
Some Numerical Experiments on Multi-criterion Tabu Programming

for Finding Pareto-optimal Solutions

JERZY BALICKI

Naval University of Gdynia
ul. Smidowicza 69, 81-103 Gdynia,

POLAND

J.Balicki@amw.gdynia.pl

Abstract: - Decision making for complex systems is based on multi-criterion-optimization. A decision making support

can be applied to find the Pareto solutions. Multi-criterion tabu programming is a new paradigm for that task. Similarly

to rules applied in the genetic programming, tabu programming solves problems by using a tabu algorithm that

modifies some computer programs. We consider the multi-criterion problem of task assignment, where both

a workload of a bottleneck computer and the cost of system are minimized; in contrast, a reliability of the distributed

system is maximized. Furthermore, there are constraints for the performance of the distributed systems and the

probability that all tasks meet their deadlines. What is more, constraints related to memory limits and computer

locations are imposed on the feasible task assignment. Finally, results of some numerical experiments have been

presented.

Key-Words: - Tabu search algorithm, multi-criterion optimization, genetic programming

1 Introduction
There are several artificial intelligence techniques that

can be applied to solve some multi-criterion optimization

problems. Genetic algorithms, artificial neural networks,

simulated annealing, tabu search and artificial

immunological systems are crucial paradigms for

a computer aid of decision making.

 Tabu programming is a relatively new paradigm of

artificial intelligence that can be applied for computer

decision aid. Similarly to the genetic programming that

applies a genetic algorithm [28], tabu programming

solves problems as a general solver that is based on

a tabu algorithm. Tabu search is a combinatorial

optimization technique for development in zero-one

programming, non-convex non-linear programming, and

general mixed integer optimization [15, 17]. Some

efficient task scheduling algorithms that are based on

tabu search are proposed by Węglarz in [37]. This

optimization technique can be used to continuous

functions by a selection a discrete encoding of the

problem [27, 30].

 We have observed that the multi-criterion tabu

algorithm gave better quality results than multi-criterion

evolutionary algorithm, and that fact inspired us to create

new paradigm of programming based on a tabu

algorithm. Tabu programming paradigm has been

implemented as an algorithm operated on the computer

program that produces the solution. Tabu search

algorithm has been extended by using a computer

program instead of a mathematical variable [29, 31]. In a

tabu programming, special areas for possible

modification of programs are forbidden during the

seeking in a space of all possible combinations [18]. In

opposite to a genetic programming, tabu programming

deals with one computer program at the current moment,

instead of the set of procedures at the genetic approach.

 The first tabu programming for multi-criterion

optimization has been presented by Balicki in 2007 [3].

That optimization technique called multi-criterion

optimization tabu programming MOTP has been applied

to the bi-criterion task assignment problem and the sub-

optimal in Pareto sense solutions have been found. For

solving the hierarchical solutions in the multi-objective

optimization problem, MOTP was applied for three-

criterion problem of robot trajectory, too [4].

 Then, an improved MOTB for solving multi-criterion

with constraints optimization problems of task

assignment in the distributed computer system has been

considered [3]. The sub-effective task assignment has

been obtained by development that approach.

 In this paper, we consider another multi-criterion

problem of task assignment, where both a workload of

a bottleneck computer and the cost of system are

minimized. Furthermore, there are constraints for the

performance of the distributed systems and the

probability that all tasks meet their deadlines. What is

more, constraints related to memory limits and computer

locations are imposed on the feasible task assignment as

well as a reliability of the distributed system is

maximized. Finally, some results of some numerical

experiments have been presented.

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 241 Issue 2, Volume 8, February 2009

2 Rules of tabu programming
Tabu programming (TP) is based on tabu search

algorithm rules. However, it is not a straightforward

modification of tabu algorithm or the transformation of

rules from the genetic programming. It is rather the

combination of tabu search algorithm and genetic

programming to create new optimization technique by

avoiding some disadvantages of them. Moreover, some

aspects of multi-criterion optimization are respected.

 The tabu programming operates on the computer

program which produces an outcome that can be treated

as a solution to the problem. Because in the computer

program several modifications may be carried out by

exchanging functions or arguments, the neighborhood of

the current program can be created as a result of some

adjustments of the given software procedure. TP avoids

working in cycles by forbidding moves which lead to

points in the solution space previously visited. Number

of moves and the number of programs in the

neighborhood is much smaller than the number of

solutions in the search space. To avoid a path already

investigated a point with poor quality can be accepted

from the neighborhood of the current program [19]. This

insures new regions of a solution space will be explored

in with the goal of avoiding local minima and finding the

global minimum [11, 35].

 To keep away from repeating the steps, recent moves

are recorded in some tabu lists [5]. That lists forms the

short-term memory. The memory content can vary as the

search proceeds [9]. At the beginning, the target is

testing the solution space, during a 'diversification' [6].

As candidate regions are identified the algorithm is more

focused to find local optimal solutions in an

'intensification' process. The TP operates with the size,

variability, and adaptability of the memory [20].

