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Abstract: - The work considers road lane parameters that correlate with steering angle of a car and which are suitable 

for accurate prediction of steering signal using neural network technique. Four different parameters, which can be used 

in driver’s assistance system and are based on position, angles and curvature of the lane marker, are proposed and their 

correspondence to steering signal is analyzed. The steering signal is predicted with the precision of 95% to 97%, 

depending on a combination of the visually-based parameters provided for the neural network. The work is performed 

using signals from real road driving. 

 

Key-Words: - Steering signal, lane marker, vehicle, correlation, human-like driving, neural network 

 

1   Introduction 
A lane marker on a road can provide useful information 

for vehicle’s control. However, a direct use of the lane 

marker shape for the vehicle’s control is complicated; 

therefore it should be parameterized by features which 

are correlative to driver’s behavior during a drive. The 

drivers’ behavior is complex and it involves braking, 

acceleration / deceleration, steering, so design of reliable 

driver’s assistant system for the full driver’s behavior 

prediction and assistance at different driving conditions 

is a challenge. The assistance in a single drivers’s action, 

e.g. steering or braking, is possible and such systems are 

already integrated in modern vehicles. 

     It is important to notice a difference between 

intelligent and conventional driver’s assistance systems 

(DAS). The conventional DAS do not take into account 

individual driver’s behavior, i.e. the control provided by 

the system is clearly based on physical laws and 

automata theory [1]. For example, such systems were 

developed and demonstrated under the integrated 

European project PReVENT [2]. In this case the DAS do 

not take into account human-like driving [3-5]. The 

intelligent DAS are adaptive to individual driver’s 

behavior, therefore a vehicle becomes personalized to a 

single driver. Moreover, the adaptation process of the 

intelligent DAS can be performed during full lifetime of 

the system. 

     The objective of the work was estimation and 

analysis of four different lane marker parameters highly 

correlative to a vehicle’s steering signal and prediction 

of a steering signal using the estimated parameters. The 

presented parameters are estimated from data recorded 

during usual driving on country roads and the results are 

compared with steering signal evaluating cross-

correlation coefficients between them. The steering 

signal was predicted using neural network technique 

using different combinations of the estimated parameters 

for the network training and testing. 

 

 

2   Data 
Volkswagen Passat was used as a test car for recording 

of driving data. The driving action sequences 

simultaneously with traffic scenario were recorded and 

stored in a personal computer. The driving data was 

collected on country roads in Germany. The records 

were done in 2006, 2007 and 2008 years by different 

drivers at different routes.  

     The driving data, analyzed in the work, can be 

separated in two different parts. The first part of the data 

consists of information provided by a CAN-bus. It takes 

into account driver’s behavior (steering, braking, 

acceleration, etc.) and includes information related to the 

vehicle (velocity, vehicles position on a lane, etc.). The 

other part of the data, the visual one, was captured by a 

video camera installed in the car. Dimensions of the 

images were 1280×1024 pixels. The right side lane 

marker data (x and y coordinates in pixels) were 

extracted from these images using an algorithm, 

presented in our previous work [6]. During the analysis 

more than 28000 images were processed in total. 
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3   Parameters 
In our previous work [7] it was estimated that steering 

signal prediction error cannot be reduced by joining 

together (e.g. with a neural network) several sensor input 

signals of very low correlation to the steering signal, e.g. 

acceleration and velocity. Therefore the features which 

are highly correlated to the steering signal should be 

used in the neural network training. It should be noted 

that the lane marker parameters are extracted from a 

visual data which is noisy. However, the neural network 

can be trained by a single feature, but more different 

features of relatively high correlation to the steering 

signal reduce influence of the noise, so increase 

reliability of the neural network training and prediction 

of signals for driving assistance.  

     Four different lane marker parameters, which have 

high correlation with a steering signal, are estimated and 

analyzed in the work: a) x coordinate variation at the 

fixed y coordinate xv; b) angle α between the lane 

marker and the horizontal line at the fixed y coordinate; 

c) maximum mx/y of lane marker x and y coordinates 

ratio in a frame and d) curvature C. Below all four 

parameters are presented in more detail. It should be 

noted that all presented parameters are centered after 

their estimation. 

