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Abstract: - Application of genetic algorithms to attain the parameters of the processed cheese products is used 
in this paper. As in the recent years, model integrates cheese manufacturing has had considerable appeal. The 
economical evaluation of standaized milk for cheese making is established, thus an objective is given; to make 
the profit of the natural chesse. Genetic algorithms are highly eligible for investigation of multimodal space of 
discreteness, noisiness and complexity. Majority of Genetic Algorithms (GA) modifications to solve 
problematic optimization issues, find some mathematical support to the GA. Explotation of Genetic 
Algorithms modified optimization  give advanced results as recognized. 
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1   Introduction 
Cheese is one of the main products from milk in the 
dairy industry.Cheese manufacturing is essentially a 
Process of concentrating the protein(casein) and fats 
contained in milk by complicated microbial and 
biochemical reactions (Smith, 1996).The main steps 
in cheese manufacturing are: (1)the acidication of 
milk by the microbial conversion of lactose to lactic 
acid by lactic acid bacteria,(2) the coagulation of 
casein and fats by the combination of proteolysis 
using chymosin (rennet) and the acidication, (3) the 
dehydration and shaping of the coagulated casein 
and fats(curd),and additionnally(4) maturing of the 
dehydrated curd as required as shown in Figure 1 
[1]. 
 
Speficialization in dairy product manufacture has 
produced more easily managed production system, 
but in the case of processed cheese production the 
results is not necessarily the most efficient use of 
milk resources. An intregated approached to 
managing cheese making resources allows the 
processor to get the most from incoming materials. 
In this case "integrated" means having some control 
of the  manufacture  or purchase  of intermediate 
products used in processed cheese manufacture,  
including  especially the  incoming natural cheeses 
that may be used in this processing. Controlling the 

manufacture of these products for overall 
organization  objective can lead to manufacturing 
efficiencies and to increased  profitability for  the  
organization [2] 
 
The emphasis  of the  published  literature on 
process cheese typically has focused on the 
manufacturing process. The study of the 
contribution of the ingredients has generally been 
limited  to their principle effects on melting 
properties,  textural and flavor contributions, 
microorganism contamination, and browning 
problems. There are several good reviews of the 
industry and of the manufacturing process. The 
economies involved in the manufacture of natural 
cheese and the manufacure of process cheese have 
traditionally been analyzed  independently.  A  
linear  programming model is described herein that 
integrates these two production systems for the 
purpose of  maximizing  net  returns  from  natural 
cheese  and  processed  cheese  products. Although  
the  usual  restrictions  of a  linear programming  
model  apply, the  advantage  of  developing  such  a  
model  is  that machine optimal solutions provide a 
place to begin the analysis and adjustment of 
production plans and  methods.  Further, the model 
provides tools that make the  economic and resource 
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use consequences of adjusting  production plans 
available to the modeler [1, 9-11, 13-14, 16]. 
 
 

 
 
 
Figure 1 Flow diagram of cheese production [1].  
 
 
3.   Genetic Algorithms 
 
A genetic algorithm (GA) is a search technique used 
in computing to find exact or approximate solutions 
to optimization and search problems. Genetic 
algorithms are categorized as global search 
heuristics. Genetic algorithms are a particular class 
of evolutionary algorithms (also known as 
evolutionary computation) that use techniques 
inspired by evolutionary biology such as 
inheritance, mutation, selection, and crossover (also 
called recombination). 
 
Genetic Programming 
In artificial intelligence, genetic programming (GP) 
is an evolutionary algorithm-based methodology 
inspired by biological evolution to find computer 
programs that perform a user-defined task. It is a 
specialization of genetic algorithms where each 

individual is a computer program. Therefore it is a 
machine learning technique used to optimize a 
population of computer programs according to a 
fitness landscape determined by a program's ability 
to perform a given computational task. 
 
Genetic operators 
The main operators used in evolutionary algorithms 
such as GP are crossover and mutation. 
 
Crossover 
Crossover is applied on an individual by simply 
switching one of its nodes with another node from 
another individual in the population. With a tree-
based representation, replacing a node means 
replacing the whole branch. This adds greater 
effectiveness to the crossover operator. The 
expressions resulting from crossover are very much 
different from their initial parents. 
The following code suggests a simple 
implementation of individual deformation using 
crossover: 
 
individual.Children[randomChildIndex]= 
otherIndividual.Children[randomChildIndex]; 
 
Mutation 
Mutation affects an individual in the population. It 
can replace a whole node in the selected individual, 
or it can replace just the node's information. To 
maintain integrity, operations must be fail-safe or 
the type of information the node holds must be 
taken into account. For example, mutation must be 
aware of binary operation nodes, or the operator 
must be able to handle missing values. 
 