 Special areas are forbidden during the seeking in

a search space. From that neighborhood N(x
now

) of the

current solution x
now

 that is calculated by the given

program, we can choose the next solution x
next

 to

a search trajectory of TP [7]. The accepted alternative is

supposed to have the best value of an objective function

among the current neighborhood. In the tabu search

algorithm based on the short-term memory, a basic

neighborhood of a current solution may be reduced to

a considered neighborhood K (x
now

) because of the

maintaining a selective history of the states encountered

during the exploration [23, 38]. Some solutions, which

were visited during the given last term, are excluded

from the basic neighborhood according to the

classification of movements [8, 32]. If any solution

satisfies an aspiration criterion, then it can be included to

the considered neighborhood, only [27, 34].

 Computer programs from the neighborhood are

constructed from the basic program that produces the

current solution. The basic program is modeled as a tree

(Fig. 1).

 That tree is equivalent to the parse tree that most

compilers construct internally to represent the specified

computer program. A tree can be changed to create the

neighborhood N(x
now

) of the current program. For

instance, we can remove a sub-tree with the randomly

chosen node from the parent tree. Next, the randomly

selected node as a terminal is required to be inserted.

A functional node is an elementary procedure randomly

selected from the primary defined set of functions [12]:

 Nn fff ,...,,...,1F (1)

 In the problem of finding trajectory of underwater

vehicle [2], we define set of functions, as bellow:

 /*,-,,,  if_endmove,e,if_obstaclF (2)

 The procedure if_obstacle takes two arguments. If the

obstacle is recognized ahead the underwater vehicle, the

first argument is performed. In the other case, the second

argument is executed. The function move requires three

arguments. It causes the movement along the given

direction with the velocity equals the first argument

during assumed time Δt. The time Δt is the value that is

equal to the division a limited time by Mmax. The

direction of the movement is changed according to the

second and third arguments. The second argument is the

angle of changing this direction up if it is positive or

down if it is negative. Similarly, the third argument

represents an angle of changing the direction to the left if

it is positive or – to the right if it is negative.

 The procedure if_end ends the path of the underwater

vehicle if it is in the destination region or the expedition

is continued if it is not there.

3 Function set and argument sets
Set of procedures for task assignment problems can be

defined, as follows [3]:

 /,-,*,, F (3)

where

 – the procedure that converts M=V+I(V+J) input real

numbers called activation levels on M output binary

numbers

 VvIJijJ
m
VI

m
vi

m
I

m NNNxxxxxxxx ,...,,...,,,...,,...,,...,,,...,,...,,..., 1111111
 .






 , the toassigned is if1

case.other thein0
iwj

ijx






, toassigned is taskif1

case,other thein0
iwvTm

vix

Nv – number of the vth module in the line for its

dedicated computer,

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 242 Issue 2, Volume 8, February 2009

},...,,...,{ 1 Ii wwwW  - the set of the processing

nodes,

T={T1,...,Tv,...,TV} - the set of parallel performing tasks,

 },...,,...,{ 1 Jj  - the set of available computer sorts.

 The procedure  is obligatory the root of the

program tree and appears only one in a generated

program. In that way, the formal constraints

Mmxm ,1, B for B = {0, 1}, are satisfied. An

activation level is supplied to a root from the sub-tree

that is randomly generated with using arithmetic

operators {+, -, *, /} and the set of terminals. So, the tree

from Figure 1 could be a sub-tree that calculates one of

activation levels.

 Furthermore, each procedure is supposed to be

capable to allow any value and data type that may

possible be assumed by any terminal selected from the

following terminal set [10]:

 Mm aaa ,...,,...,1T (4)

 For finding the trajectory of the underwater vehicle,

the set of arguments consists of the real numbers

generated from the interval (-1; 1) [2]. However, for the

task assignment the set of arguments is determined in the

other way. Let D be the set of numbers that consists of

the given data for the instance of the problem.

A terminal set is determined for the problem, as below

[3]:

,LDT (5)

where

L

–

set of n random numbers, Dn

Fig. 1. The program tree for procedure (x-3)*z/x

4 Neighborhood and short-term memory
Some programs from the neighborhood can be created

by sort of movements related to removing the randomly

chosen terminal node and then adding a sub-tree with the

functional node as a root. That sub-tree can be

constructed from the random number of nodes.

 If the node is the root of the reducing sub-tree, it can

be protected against choosing it to be that root in

a reducing operation until the next λ1 movements are

performed. However, that node can be selected to be the

root for adding the sub-tree. Similarly, if the node is the

root of the adding tree, it can be protected against

choosing him to be that root in an adding operation until

the next λ2 movements is performed.

 We can implement that by introducing the assignment

vector of the node names to the node numbers. We insert

a dummy node D0 (Fig. 1) as the number 0, for the

formal reason. The node index ,,1 maxLl  where maxL

represents the assumed maximal number of nodes in the

tree. Numbers are assigned from the dummy node to

lower layers and from the left to the right at the current

layer. The assignment vector of the node names to the

node numbers for the tree from the Figure 1 can be

represented, as below:

 xzxD ,,,3/,,,*,0  (6)

 Moreover, the vector of function and argument

assignment can be defined, as follows:

 aaaaffff ,,,,,,, (7)

 The vector of the argument number can be

determined, as below:

 0,0,0,0,2,2,2,1 (8)

 A neighborhood is generated by re-building the

current program (Fig. 2). If the node is the root of the

reducing sub-tree, it can be protected against choosing it

to be that root in a reducing operation until the next λ1

movements. However, that node can be selected to be

the root for adding the sub-tree. If the node is the root of

the adding tree, it can be protected against choosing it to

be that root in a adding operation until the next λ2

movements.