 

 

3.1   Variation of x coordinate 
The variation of x coordinate is estimated fixing y 

coordinated at a desired level. In the analysis of the x 

coordinate variation the desired y level was 500 pixels. 

For estimation of the lane marker x coordinate it is 

necessary to find line – lane marker intersection 

coordinate that is calculated solving a line – curve 

intersection equation. The problem geometry and 

coordinate system are shown in Fig. 1.  
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Fig. 1. The coordinate system and the estimation of the x 

coordinate variation xv. The proportions are true. 

     It should be noted that origin of the coordinates 

system is the left upper corner of the image (Fig. 1).  

 

 

3.2   Angle α 
An angle α is the angle between the lane marker and 

horizontal line at desired y level (Fig. 2). The angle can 

be estimated in many ways. In the work it is evaluated 

from the law of cosines and the evaluation is presented 

below. 

     Let point A with the fixed coordinates (xA, yA) 

belongs to the horizontal line at desired y level yA. Point 

B, having the coordinates (xv, yv), is the lane marker – 

line intersection point, i.e. the same point as in Fig. 1. 

Let point C also is the lane marker – line intersection 

point at desired y level yC, so the coordinates are (xC, yC). 

In the work the difference between the yA and yB 

coordinates was selected to be 50 pixels. Knowing the 

coordinates of all three points, the angle α is expressed 

in the following way: 

     ab

cba

2
arccos

222 
 ,

 
(1) 

where the quantities a, b and c are given in the following 

expressions: 
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     The angle α is inverted (Eq. 1) that it appears of the 

same sign as the steering signal. It should be noted that 

the lane marker part, limited by two horizontal lines at 

the desired levels yA and yC, is approximated by a 

straight line BC (see Fig. 2). 
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Fig. 2. The angle α and the geometry for estimation of 

the angle. The lane marker is the same as it is shown in 

Fig. 1, but includes only zoomed upper part. 
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3.3   Maximum mx/y 
Let denote lane marker coordinate x and y ratio as: 

     y

x
r yx / , (5) 

     Taking maximum value of the ratio along the lane 

marker, the maximum mx/y is estimated: 

     
 yxyx rm // max . (6) 

 

 

3.4   Curvature 
Curvature is one of the most frequently used parameters 

for characterization of lane marker on a road. Usually 

the curvature, given by a plane curve C = (x(t), y(t)) is 

estimated from the following generalized expression [8]: 

     
  2/322 )(')('

)(')('')('')('

tytx
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C




 , (7) 

where apostrophes denote the first and the second order 

derivatives of the curve parameters, respectively. From 

the last expression is clearly seen that estimation of the 

curvature is numerically unstable, so in the driving data 

analysis the use of the generalized form of the 

expression is complicated. To overcome the numerical 

instability, the curvature was estimated by the method 

which is derivative free, what resulted in numerical 

stability. Below the derivation of the method is 

presented in detail. 

     Two vectors are perpendicular when their scalar 

product is 0. Let analyze two vectors given by the 

following coordinates: (x1, y1) and (x2, y2), (x’, y’) and (x, 

y), where the pairs of the coordinates denote beginning 

and end points of the two vectors, respectively. The 

geometry is shown in Fig. 3. 
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Fig. 3. Geometry for curvature estimation. The first 

vector is given by the coordinates (x1, y1) and (x2, y2), the 

second one is denoted by the coordinates (x2, y2) and (x3, 

y3). 

 

     The middle point, denoted by the coordinates (x’, y’), 

of the first vector is given by: 

     2
' 21 xx

x


 , (8)
 

     2
' 21 yy

y


 . (9)
 

     For the two perpendicular vectors, given by the 

coordinates above (see Fig. 3), it can be written that their 

product is: 

     
0)')(()')(( 1212  yyyyxxxx . (10)

 
     In the same way as before, the system of linear 

equations for two spans, given by the two vectors, (Fig. 

3) can be written as: 
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     After solving the Eq. 11, the coordinate x is 

expressed as: 
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     Assuming that y2-y1 = y3-y2 and the difference 

denoting as Δy, the last equation can be rewritten in the 

following form: 
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     Due to estimation of the curve radius R (Fig. 3) it is 

necessary to evaluate y coordinate. The y coordinate can 

be calculated using Eq. 11 when x is substituted by the 

Eq. 12. However, for a parameter that is proportional to 

the curvature, it is enough to estimate the x coordinate. 

