is almost singu-
lar. However, literature contains several works which
intend to increase numerical performance of least-
squares [12], [13]. In this work, a matrix triangular-
ization technique is used in matrix H. Equation (11)
can be rewritten as:

J = ‖W1/2(δy −Hδx)‖2 + ‖S1/2
0 (δx0 − δx)‖2

=

∥∥∥∥∥
[

S1/2
0 δx0

W1/2δy

]
−

[
S1/2

0

W1/2H

]
δx

∥∥∥∥∥
2

(13)
where S0 = P−1

0 .
As H is m× n, with m > n, be T an orthogonal

matrix m×m which triangularizes H:

TH =
[
H1

0

]
← n× n
←(m− n)× n

Ty =
[
y1

y2

]
← n× 1
←(m− n)× 1

(14)

where H1 is triangular superior (result from triangu-
larization), and m is the number of measurements.
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As multiplication by orthogonal matrix does not
change the norm, (13) can be given by:

J =

∥∥∥∥∥T
[

S1/2
0 δx0

W1/2δy

]
−T

[
S1/2

0

W1/2H

]
δx

∥∥∥∥∥
2

=
∥∥∥∥[δy1

δy2

]
−
[
H1

0

]
δx
∥∥∥∥2

(15)

Therefore, cost function becomes:

J = ‖δy1 −H1x‖2 + ‖δy2‖2 (16)

and whose minimum is J = ‖δy2‖2. The solution
obtained by described method is the least-squares so-
lution. In (16), the solution δx̂ = H−1

1 δy1 does not
need explicit inverse of H1, because this matrix is
triangular superior. The solution δx̂ is obtained by
backwards substitution. In this work, the Householder
transformation is used. This technique triangularizes
matrix by succession of orthogonal transformations,
which are numerically efficient.

This method is iterative, once current estimative
x̂ can be used as a new reference:

x̂ = x̄ + δx̂, x̂→ x̂0

5 LSAST Method
LSAST method (Least-Squares Ambiguity Solution
Technique) was proposed in [14]. This method in-
volves a modified sequential least-squares technique,
in which ambiguity parameters are divided into two
groups: primary ambiguities (typically three double
difference ambiguities), and the secondary ambigui-
ties. Only the primary ambiguities are fully searched.
For each set of the primary ambiguities, there is a
unique set of secondary ambiguities. Therefore, the
search dimension is smaller and the computation time
is significantly shorter than the full search approach.

The choice of primary group measurements is
based on GDOP value. Satellites with low GDOP will
lead to a search with less potential solutions. How-
ever, GDOP cannot be very low, in order to avoid the
position uncertainty include more than one solution
for secondary group measurements. The procedure is
to choose primary group satellites which have a rea-
sonable GDOP. Several methods are available to cal-
culate GDOP values, e.g., as in [15].

5.1 Potential Solutions
Equations for primary group solution with three dou-
ble difference are:φ1 +N1

φ2 +N2

φ3 +N3

 =

C1
i C1

j C1
k

C2
i C2

j C2
k

C3
i C3

j C3
k

δxδy
δz

 (17)

where φ is phase double difference, N is ambiguity,
C represents the direction cosines to the satellites, δx,
δy and δz are estimated baseline, subscripts i, j and k
designate x, y and z directions and superscripts des-
ignate the satellites.

In (17), we have only three ambiguities, and the
corresponding solution from any specific choice of
three ambiguity values results in only one solution.
Rewriting (17) in matrix form gives:

yp = Hpxp (18)

where y is the measurement vector, H is direction
cosines matrix, x is the solution vector and subscript
p designates primary group.

The solution for xp is:

xp = H−1
p yp (19)

For all potential solutions corresponding to all
different choices of y due to different combination of
ambiguityN , the value of H−1

p does not change. This
allows the potential solutions to arise from a combi-
nation of three basis vectors:

yT1 =
[
1 0 0

]
yT2 =

[
0 1 0

]
yT3 =

[
0 0 1

] (20)

Using vectors from (20) in (19), the solutions are:

x1 = H−1
p y1

x2 = H−1
p y2

x3 = H−1
p y3

(21)

Thus, the general measurement vector is:

yTp =
[
α β γ

]
(22)

With solutions from (21), the solution for the
measurement given by (22) is:

xp = αx1 + βx2 + γx3 (23)

Making α, β e γ values vary in loops, it is possi-
ble to generate a set of potential solutions covering an
extended volume of space.