 We can introduce the matrix of reducing node

memory   ,
maxmax LLnmmM 

  where nmm represents

the number of steps that can be missed after reduction

the function fm (with the parent fn) as a root of the chosen

sub-tree. After exchanging that root, .1nmm

 Similarly, we can define the matrix of adding node

memory   ,~
maxmax LLnmmM 

  where nmm~

represents the number of steps that can be missed after

 *

 + /

 x -3 x z

 D0 0

1

2 3

4 5 7 6

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 243 Issue 2, Volume 8, February 2009

adding the function fm (with the parent fn) as a root of the

created sub-tree. After exchanging that root, .~
2nmm

Fig. 2. A neighborhood for the current program

 Parameters λ1 and λ2 are usually equal to λ, but we

can adjust their values to tune the tabu programming for

the solved problem. On the other hand, the length of the

short-term memory λ is supposed to be no greater than

Lmax. After λ movements, the selected node may be

chosen for operation once again.

5 Multi-criterion tabu programming
MOTP can be used for solving an optimization problem

with at least two criteria. From the set of the competitive

solutions, we prefer admissible ones and coordinates of

an ideal point are calculated. Then, the compromise

solution *x with the smallest distance to the ideal point

is selected, as follows:

),(min)*,(
)(

i

xNx

i xxKxxK
now


(9)

where K – a distance function to the ideal point
ix .

 The selection function W for the choosing the next

solution in the search path is constructed from the

criterion K and functions describing constraints [13].

Usually, the penalty function can be applied [24, 33].

 Figure 3 shows an outlook of the algorithm MOTP.

At the beginning, the first computer program is

generated by the control program that is the

implementation of the multi-criterion tabu algorithm [3].

User of the MOTP is obligated to set the input data and

some parameters, only. The MOTP has been written in

the Matlab language [3].

 The first computer program calculates the vector of

decision variables xnow. This program can be written as

a s-expression in Common Lisp like:

(GT (* -1 x) (* v (ABS v)))

 That s-expression can be written as a Pascal function:

function u(x,v:real):real;

begin

if (-x > v*abs(v)) then u:=1

 else u:= -1;

end;

Fig. 3. An algorithm MOTP

 Because a program function is modeled by a rooted,

point-labeled tree with ordered branches, then a size of

program is described by µ1 – the number of tree nodes.

Figure 1 shows the tree with 8 tree nodes. Moreover, µ2

– the number of the tree levels is another constraint

parameter for the program tree. There are 4 tree levels on

Figure 1. Parameters µ1 as well as µ2 are supposed to be

1. Initial procedure k:=0

(A) Read some input data to the problem

(B) Set up constraint program parameters µ1 , µ2
(C) Generation of the program that produces xnow

(D) xbest := xnow , xbis:= xnow

(E) Kmin:=K(xnow)
(F) Initialization of restriction matrixes M +, M -

(G) Setting the memory parameters λ1, λ2

2. Solution selection and stop criterion k:=k+1

(A) Finding a set of tree candidates K(M +,M -, xnow) from

the neighborhood N(xnow)

(B) Selection of the next solution xnext K (M +, M -, xnow)

with the minimal value of the selection function W

among solutions taken from K

(C) Aspiration condition. If all solutions from the

neighborhood are tabu-active and Kmin<0.8K(xnow),

then xnext := xnow

(D) Re-linking of search trajectory. If xnext was not

changed during main iteration, then a genetic crossover

procedure for parents xbest, xbis is performed. A child

with the smaller value of K is xnext, and another one is

xbis

(E) If k = 0.4 Tmax, then λ1:= 4λ1, λ2:= 4λ2

(F) If k = Tmax or maximal time of calculation is exceeded,

then STOP.

3. Up-dating

(A) xnow := xnext
(B) If K(xnow)< Kmin, then xbis := xbest and go to 1(B)

(C) After reduction the procedure fm (with the parent fn) as a

root of the chosen sub-tree M -:= M - –1, .1nmm

(D) After adding the procedure fm (with the parent fn) as a root

of the created sub-tree M +:= M + –1, .~
2nmm

(E) go to 2

reduction substitution

λ1 movement freeze λ2 movement freeze

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 244 Issue 2, Volume 8, February 2009

set at the beginning of tabu programming. The size,

structure and contents of a program may be dynamically

changed during evolution. The program size is

constrained by the maximal number of tree nodes or the

maximal number of the tree levels

 Parameters of the short-term memory are increased

after 40% of the all iterations to avoid falling in cycles.

 A paradigm of tabu programming gives opportunity

to solve the several problems. Initial numerical

experiments confirm that sub-optimal in Pareto sense

solutions can be found by tabu programming for two-

criterion task assignment and three-criterion underwater

vehicle trajectory.