In this case the pseudo-curvature C can be written as: 

     x
C

1
 , (14) 

     In the analysis x coordinates of lane markers were 

replaced by the ratio rx/y (Eq. 5) when the curvature C 

was investigated. The replacement was done due to 

unstable results when the raw x coordinates were used in 

the curvature analysis. In the work the curvature C was 

calculated applying Eq. 13 when the y1 was 700 pixels, 

y2 was 600 pixels and y3 being 500 pixels. It is important 

to notice that for curvature detection, as well as for the 

rest of parameters mentioned here, it is enough to 

estimate the lane marker in the range of 500 – 700 pixels 

respective to the y axis. So in this case time for 

processing of images can be reduced significantly and 

all four presented lane marker parameters can be 

estimated. 
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4   Results of parameters estimation 
To determine quality of the presented parameters, cross-

correlation coefficients were calculated between the 

parameters and the steering signal. The results are listed 

in Table 1 which includes the results for 20 sets of 

driving data. In Table 1 the following notation was 

introduced: Ns is the number of samples in data set, θmin 

and θmax are the minimum and the maximum amplitudes 

of the steering signal in degrees, respectively. ρC, ρx, ρα 

and ρm are the cross-correlation coefficients between the 

vehicle’s steering signal and the lane marker parameters: 

curvature C, x coordinate variation xv, angle α and 

maximum mx/y. Video data was recorded at 25 Hz 

sampling rate in 2006 and 2008 years. 20 Hz sampling 

rate was used in records of 2007 year. The driving data 

sets 1-5 and 6-10 were recorded on the same route, but 

by two different drivers. The results show (Table 1) that 

the cross-correlation coefficients are lower for the data 

recorded by the second driver (driving sets 6-10) 

comparing them to the results of the first driver (driving 

sets 1-5). That can be explained by different traffic 

scenario (i.e. lead vehicles and etc.) and individual 

driver’s behavior (experience and driver’s adaptation to 

the car). 

     The results clearly show that in some cases the cross-

correlation coefficients are significantly below 0.9. 

Major part of these low correlation values was caused by 

missing lane marker due to side streets or lane marker 

deterioration. In the work the gaps in the parameters 

were interpolated by cubic splines. 

 

Table 1. The estimated cross-correlation coefficients 

between the presented parameters and the vehicle’s 

steering signals. 
No. Year Ns ρC ρx ρα ρm θmin / θmax 

1 

2006 

1600 0.89 0.92 0.76 0.89 -21 / 21 

2 0.93 0.94 0.95 0.88 -17.5 / 14 

3 0.85 0.96 0.93 0.83 -19.25 / 101.5 

4 0.76 0.87 0.75 0.83 -42 / 101.5 

5 1106 0.77 0.85 0.56 0.81 -42 / 29.75 

6 1600 0.91 0.93 0.81 0.91 -21 / 15.75 

7 0.86 0.86 0.66 0.9 -15.75 / 15.75 

8 0.38 0.74 0.59 0.76 -21 /12.25 

9 0.92 0.98 0.94 0.93 -43.75 / 108.5 

10 1292 0.92 0.95 0.86 0.96 -47.25 / 29.75 

11 

2007 

897 0.97 0.98 0.87 0.91 -31.5 / 15.75 

12 1600 0.97 0.97 0.90 0.88 -22.75 / 19.25 

13 1251 0.96 0.93 0.85 0.86 -22.75 / 21 

14 1291 0.91 0.83 0.83 0.59 -17.5 / 8.75 

15 1600 0.85 0.92 0.78 0.83 -40.25 / 22.75 

16 0.98 0.98 0.89 0.88 -35 / 44 

17 1366 0.85 0.92 0.78 0.83 -12.75 / 7.5 

18 

2008 

1361 0.89 0.93 0.80 0.76 -22 / 10.75 

19 851 0.93 0.93 0.92 0.90 -21 /17.5 

20 1020 0.92 0.97 0.94 0.95 -36.75 / 33.25 

 

     Summarizing the results, listed in Table 1, one can 

see that the highest correlations (0.98) can be estimated 

between the steering signal and the lane marker 

curvature or / and x coordinate variation at the desired y 

coordinate level. The cross-correlation coefficients 

between the steering signals and the parameters (angle α 

and maximum mx/y) were a bit lower than in previous 

case and they did not pass 0.95 and 0.96 levels, 

respectively.  