5.2 Eliminating incorrect potential solutions
In order to eliminate unnecessary storing information,
the secondary group could be used to test the potential
solutions as they are formed in the loop. Those which
do not agree with the additional measurements could
be eliminated.

Firstly, the innovation vectors for the secondary
group are calculated:

us = ys −Hsxp (24)
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where u is the innovation vector and subscript s refers
to secondary group. The innovations corresponding to
primary group are zero.

∆x = (HT
c Hc)−1HT

s ys = Bus (25)

where subscript c refers to complete set of double dif-
ferences.

The residuals are necessary in order to quantify
the quality of solutions. The residual vector v is given
by:

v = uc −HT
c ∆x (26)

The vector uc is the innovations for the secondary
group us, plus three zeros in elements corresponding
to primary group innovations.

The estimated variance is used for measuring the
quality of potential solutions:

q =
vTv
m− 3

(27)

where m is the total number of double differences.
Only solutions with value of q greater than a selected
threshold are retained as potential solutions.

The greater the number of double differences the
higher the probability that only one solution will re-
main as solution which agrees with all measurement
data. In addition, even when several solutions repeat
as potential solutions, only the true solution will re-
main as the satellite geometry changes.

6 LAMBDA Method
LAMBDA method (Least-squares AMBiguity Decor-
relation Adjustment) is a procedure for integer ambi-
guity estimation in carrier phase measurements. After
applying a decorrelating transformation, a sequential
conditional adjustment is made upon the ambiguities.
As a result, integer least-squares estimates for the am-
biguities are obtained. This method was introduced in
[16] and [17]. [18] and [19] show computational im-
plementation aspects and ambiguity search space re-
ducing.

These double difference observation equations
are appropriate models for short baselines. The lin-
earized equations are given by:

y = Axa + Bxb + ε (28)

where y is observed minus computed double differ-
ences, xa is integer ambiguity double difference vec-
tor, xb is baseline increments vector, A and B are de-
sign matrix for ambiguity and baseline and ε is an un-
modeled errors vector.

The LAMBDA method takes as starting point
(28), using least-squares method as estimator for ob-
taining xa and xb. The minimization criterium for

solving (28) is:

min
xb,xa

‖y −Axa −Bxb‖2Q−1
y
,with

{
xb ∈ Rp

xa ∈ Zm
(29)

where ‖ · ‖2
Q−1

y
= (·)TQ−1

y (·) and Q−1
y is covariance

matrix of double difference observables. The ambi-
guity number m is equal to the number of satellites
minus one, multiplied by the used frequencies values,
and the number of baseline components xb is three, in
case of a static receiver, or a multiple of three, in case
of a moving one.

One can notice that (29) is an integer least-squares
problem, because of the restriction xa ∈ Zm. This
problem can be solved in three steps. The first one, or
float solution, consists of solving (29) with xa ∈ Rm

by means of a common least-squares method. As re-
sult, we have x̂a e x̂b as real values. The second step,
or integer solution, consists of solving the minimiza-
tion problem:

min
xa

‖x̂a − xa‖2Q−1
â

, with xa ∈ Zm (30)

followed by the third step, which is a correction of
baseline x̂b by difference between x̂a and the result
of minimization (30).

In fact, the second problem consists of minimiz-
ing (30), resulting in an integer estimative of ambi-
guity vector xa. In this step is utilized the LAMBDA
method [17]. The two main features of this method
are: (i) ambiguity decorrelation, carried through a
reparametrization (Z-transform); (ii) the actual inte-
ger ambiguity estimation.

With Z-transform, ambiguities and their covari-
ance matrix are transformed according to:

xz = ZTxa and Qẑ = ZTQâZ (31)

Minimization itself is made upon transformed
ambiguities. The minimization (30) consists of a
search over grid points inside the m-dimensional am-
biguity hyper-ellipsoid, defined by:

(x̂z − xz)TQẑ(x̂z − xz) ≤ χ2 (32)

The volume of the ellipsoid and the number of
candidates can be controlled by setting the value for
χ2.

Prior to the integer estimation, the ambiguities are
decorrelated by application of the Z-transform:

Minimization is then carried through transformed
ambiguities. The output consists of x̌z together with
their respective norms. Using the Z-transform, they
can be transformed back to the original ambiguities:

x̌a = Z−T x̌z (33)
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Estimative of x̌b and its covariance matrix Qb̌ are
obtained from:

x̌b = x̂b −Qb̂âQ
−1
â (x̂a − x̌a)

Qb̌ = Qb̂ −Qb̂âQ
−1
â Qâb̂

(34)

The least-squares estimates x̌b and x̌a are the so-
lution to the constrained minimization (29).