6. Criteria for benchmark problem
To test the ability of the MOTP, we consider a multi-

criterion optimization problem for task assignment in

a distributed computer system, where three criteria are

optimized. In the formulated task assignment problem as

a multi-criterion question, both Zmax – a workload of

a bottleneck computer and C – the cost of system are

minimized; in contrast, R – a reliability of the distributed

system is maximized. Moreover, there are constraints for

the performance of the distributed systems and the

probability that all tasks meet their deadlines. In

addition, constraints related to memory limits and

computer locations are imposed on the feasible task

assignment.

 It is a new approach for formulation multi-objective

task assignment problems, although some three-criterion

task assignment questions have been formulated yet [4].

Meta-heuristics like evolutionary algorithms, tabu

algorithm and genetic programming have been applied

for solving multi-criterion optimization problem. We can

compare quality of obtained task assignments by MOTP

to qualities produced by the other multi-criterion meta-

heuristics.

 Finding allocations of tasks in a distributed system

may estimation of a criterion by taking a benefit of the

particular properties of some workstations or an

advantage of the computer load.

 Let the task be executed on some computers taken

from the set of available computer sorts. The overhead

performing time of the task Tv by the computer j is

represented by an item
vjt . A computer with the heaviest

task load is the bottleneck machine and its workload is

a critical value that is supposed to be minimized. The

first criterion is the workload of the bottleneck computer

for the allocation x, and its values are provided by the

subsequent formula [4]:

















 
 




m

uk

m

vi

V

v=

V

vu
u=

I

ik
i=

I

k

vuikij

m

vi

J

j

V

v=

vj
Ii

xxxxtxZ
1 1 1 11 1

,1
max max)(

(10)

where

 ,,...,,...,,,...,,...,,...,,,...,,...,,..., 1111111 VvIJijJ

m

VI

m

vi

m

I

m NNNxxxxxxxxx 

vuik – the total communication time between the task Tv

assigned to the ith node and the Tu assigned to the kth

node.

 Figure 4 shows the workload of the bottleneck

computer in the distributed computer system for

generated task assignments by an enumerative algorithm.

The function Zmax takes value from the period [40; 110]

(TU - time unit) for 256 solutions. What is more, even a

small change in task assignment related to the movement

of a task to another computer or a substitution of

computer sort can cause a relatively big alteration of its

workload. For instance, the migration of one task from

the assignment with Zmax=40 TU may increase the

workload to the 64 or even 88 TU.

Fig 4. Workload of the bottleneck computer for generated

solutions.

 Figure 5 shows task assignment that minimize the

workload of the bottleneck computer among four

computers. The task number 7 is characterized by the

larger value of the time workload than tasks v, 5, and 11,

then the bottleneck computer could be the computer with

task 7. However, we shall consider the other workloads

related to the computers at the nodes 2 and 4. At the

node number 4, there are more tasks than at the node 2,

but the workload can be smaller. So, the bottleneck

computer is determined by the values of time processing

and some values of communication times.

 Figure 6 shows three cuts in task assignment graph.

Tasks 7, 8, and 9 generate the workload 32 TU at the

node number 1. The same value of workload is assigned

to the node no. 2 by tasks 1,3,4, and 10. On the other

hand, tasks 2, 5, and 6 charge the computer at the node 3

by the smaller value 31 [TU]. In that case, there are two

bottleneck computers that are situated at the nods 1 and

2.

0 50 100 150 200 250 300
40

50

60

70

80

90

100

110
Zmax [TU]

Number of solution

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 245 Issue 2, Volume 8, February 2009

Fig. 5. Assignment of tasks to computers for the given set of tasks

 and the set of computer sorts

 If the task number 9 is moved to the node 2, then the

bottleneck computer is at that node. However, the

workload of the bottleneck computer is equal to 37 TU.

To sum up, we can balance workload among several

processors by finding an optimal value of the bottleneck

computer.

Fig. 6. Load balancing by finding an optimal task assignment

 Figure 7a) shows the process of the minimization

Zmax from the initial value equal to 62 time units to 32.

Similarly, Figure 7b) shows the process of the

minimization Zmax from the initial value equal to 170

time units to 101. The solution with the value 170 was

calculated by a randomly generated program.

 The second measure of the task assignment is a cost

of computers that is calculated, as below:

π

ij

I

i

J

j

j xxC 
 1 1

=)(
(11)

where κj corresponds to the cost of the computer j.

 Let j be failed independently due to an exponential

distribution with rate
j

~
. We do not take into account of

repair and recovery times for failed computer in

assessing the logical correctness of an allocation.