A simple piece of code: 
 
individual. Information = randomInformation; 
 
or 
 
individual = generateNewIndividual; 
 
Meta-Genetic Programming 
Meta-Genetic Programming is the proposed meta 
learning technique of evolving a genetic 
programming system using genetic programming 
itself. It suggests that chromosomes, crossover, and 
mutation   were  themselves  evolved, therefore  like  
 their real life counterparts should be allowed to 
change on  their  own rather than   being determined 
by a human programmer. It is a recursive but 
terminating algorithm, allowing it to avoid infinite 
recursion. 
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Critics of this idea often say this approach is overly 
broad in scope. However, it might be possible to 
constrain the fitness criterion onto a general class of 
results, and so obtain an evolved GP that would 
more efficiently produce results for sub-classes. 
This might take the form of a Meta evolved GP for 
producing human walking algorithms which is then 
used to evolve human running, jumping, etc. The 
fitness criterion applied to the Meta GP would 
simply be one of efficiency. 
For general problem classes there may be no way to 
show that Meta GP will reliably produce results 
more efficiently than a created algorithm other than 
exhaustion. The same holds for standard GP and 
other search algorithms. 
 
Methodology 
Genetic algorithms are implemented as a computer 
simulation in which a population of abstract 
representations (called chromosomes or the 
genotype of the genome) of candidate solutions 
(called individuals, creatures, or phenotypes) to an 
optimization problem evolves toward better 
solutions. Traditionally, solutions are represented in 
binary as strings of 0s and 1s, but other encodings 
are also possible. The evolution usually starts from 
a population of randomly generated individuals and 
happens in generations. In each generation, the 
fitness of every individual in the population is 
evaluated, multiple individuals are stochastically 
selected from the current population (based on their 
fitness), and modified (recombined and possibly 
randomly mutated) to form a new population. The 
new population is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations has 
been produced, or a satisfactory fitness level has 
been reached for the population. If the algorithm has 
terminated due to a maximum number of 
generations, a satisfactory solution may or may not 
have been reached. 
 
Genetic algorithms find application in phylogenetics 
bioinformatics,  computational science, engineering, 
economics, chemistry, manufacturing, mathematics, 
physics and other fields. 
 
A typical genetic algorithm requires two things to 
be defined: 
 

1. a genetic representation of the solution 
domain,  

2. a fitness function to evaluate the solution 
domain.  

 

A standard representation of the solution is as an 
array of bits. Arrays of other types and structures 
can be used in essentially the same way. The main 
property that makes these genetic representations 
convenient is that their parts are easily aligned due 
to their fixed size, that facilitates simple crossover 
operation. Variable length representations may also 
be used, but crossover implementation is more 
complex in this case. Tree-like representations are 
explored in Genetic programming and graph-form 
representations are explored in Evolutionary 
programming. 
 
The fitness function is defined over the genetic 
representation and measures the quality of the 
represented solution. The fitness function is always 
problem dependent. For instance, in the knapsack 
problem we want to maximize the total value of 
objects that we can put in a knapsack of some fixed 
capacity. A representation of a solution might be an 
array of bits, where each bit represents a different 
object, and the value of the bit (0 or 1) represents 
whether or not the object is in the knapsack. Not 
every such representation is valid, as the size of 
objects may exceed the capacity of the knapsack. 
The fitness of the solution is the sum of values of all 
objects in the knapsack if the representation is valid, 
or 0 otherwise. In some problems, it is hard or even 
impossible to define the fitness expression; in these 
cases, interactive genetic algorithms are used. 
When have the genetic representation and the 
fitness function defined, GA proceeds to initialize a 
population of solutions randomly, then improve it 
through repetitive application of mutation, 
crossover, inversion and selection operators. 
 
Initialization 
Initially many individual solutions are randomly 
generated to form an initial population. The 
population size depends on the nature of the 
problem, but typically contains several hundreds or 
thousands of possible solutions. Traditionally, the 
population is generated randomly, covering the 
entire range of possible solutions (the search space). 
Occasionally, the solutions may be "seeded" in 
areas where optimal solutions are likely to be found. 
 