6.1 Z-transform
We can decompose covariance matrix Qâ in:

Qâ = L−TD−1L−1 (35)

Note that this corresponds to the inverse of the
LDLT decomposition of Q−1

â which is easily derived
from a Cholesky factorization. The principle of the
decorrelation is to find a matrix Z which is an integer
approximation of matrix L. If we would be able to
find an integer matrix Z that fulfills the requirements
in [20] and that exactly equals L, then with (31):

Qẑ = ZTQâZ = ZTL−TD−1L−1Z = D−1 (36)

The transformed ambiguities x̂z are fully decor-
related and the integer minimization reduces to a sim-
ple rounding of the real valued estimates. In practice a
complete decorrelation will not be possible due to the
integer requirement. The result of the decorrelation
process is the square m × m transformation matrix
Z. The estimate x̂z follows from x̂z = ZT x̂a. The
factors of the covariance matrix are updated such as:

Qẑ = L̃−T D̃−1L̃−1 (37)

The problem (30) has now been transformed into
the following minimization:

min
xz

‖x̂z − xz‖2Q−1
ẑ

, com xz ∈ Zm (38)

7 Results
The results for both cases (static and kinematic) were
obtained from the same process of estimation, us-
ing an iterated least-squares with a priori information
(section 4) processing code and carrier phase mea-
surements.

Used measurements are code and carrier phase
double differences observables and are related to the
parameters to be estimated x as follows:[

[ρ]m×1

[φ]m×1

]
=
[
[1Mb − 1ib]m×3 0m×3 0m×m
[1Mb − 1ib]m×3 0m×3 λIm×m

]
· x

(39)
where [ρ]m×1 and [ϕ]m×1 represent vectors with

m double difference measurements from code and
carrier phase respectively, 1ib is the line of sight vec-
tor between “base” receiver and satellite i and λ is L1

wavelength. The vector x consists of baseline compo-
nents between the receivers δx, δy and δz and the am-
biguities N1, . . . , Nm corresponding to each carrier
phase double difference measurement. In this method,
measurement standard deviation for code pseudor-
ange was set to 1.0 m, and for carrier phase was set
to 0.005 m.

Both ambiguity resolution methods use least-
squares as float solution estimator. The search for am-
biguity integer values is based on float ones, which
define a search space. Once ambiguities are resolved,
one can obtain the phase pseudorange, which position
solution is calculated.

The LSAST method divides the satellites in pri-
mary and secondary groups. Primary group defines
the search space of the three primary ambiguities in
20 cycles, in this case, around the corresponding float
ambiguity, after rounded to the nearest integer. The
decision about the choice is made using ambiguities
from the secondary group, which must meet the crite-
ria defined in section 5.

The LAMBDA method makes the integer ambi-
guity estimation through a Z-transform, in which am-
biguities are decorrelated before the integer values
search process. Then, minimization problem is ap-
proached as a discrete search inside an ellipsoidal re-
gion. This method has as result a least-squares esti-
mative for ambiguities based on float ambiguities and
their covariance matrix.

The first data set was collected by static receivers,
which remain stationary at precisely known positions,
to verify the quality of the proposed algorithm. The
data were collected by two Trimble R8 receivers,
and 1 Hz of sampling rate. Base receiver was placed
on a reference landmark with coordinates N 51◦ 04’
45.94126”, W 114◦ 07’ 58.29947” and 1116.617 m,
in ECEF coordinates of WGS-84 system, and user re-
ceiver was placed in another landmark, 2.944 m from
base. The solution was attained through a iterated
least-squares method with a priori information (sec-
tion 4), processing code and carrier phase measure-
ments. The standard deviation for code measurement
was set to 1.0 m, and phase, 0.005 m.

Baseline components were calculated epoch by
epoch, applying both LSAST and LAMBDA method-
ologies, using float ambiguity values from measure-
ment processing in each epoch by the least-squares
method. Graphics in Fig. 3(a)-3(c) show user posi-
tion error component behavior related to the base
when LSAST was applied. The error statistics for
each baseline component were -0.009±0.400 m on
south, -0.063±0.562 m on east, and 0.080±0.709 m
on vertical directions. Graphics in Fig. 3(d)-3(f) show
user position errors when using LAMBDA method,
and the error statistics were 0.228±0.555 m on south,
-0.015±0.387 m on east, and 0.294±1.154 m on ver-
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tical directions.
These methods build search space in different

manner, so LSAST processing time is considerably
longer than LAMBDA one. For LSAST method, pro-
cessing time in each epoch was 0.078 s, whereas
LAMBDA method was 0.002 s, for resolving 5 am-
biguities.