     Illustrations of the estimated parameters are 

presented in Figs. 4 – 11. The Figs. 4 – 7 correspond to 

the data set No. 16 and Figs. 8 – 11 show the results of 

the data set No. 19. Each signal, the steering and the 

parameter, are centered and normalized by a maximum 

of amplitude separately. The illustrations clearly show 

that in most cases the steering signal is delayed 

comparing it to the lane marker parameters, that aids 

driver’s steering signal prediction.  
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Fig. 4. The steering signal θ (solid curve) and the angle 

α (dotted curve). The data set No. 16. a.u. stands for the 

arbitrary units. 
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Fig. 5. The steering signal (solid curve) and the 

variation of the lane marker coordinate x (dotted curve) 

when y = 500 pixels. The data set No. 16. 
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Fig. 6. The steering signal (solid curve) and the 

curvature C (dotted curve). The data set No. 16. 
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Fig. 7. The steering signal (solid curve) and the 

maximum of the lane marker coordinates x and y ratio 

(dotted curve). The data set No. 16. 
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Fig. 8. The same as in Fig. 4, but for the data set No. 19. 
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Fig. 9. The same as in Fig. 5, but for the data set No. 19. 
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Fig. 10. The same as in Fig. 6, but for the data set No. 

19. 
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Fig. 11. The same as in Fig. 7, but for the data set No. 

19. 
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     The time delays between the signals, presented in 

Figs. 4–11, are calculated taking maximum of the cross-

correlation functions between them. The steering signal 

was selected as the reference. The results are listed in 

Table 2, where τ is the time delay in seconds. One can 

observe that the parameters precede the steering signal 

from 0.5 s to 1.12 s in this case and the delays are not 

stable. It is important to notice that an elimination of the 

time delay between the steering signal and a feature, 

used for neural network training, reduces the steering 

signal prediction error [7]. The time delay can be 

compensated numerically estimating lane marker 

parameters at different y coordinate levels. The 

compensation of the time delay would increase the 

cross-correlation between the signals. 

 

Table 2. The time delays between the steering signal 

and the parameters. 
No. τC, s τx, s τα, s τm, s 

16 -0.7 -0.5 -0.65 -0.7 

19 -1.12 -0.64 -1 -0.88 

 

 

5   Steering prediction with neural  

network 
The four visually-based parameters were tested for 

potential to predict a vehicle’s steering signal. In the 

investigation the steering signal was predicted for a 

specific driver; therefore data recorded by the same 

driver were analyzed. It is important to notice that the 

data, which are used for prediction of steering signal, 

should be recorded by the same driver, because each 

individual driver has his own style of vehicle’s driving. 

The analyzed data were recorded on the country 

road in Germany in 2006. It should be noted that some 

part of the driving data also was recorded in a suburb, 

where street lane extraction is more difficult, and the 

steering is more complicated to predict. The steering 

angle varied in the range from -50° to 50° in both 

directions: left and right (see Fig. 12). The signal, 

presented in Fig. 12, was composed from data sets No. 

6-10 (see Table 1) consecutively joining the recorded 

signals. The estimated visually-based parameters were 

joined in the same way as the steering signal and they 

are presented in Fig. 13. 

     Different methods are used for predictions of time 

sequences. In the field of driving assistance systems or 

analysis of driving data the following numerical 

methods are used: neural networks [9], fuzzy logic [10, 

11], Markov chains [12-14] and etc. In the work the 

steering angle was predicted using two-layered neural 

network. There were 2 neurons in the hidden layer with 

a sigmoid transfer function. The predicted signal value 

was averaged from 10 initializations. The averaging 

increased the signal to noise ratio. 
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Fig. 12. Steering signal for prediction with neural 

network: a) steering signal for neural network testing, b) 

steering signal for neural network training. 