Instead, we are supposed to allocate tasks to computers

on which failures are least likely to occur during the

execution of tasks. Computers and tasks can be assigned

to nodes in purpose to maximize the third criterion – the

reliability function R defined, as below [3]:

)
~

exp()(
1 1 1


  


V

v

I

i

J

j

ij

m

vivjj xxtxR 

(12)

Fig. 7. Minimizations of the bottleneck computer workload:

a) finding the task assignment x* from Figure 6

b) searching an optimal task assignment for 20 tasks

7. Constraints and decision variables
The minimal performance of the distributed systems

min is supposed to be smaller (Fig. 8) than the

performance of the entire system that can be estimated

according to the following formula:

π

ij

I

i

J

j

j xx 
 


1 1

=)( (13)

where
j is the numerical performance of the computer

j for the task benchmark, for instance [MFlops].

i=1

i=2 i=3

i=4

0 20 40 60 80 100 120 140 160
100

110

120

130

140

150

160

170

Z max

[TU]

k

0 10 20 30 40 50 60 70
30

35

40

45

50

55

60

65

Z max
[TU]

k

a)

b)

A=Zmax(x*)

1

5

v

7

9

6

1 

ij x

w
i

u

w k

3

1 
m
v

i

x
8

10 11

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 246 Issue 2, Volume 8, February 2009

Fig. 8. Set of assignment evaluation for two criteria: the load

of the bottleneck computer and the system performance

 Figure 8 shows a set of assignment evaluation for two

criteria: the load of the bottleneck computer and the

system performance. If we consider the constraint

imposed on the performance of the system, the upper

part of the set is supposed to be considered. An

important role plays the preferences of a decision maker.

There is possible to think about maximization the

benchmark performance and then points marked by

triangles are preferred. Another preference situation is if

we consider admissible solutions due to the performance

constraint. In that case, we prefer all admissible

solutions that are characterized by points from the upper

part of the criterion space.

 An ideal point y
o
 is generated by finding optimized

values of separated criteria that are included as

coordinates of this point [1]. In this case, we prefer

a maximal value of the benchmark performance and

a minimal value of the bottleneck computer load. In the

opposite way, an anti-ideal point is constructed.

A minimal value of the benchmark performance and

a maximal value of the bottleneck computer load are

taken as coordinates of y
 -
.

 The probability that all tasks meet their deadlines is

supposed to be greater than the minimal probability Pmin.

This parameter is usually set more than 0.9. The

precedence constraints among tasks are figured in

calculation of task release time and the timing

constraints on tasks are considered.

 Let the distributed program Pn may begin its running

after λn and completes before the program deadline δn.

Moreover, we assume a conditionally running task is

performed with the frequency qv and its complementary

task – with the frequency (1-qv). Those parameters are

estimated by the experimental way for the representative

set of the input data. So, the conditional frequency qv is

related with the task v. If the vth task is not conditional

one, then qv=1.

 A task no. v can be performed in the loop k times

(k=1, 2, ..., L
v
max), and each repetition of this task is

performed with the probability p. The instance, where

the loop task no. v runs k times, can be meet with the

probability (1 – pv) pv
k -1

. We assume, that a continue

section is performed at the end of the loop. This situation

is in the instruction while in C/C++/Java language. The

k-1 iterations are finished by the producing true for the

continue section of the loop. The coefficient (1 – pv) is

the result of the output from the loop.

 The instance, where the conditional task no. v appears

and the loop task no. u runs k times, occurs with the

probability:

pl=qv (1- pu) pu
k-1

, k=1, 2, ..., L
v
max (14)

 Similarly, the instance, where the conditional tasks

no. v and w appear and the loop task no. u runs k times,

occurs with the probability:

pl=qv qw (1- pu) pu
k-1

, k=1, 2, ..., L
v
max

 The right formula for calculating probability of the

instance is related to the structure of the flow graph that

is a model of the program module communications.

 Times of task completions (C1,...,Cv,...,CV) can be

calculated for scheduled allocation modules to

computers),,(mm Nxxx  and the preceding relation

taken from the flow graph [4]. Let dv represents the

given completion deadline for the vth task. This

completion deadline is known. If vv dC  , then the time

constraint is satisfied what can be written as

1)( vv Cd . If the deadline is exceeded, then

0)( vv Cd . If at least one task exceeds the deadline,

then deadline constraint for the ith instance is not

satisfied. We assume that with the flow graph instance

no. l is associated a set of tasks Ml. Probability that all

tasks meet their deadlines for K instances of the flow

graph is calculated, as below:

 
 


K

l Mm

vviD

lv

xCdpxP
1

))(()( (15) (15)

 Two main constraint types: the benchmark

performance limit and also probability that all tasks meet

their deadlines are supposed to be complement with

some resource constraint.

 Constraints related to memory capacities are related

to the assumption that a computer is supposed to be

equipped with some necessary capacities of resources.

Let the following memories z1,...,zr,...,zR be available in

the distributed system and let djr be the capacity of

memory zr in the workstation j . We assume the task Tv

reserves cvr units of memory zr and holds it during

a program run. The memory limit Rir of the rth resource

Zmax
 [TU]

)(x
[MFlops]

y
0

y
 -

;)(min x

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 247 Issue 2, Volume 8, February 2009

in a machine cannot be exceeded in the ith node, what is

written, as bellows:

.,1,,1,)(

1 1

RrIixcxdxR
J

j

V

v

m
vivrijjrir  

 



(16)

 To sum up, there are three sorts of limitations that

should be considered. An admissible distributed task

scheduling is supposed to ensure enough high value of

the task performance and the probability that all tasks

meet their deadlines. Moreover, some resource

requirements should be guaranteed.