The second data set was collected by an aircraft
during a flight test. These data were collected by a re-
ceiver installed on an aircraft and a fixed receiver as
base. The base position coordinate are given by S 23◦
13’ 42.9859”, W 45◦ 51’ 23.4615” and 686.227 m,
in ECEF coordinates of WGS-84 system, and sample
rate was 2 Hz. For analysis purposes, the results were
compared to a trajectory obtained post processing the
data, which were considered precise enough for this
purpose. Graphics in Fig. 2 show the aircraft trajec-
tory during the test.

(a) Horizontal trajectory

(b) Vertical trajectory

Figure 2: Aircraft trajectory during the flight.

Graphics in Fig. 4(a)-4(c) show positioning
error in each direction (south, east, and verti-

cal), compared to the reference trajectory, using
LSAST method. The errors for each component
were -0.399±0.735 m on south, -0.472±0.720 m
on east, and -0.446±1.928 m on vertical direc-
tions. With LAMBDA method, these errors were -
0.650±0.646 m on south, 0.124±0.321 m on east,
and -1.553±1.174 m on vertical directions (Fig. 4(d)-
4(f)).

Compared to static, the kinematic test showed
larger errors due to the aircraft motion and maneu-
vers, and distance to base (up to 25 km). These as-
pects may lead to ambiguities values within±4 cycles
(∼0.8 m) from correct ones. It is expected, with fur-
ther improvements, these values remains within±1-2
cycles.

In order to evaluate the maximum accuracy which
this method can reach in real time when all fea-
tures are implemented, an off-line adjustment of am-
biguities based on LAMBDA results was carried
out. Graphics in Fig. 5 show error with this adjust-
ment for each direction: -0.244±0.339 m for south, -
0.015±0.183 m for east, and -0.655±0.899 m for ver-
tical directions. In kinematic case, processing time
for LSAST method was 0.094 s per epoch, and for
LAMBDA method was 0.003 s per epoch, for resolv-
ing 6 ambiguities.

8 Conclusions and Future Works
The positioning techniques were carried out through
phase measurements processing, using the LSAST
and LAMBDA approach.

In static case, base receiver was placed on a
landmark, and user receiver was on another land-
mark at 2.944 m from base, both with known posi-
tions. Measurements were processed at each epoch,
through an iterated least-squares algorithm. Base-
line error were, in each direction, -0.009±0.400 m on
south, -0.063±0.562 m on east, and 0.080±0.709 m
on vertical directions for LSAST method and
0.228±0.555 m on south, -0.015±0.387 m on east,
and 0.294±1.154 m on vertical directions for
LAMBDA method.

In kinematic test, user receiver was mounted on
an aircraft during a test flight. The baseline error val-
ues were -0.399±0.735 m on south, -0.472±0.720 m
on east, and -0.446±1.928 m on vertical direc-
tions with LSAST and -0.650±0.646 m on south,
0.124±0.321 m on east, and -1.553±1.174 m on ver-
tical directions with LAMBDA method. These values
were obtained through a iterated least-squares algo-
rithm, in each epoch. An off-line ambiguity adjusted
result showed the level of accuracy which can be at-
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(a) South (d) South

(b) East (e) East

(c) Vertical (f) Vertical

Figure 3: Error components using LSAST (Figs. a-c) and LAMBDA (Figs. d-f) methods for static test..
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(a) South (d) South

(b) East (e) East

(c) Vertical (f) Vertical

Figure 4: Error components using LSAST (Figs. a-c) and LAMBDA (Figs. d-f) methods for kinematic test.
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(a) South (b) East

(c) Vertical

Figure 5: Error components for offline adjusted data.

tained, with the improvements to be implemented in
real time. In both tests, LAMBDA is about 100 times
faster than LSAST in computer processing.

This work is part of a investigation to develop a
differential GPS, using carrier phase measurements in
real time. Further developments consider: (i) include
better dynamics in the estimation process; (ii) a bet-
ter filter tunning for carrier phase measurements; (iii)
add other measurements combination, such as L2 fre-
quency and widelane combination; (iv) validate am-
biguities after resolving; (v) cycle slips detection and
correction.
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