     The steering data used for neural network learning 

(Fig. 12b) varied approximately from -50° to 50° and for 

testing the signal varied in the range from -24° to 10° 

(Fig. 12a). The test signal had lower amplitude as 

compared to the training signal. 
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Fig. 13. Parameters for steering signal prediction with 

neural network: a) data for neural network testing, b) 

data for neural network training, where the solid thick 

line is the true steering signal, the solid thin line 

corresponds to the xv parameter, the dashed line denotes 

the mx/y parameter, the dotted line denotes the parameter 

α and the dashed-dotted line denotes the parameter C.  

     The steering signal was predicted with each visually-

based parameter and all their possible combinations. The 

parameter combinations used for the neural network 

training and testing are listed in Table 3. Estimated mean 

squared errors (MSE) of the predicted steering signal 
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obtained with these parameter combinations also are 

listed in Table 3. 

 

Table 3. Parameter combinations for the steering signal 

prediction and calculated MSE of the predicted steering 

signal with the corresponding parameter set at input.  
No. Parameter combinations MSE, % 

1 xv 4.50 

2 mx/y 3.33 

3 α 3.66 

4 C 3.10 

5 xv, mx/y 3.30 

6 xv, α 4.24 

7 xv, C 4.23 

8 mx/y, α 3.05 

9 mx/y, C 2.87 

10 α, C  3.29 

11 xv, mx/y, α 3.00 

12 xv, mx/y, C 3.01 

13 xv, α, C  4.15 

14 mx/y, α, C 2.93 

15 xv, mx/y, α, C 3.07 

 

     At first, all four visually-based parameters were 

tested separately. The best performance, i.e. the smallest 

prediction error, was reached when the parameter C 

(curvature) was used as the input for the neural network 

(Fig. 14d). Both parameters mx/y (maximum of x and y 

coordinated ratio) and α (angle between the lane marker 

and the horizontal line at the desired y level) showed a 

bit larger prediction error than curvature (see Fig. 14b. 

and Fig 14c, respectively). During analysis of the single 

parameters the biggest error value was obtained when 

the parameter xv (lane marker x coordinate variation at 

the desired y level) was used as the input for the neural 

network (Fig. 14a). 

     The visually-based parameters were tested in pairs as 

well. The smallest MSE between the true and the 

predicted steering signal was obtained when the 

parameters mx/y and C were used for the neural network 

input (Fig. 15c). Parameter sets mx/y and α (Fig. 15b), xv 

and mx/y (Fig. 14e), α and C (Fig. 15d) were a bit worse, 

respectively. Combinations of the xv and α (Fig. 14f), xv 

and C (Fig. 15a) signals resulted in the largest MSE in 

the pair combinations. 

     It is clearly seen that a triplet of the parameters gave 

one of the smallest MSE value (Table 3). The best 

performance was observed when the parameters set, 

consisting of the mx/y, α and C signals, was used for the 

neural network examination. In this case the results are 

presented in Fig. 16b. The worst steering signal 

prediction result was obtained when the triplet 

composed of the xv, α and C signals was applied for the 

neural network training and testing (see Fig. 16a).  

     A general case, when all four parameters 

simultaneously were used for the neural network 

training and testing, has shown one of the best 

performance (see Table 3 for details). The illustration of 

the prediction result is provided in Fig. 16c.  
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Fig. 14. Steering signal predictions with the neural 

network when the following network inputs were used: 

a) xv; b) mx/y; c) α; d) C; e) xv and mx/y; f) xv and α. In the 

illustrations the solid curve marks the true steering 

signal and the dotted curve marks the predicted steering 

signal. 
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Fig. 15. Steering signal predictions with the neural 

network when the following network inputs were used: 

a) xv and C; b) mx/y, and α; c) mx/y and C; d) α and C; e) 

xv, mx/y and α; f) xv, mx/y and C. The solid curve 

corresponds to the original steering signal, the dotted 

curve marks the predicted steering signal. 
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Fig. 16. Steering signal predictions with the neural 

network when the following network inputs were used: 

a) xv, α and C; b) mx/y, α and C; c) xv, mx/y, α and C. The 

solid and dotted curves mark the original and predicted 

steering signals, respectively. 

 

     A vehicle’s velocity signal v from CAN-bus data was 

included in the analysis in addition to pure visually-

based parameters for the steering signal prediction. The 

estimated results showed that the MSE was larger in 

comparison with the same parameter set without the 

velocity signal. Some illustrative cases are listed in 

Table 4.  