8. Problem formulation
Task assignment problems are usually formulated as

one-criterion optimization questions. However, there are

some disadvantages of those form of a problem. First of

all, not all criteria are respected and more complex

approach cannot be considered. If some conflict

preferences are supposed to be considered, then a multi-

criterion approach is much more adjusted to the decision

making situation. The high-quality computers are

characterized by the higher costs, and we plan to

decrease that parameter. In contrast, some performance

parameters are much better for rather expensive

machines. Similarly, the reliability of the computer

system is in conflict with the cost of high quality

components. Usually, some expensive servers are

characterized by the longer time between failures that

can cause the breakdown of the whole system.

Sometimes, the failure of a hard disc may not cause the

damage of the system because the mirror element can be

applied to increase the reliability of the operations.

 A conflict appears between a numerical performance

of the computer system and the reliability, too. Let us

consider some computer clusters. They are usually

deployed to improve a numerical performance or an

availability of the whole distributed system. What is

more, they are much more cost-effective than the other

computers of comparable speed or availability.

 High-availability clusters (also known as failover

clusters) are implemented for improving the availability

of network services. Some redundant nodes are applied

to make available service when the system components

fail. A high-availability cluster with two nodes is the

minimum requirement to give redundancy. That cluster

implementations attempt to manage the redundancy

inherent in a cluster to eliminate single points of failure

[25].

 There are some commercial implementations of high-

availability clusters for distinguish operating systems.

The Linux-HA project is free software package for the

Linux. They can be used for the Research on Adaptive

Learning [36] or in Web Information Management

Processing [39].

 Load-balancing clusters operate by distributing

a workload evenly over multiple nodes. Typically the

cluster will be configured with multiple redundant load-

balancing front ends.

 Grids typically support more heterogeneous sets of

processors than are commonly supported in clusters.

Grid computing is optimized for tasks which consist of

many independent jobs, which do not have to share data

between them during the computation process. Grids

serve to manage the allocation of jobs to computers

which will perform the work independently of the rest of

the grid cluster. Resources such as storage may be

shared by all the nodes, but intermediate results of a job

do not affect other jobs in progress on other nodes of the

grid [4].

 An interesting project of a large grid is called the

Folding@home. That grid analyzes data that are used to

find cures for diseases like a cancer or Alzheimer's.

Another fascinating project is the SETI@home, which is

one of the largest distributed grid. It uses more or less

three million PCs all over the world to analyze data from

the radio-telescope from Arecibo Observatory that

searches for evidence of extraterrestrial intelligence.

 A benchmark is a set of programs, or other

operations, in order to assess the relative performance of

an object, normally by running a number of standard

tests and trials against it. Benchmarking is usually

associated with assessing performance characteristics of

computer hardware, for example, the floating point

operation performance of a CPU, but there are

circumstances when the technique is also applicable to

software. Software benchmarks are, for example, run

against compilers or database management systems.

Another type of test program, namely test suites or

validation suites, are intended to assess the correctness

of software.

 Benchmarks provide a method of comparing the

performance of various subsystems across different

chip/system architectures. Benchmarking is helpful in

understanding how the database manager responds under

varying conditions. It can be created scenarios that test

deadlock handling, utility performance, different

methods of loading data, transaction rate characteristics

as more users are added, and even the effect on the

application of using a new release of the product.

 The list of the fastest computers usually includes

many clusters. Clustering can provide noteworthy

performance benefits versus price. Currently, the fastest

computer is the IBM Roadrunner system from the

Department of Energy’s with performance of 1026

TFlops measured with Linpack benchmark [3]. One of

supercomputers that is characterized by 12 TFlops,

consists of 1100 dual-processor machines (4 GB RAM)

and runs on Mac OS X. Processors are connected by the

InfiniBand interconnect.

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 248 Issue 2, Volume 8, February 2009

http://en.wikipedia.org/wiki/Node_(networking)
http://en.wikipedia.org/wiki/Two-node_cluster
http://en.wikipedia.org/wiki/Single_point_of_failure
http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/Radiotelescope
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/IBM_Roadrunner
http://en.wikipedia.org/wiki/InfiniBand

 A Beowulf cluster is the cost-effective alternative to

a conventional supercomputer. However it is worth

noting that numerical performance expressed in FLOPs,

aren't always the best metric. Clusters can have very

high value of that parameter, but they cannot access all

data at once. Therefore clusters are excellent for parallel

computation, but much poorer at non-parallel

computation [3].

 JavaSpaces is a service specification supporting

clustering computers via a distributed shared memory. It

provides a distributed object exchange and coordination

mechanism for Java objects. It is used to store the

distributed system state and implement distributed

algorithms. In a JavaSpace, all communication partners

communicate and coordinate by sharing state.

 JavaSpaces can be used to reach scalability through

parallel processing. It can be applied to provides

unfailing storage of objects through distributed

replication. JavaSpaces are frequently used to low-

latency, high performance tasks rather than reliable

object caching [3].