 

Table 4. MSE values for parameter sets with the 

smallest prediction MSE value, with added velocity 

signal v and without it. 
Parameter set MSE, % Parameter set + v MSE, % 

mx/y, C 2.87 2.90 

mx/y, α, C 2.93 3.14 

xv, mx/y, α 3.00 4.04 

xv, mx/y, C 3.01 3.35 

 

     As it is seen from the results, the velocity of the 

vehicle very little influences steering signal prediction 

results, but the results always become worse when 

velocity is added. This might happen because the 

parameters extracted from visual data are sufficient to 

predict a steering signal in the data set that is used in this 

study, and additional parameters only lead to over-

fitting. 
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     The predicted signal is usually shifted to the left from 

the true steering signal. That can occur due to the 

driver’s reaction time. The parameters are taken from 

the right lane, and they are objective. According to the 

study [15] a driver needs 0.5 s to take actions when a 

new or unexpected situation occurs.  

     An experiment was made to find out (ascertain) when 

the predicted signal best corresponds to the true signal. 

The combination of the visually-based parameters which 

produced the smallest MSE was used in the investigation 

(see Table 3). The predicted signal was shifted to the 

right every 0.04 s, for the overall 1 s interval. The MSE 

between the predicted and the true signal was calculated 

at each shift. The estimated smooth MSE variation is 

presented in Fig. 17 which clearly shows that optimum 

exists where the smallest prediction error is obtained. 

The results show that the smallest MSE was reached at 

0.5-0.6 s. Summarizing the results, it can be concluded 

that taking into account driver’s reaction time factor the 

MSE can be reduced from 2.87% to 2%. The illustration 

of the predicted steering signal shift is presented in Fig. 

18. 
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Fig. 17. MSE between the predicted and the true 

steering signals when the predicted signal is shifted to 

the right every 0.04 s. The solid line shows the mx/y and 

C parameters set, the dotted line corresponds to the mx/y, 

α, C signals combination. 
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Fig. 18. Time-shifting of the predicted signal. The true 

signal is marked by the solid line, the dashed line 

represents the predicted signal and the predicted signal 

after shifting by 0.56 s is marked by the dotted line. 

 

 

5   Discussion and feature works 
In the work four different lane marker parameters with 

high correlation to vehicle’s steering signal are 

presented. The parameters can be supplemented with 

additional lane marker parameter that is not presented in 

the analysis – the curve’s area. In our previous work it 

was estimated that the curve area also has high 

correlation with a steering signal [6].  

     It is important to notice that the lane marker 

parameters were estimated from the mono-camera 

images without use of any undistortion processing for 

the images which is used to compensate video cameras 

distortions in the images [16]. Moreover, in the 

presented analysis it was shown that there is no need to 

use stereo cameras for lane marker estimation and 

parameters extraction. Therefore evaluation of the 

parameters is simple and not time consuming process, so 

the presented lane marker parameters can be reliably 

estimated in real time applications. 

     The data used for the neural network learning was 

unprocessed; it included two over-takings and many 

over-steering situations. Despite these circumstances, 

the two-layered neural network with 2 neurons in the 

hidden layer and sigmoidal transfer function was able to 

learn the correct behavior and predict the steering signal 

with more than 95% accuracy.  

     Next, different drivers behavior on the same road will 

be analyzed and predicted. The study on common 

driving rules and individual steering differences will be 

performed. 

     In future steering signal prediction applying the 

presented parameters, and using neural network 
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techniques will be developed and implemented into 

hardware for driving assistance.  

 

 

6   Conclusions 
The four different lane marker parameters with high 

correlation to the vehicle’s steering signal have been 

estimated and evaluated from mono-camera images. It 

has been shown that the very high correlation (up to 

0.98) between the presented lane marker parameters and 

the vehicle’s steering signal can be achieved. 

     The simple and derivative free method for estimation 

of lane marker curvature from mono-camera images has 

been presented. 

     It has been shown that it is possible to predict a 

steering signal with mean squared error less than 5% 

when the neural networks, used in the predictions, are 

trained by the visually-based parameters. Predicted 

signal shifting to the right (attributed to the driver 

reaction delay of 0.5 s) can reduce the error further. 
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