 Let (X, F, P) be the multi-criterion optimization

question for finding the representation of Pareto-optimal

solutions [1]. It is established, as follows:

1) X - an admissible solution set

|{)(JVIx  BX ;)(min x ;)(minD PxP 

;,1,,1,0)(RrIixRir 

;,1 ,1

1

Vvx

I

i

m
vi 



 },1,1

1

Iix
J

j

ij 




2) F - a quality vector criterion

3 : RXF
 (17)

where

R – the set of real numbers,

F(x) = [Zmax(x), C(x), –R(x)] T for xX,

3) P - the Pareto relation [1].

9. Numerical experiments
 Figure 9 shows the cut of the evaluation space that is

explored by the most effective meta-heuristic AMEA*

[4]. Evolutionary algorithm AMEA* [4], tabu algorithm

MOTA [22] and genetic programming MGP [3] have

been applied for solving some versions of multi-criterion

task assignment. We can compare quality of obtained

solutions by MOTB to qualities produced by the other

multi-criterion meta-heuristics.

 The binary search space consisted of 1.0737x10
9

elements and included 25 600 admissible solutions. By

enumerative algorithm the set of Pareto points was

found. Quality of obtained solutions by the algorithms

was determined by the level of the convergence to the

known Pareto set [2]. An average level S was

calculated for fifty runs of the algorithm. That tabu

programming MOTB gives better outcomes than the

genetic programming MGP for the same number of

selection function or fitness function calculations. After

350 assessments of those functions, an average level of

Pareto set obtaining is 1.7% for the MOTB, 3.6% for the

MGP.

Fig. 9. Pareto front and results of AMEA*

 An average level of convergence to the Pareto set,

a maximal level, and the average number of optimal

solutions become worse, when the number of decision

variables increase. An average level is 25.1% for the

MOTB versus 37.9% for the MGP, if search space

consists of 1.2396x10
18

 elements and includes 342 758

admissible solutions.

 Taboo search provides a promising alternative for the

other problems like the job shop scheduling problem [32,

34]. However, it has to be tailored each time with respect

to parameters for every instance in order to produce

desirable solution. In order to improve its search

efficiency, it can be proposed an approach for the job

shop scheduling problem by using taboo search with

fuzzy reasoning, too [14, 26]. There are two modules in

this approach: taboo search module and fuzzy reasoning

module that performs the function of adaptive parameter

adjustment in taboo search [16, 21].

10. Concluding remarks
 Tabu programming can be used for finding solution

to several problems, especially some multi-criterion

optimization problems. A computer program as a tree is

a subject of tabu operators such as selection from

neighborhood, short-term memory and re-linking of the

search trajectory. The MOTB has been applied for

operating on the computer procedures written in the

Matlab language. Initial numerical experiments

N*

C [MU]

Zmax[TU]

P1

P2

P3

P4

P5

t

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 249 Issue 2, Volume 8, February 2009

http://en.wikipedia.org/wiki/JavaSpaces

confirmed that sub-optimal in Pareto sense, task

assignments could be found by tabu programming.

 Our future works will focus on testing the other sets

of procedures and terminals to find the Pareto-optimal

solutions for distinguish criteria and constraints.

Moreover, we will concern on a development the

combination between tabu search and evolutionary

algorithms for finding efficient solutions.

References:
1. Ameljanczyk, A.: Multicriteria Optimization, WAT Press,

Warsaw (1986)

2. Balicka, H., Balicki J.: Effective program module assignment in

the Internet banking by tabu-based evolutionary algorithm.

WSEAS Transactions on Mathematics, Issue 3, Vol. 3, pp. 527-

532, (2004)

3. Balicki, J,: Tabu-based evolutionary algorithm for effective

program module assignment in parallel processing. WSEAS

Transactions on Systems, Issue 1, Vol. 3, January 2004, pp. 119-

124.

4. Balicki, J.: Hierarchical Tabu Programming for Finding the

Underwater Vehicle Trajectory, International Journal of

Computer Science and Network Security, 7, 32--37 (2007)

5. Balicki, J.: Immune Systems in Multi-criterion Evolutionary

Algorithm for Task Assignments in Distributed Computer

System. LNCS, 3528, pp. 51--56, Springer, Heidelberg, (2005)

6. Balicki, J.: Tabu Programming for Multiobjective Optimization

Problems, International Journal of Computer Science and

Network Security, 7, 44--50 (2007)

7. Battiti, R., Tecchiolli, G.: Simulated annealing and tabu search

in the long run: a comparison on qap tasks, Computer Math.

Applic., 28, 1--8 (1994)

8. Battiti, R.: Reactive search: Toward self-tuning heuristics, In V.

J. Rayward-Smith, editor, Modern Heuristic Search Methods,

John Wiley and Sons Ltd, 61--83 (1996)

9. Castelino, D. J., Hurley, S., and Stephens, N. M.: A tabu search

algorithm for frequency assignment. Annals of Operations

Research, 63, 301–319, (1996).

10. Chiarandini, M., Schaerf, A., and Tiozzo, F., Solving employee

timetabling problems with flexible workload using tabu search.

in Proc. of the 3rd Int. Conf. on the Practice and Theory of

Automated Timetabling, Konstanz, Germany, 298–302, (2000).

11. Costa, D., A tabu search algorithm for computing an operational

timetable. European Journal of Operational Research, 76, 98–

110, 1994.

12. Crainic, T. G., Toulouse, M., Gendreau, M.: Toward

a Taxonomy of Parallel Tabu Search Heuristics, INFORMS

Journal on Computing, 9, 61--72 (1997)

13. Cvijovic, D.; Klinowski, J. Taboo search - an approach to the

multiple minima problem. Science, 267, 664-666, (1995)

14. Dell’Amico, M., Trubian, M.: Applying Tabu Search to the Job-

Shop Scheduling Problem, Annals of Operations Research, 41,

231--252, (1993)

15. Di Gaspero, L., Schaerf A., Tabu search techniques for

examination timetabling. in E. Burke and W. Erben, editors,

Proc. of the 3rd Int. Conf. on the Practice and Theory of

Automated Timetabling, number 2079 in Lecture Notes in

Computer Science, Springer-Verlag, Berlin-Heidelberg, 104–

117. 2001.

16. Dorigo, M., Maniezzo, V., and Colorni, A., The ant system:

optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics, B 26(1), 29–

41, (1996)

17. Faigle, U., Kern, W.: Some Convergence Results for

Probabilistic Tabu Search, ORSA Journal on Computing, 4, 32--

38, (1992)

18. Gendreau, M., Hertz, A., Laporte, G., A tabu search heuristic for

the vehicle routing problem. Management Science, 40(10),

1276–1290, (1994)

19. Glover, F. Tabu Search Fundamentals and Uses. Revised and

Expanded, Technical Report, Graduate School of Business,

University of Colorado, Bolder, (1995)

20. Glover, F., Laguna, M.: Tabu Search, Kluwer Academic

Publishers, Boston (1997)

21. Glover, F.: Tabu Search — Part I, ORSA Journal on Computing,

1, 190--206, (1989)

22. Glover, F.: Tabu Search — Part II, ORSA Journal on

Computing, 2, 4--32, (1990)

23. Glover, F.: Tabu Search: A Tutorial, Interfaces, 20, 74--94,

(1990)

24. Hansen, M. P.: Tabu Search for Multicriteria Optimization:

MOTS. Proceedings of the Multi Criteria Decision Making,

Cape Town, South Africa, (1997)

25. Hertz, A.: Finding a Feasible Course Schedule Using Tabu

Search, Discrete Applied Mathematics and Combinatorial

Operations Research and Computer Science, 35, (1992)

26. Jaszkiewicz, A., Hapke, M., Kominek, P.: Performance of

Multiple Objective Evolutionary Algorithms on a Distributed

System Design Problem – Computational Experiment, LNCS,

Vol. 1993, pp. 241--255, Springer, Heidelberg, (2001)

27. Korbicz, J.: Artificial intelligence in technical diagnostics.

- Diagnostics, 46, pp. 7-16, (2008)o. 2, pp. 7-16

28. Koza, J.R.: Genetic programming. The MIT Press, Cambridge

1992.

29. Lokketangen, A., Jornsten, A. K., Storoy, S.: Tabu Search

within a Pivot and Complement Framework, International

Transactions in Operations Research, 1, 305--316, (1994)

30. Mati, Y., Rezg, N. Xie X.: Scheduling Problem of Job-Shop

with Blocking: A Taboo Search Approach, Proc. on the 4th

Metaheuristics International Conference, 643-648, (2001)

31. Rego, C.: A Subpath Ejection Method for the Vehicle Routing

Problem, Management Science, 44, 1447--1459 (1998)

32. Sadegheih, A.: Evolutionary Algorithms and Simulated

Annealing in the Topological Configuration of the Spanning

Tree. WSEAS Transactions on Systems, Issue 2, Vol. 7, 31-39,

(2008)

33. Schaefer, R., Kołodziej, J.: Genetic Search Reinforced by the

Population Hierarchy. In De Jong K. A., Poli R., Rowe J. E.

(eds): Foundation of Genetic Algorithms, Morgan Kaufman

Publisher (2003) 383--399.

34. Taillard, E.: Robust taboo search for the quadratic assignment

problem. Parallel Computing, 17, 433–445, (1991)

35. Tsubakitani, S., Evans, J.R.: Optimizing Tabu List Size for the

Traveling Salesman Problem, Computers and Operations

Research, 25, 91-97, (1998).

36. Verdu E., Regueras L., Verdu M., De Castro J, Perez M.: An

analysis of the Research on Adaptive Learning: The Next

Generation of e-Learning, WSEAS Transactions On Information

Science & Applications, Issue 6, Volume 5, 859-868 (2008)
37. Weglarz, J., Nabrzyski, J., Schopf, J.: Grid Resource

Management: State of the Art and Future Trends. Kluwer

Academic Publishers, Boston (2003)

38. Widmer, A. M.: The Job-shop Scheduling with Tooling

Constraints: A Tabu Search Approach, J. Opt. Res. S, 42, 75--82

(1991)

39. Yang, S. Y. How Does Ontology help Web Information

Management Processing. WSEAS Transactions on Computers.

Issue 9, Volume 5. 1843-1850 (2006)

WSEAS TRANSACTIONS on SYSTEMS Jerzy Balicki

ISSN: 1109-2777 250 Issue 2, Volume 8, February 2009