Selection 
During each successive generation, a proportion of 
the existing population is selected to breed a new 
generation. Individual solutions are selected through 
a fitness-based process, where fitter solutions (as 
measured by a fitness function) are typically more 
likely to be selected. Certain selection methods rate 
the fitness of each solution and preferentially select 
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the best solutions. Other methods rate only a 
random sample of the population, as this process 
may be very time-consuming. 
 
Most functions are stochastic and designed so that a 
small proportion of less fit solutions are selected. 
This helps keep the diversity of the population 
large, preventing premature convergence on poor 
solutions. Popular and well-studied selection 
methods include roulette wheel selection and 
tournament selection. 
 
Reproduction 
The next step is to generate a second generation 
population of solutions from those selected through 
genetic operators: crossover (also called 
recombination), and/or mutation. 
 
For each new solution to be produced, a pair of 
"parent" solutions is selected for breeding from the 
pool selected previously. By producing a "child" 
solution using the above methods of crossover and 
mutation, a new solution is created which typically 
shares many of the characteristics of its "parents". 
New parents are selected for each child, and the 
process continues until a new population of 
solutions of appropriate size is generated. 
 
These processes ultimately result in the next 
generation population of chromosomes that is 
different from the initial generation. Generally the 
average fitness will have increased by this 
procedure for the population, since only the best 
organisms from the first generation are selected for 
breeding, along with a small proportion of less fit 
solutions, for reasons already mentioned above. 
 
Termination 
This generational process is repeated until a 
termination condition has been reached. Common 
terminating conditions are: 

  
• A solution is found that satisfies minimum 

criteria Fixed number of generations 
reached  

• Allocated budget (computation 
time/money)  reached  

• The highest ranking solution's fitness is 
reaching or  has reached a plateau such 
that successive  iterations no longer 
produce better results  

• Manual inspection  
• Combinations of the above  

 

Simple Generational Genetic Algorithm 
Pseudocode 
1. Choose initial population  
2. Evaluate the fitness of each individual in the 
population  
3. Repeat until termination: (time limit or sufficient 
fitness achieved)  

1.Select best-ranking individuals to 
reproduce 
2.Breed new generation through crossover 
and/or mutation (genetic operations) and give 
birth to offspring  
3.Evaluate the individual fitnesses of the 
offspring  
4. Replace worst ranked part of population 
with offspring  

 
Observations 
There are several general observations about the 
generation of solutions via a genetic algorithm: 
In many problems, GAs may have a tendency to 
converge towards local optima or even arbitrary 
points rather than the global optimum of the 
problem. This means that it does not "know how" to 
sacrifice short-term fitness to gain longer-term 
fitness. The likelihood of this occurring depends on 
the shape of the fitness landscape: certain problems 
may provide an easy ascent towards a global 
optimum, others may make it easier for the function 
to find the local optima. This problem may be 
alleviated by using a different fitness function, 
increasing the rate of mutation, or by using selection 
techniques that maintain a diverse population of 
solutions, although the No Free Lunch theorem 
proves that there is no general solution to this 
problem. A common technique to maintain diversity 
is to impose a "niche penalty", wherein, any group 
of individuals of sufficient similarity (niche radius) 
have a penalty added, which will reduce the 
representation of that group in subsequent 
generations, permitting other (less similar) 
individuals to be maintained in the population. This 
trick, however, may not be effective, depending on 
the landscape of the problem. Diversity is important 
in genetic algorithms (and genetic programming) 
because crossing over a homogeneous population 
does not yield new solutions. In evolution strategies 
and evolutionary programming, diversity is not 
essential because of a greater reliance on mutation. 
  
Operating on dynamic data sets is difficult, as 
genomes begin to converge early on towards 
solutions which may no longer be valid for later 
data. Several methods have been proposed to 
remedy this by increasing genetic diversity 
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somehow and preventing early convergence, either 
by increasing the probability of mutation when the 
solution quality drops (called triggered 
hypermutation), or by occasionally introducing 
entirely new, randomly generated elements into the 
gene pool (called random immigrants). Again, 
evolution strategies and evolutionary programming 
can be implemented with a so-called "comma 
strategy" in which parents are not maintained and 
new parents are selected only from offspring. This 
can be more effective on dynamic problems.  
 
GAs cannot effectively solve problems in which the 
only fitness measure is a single right/wrong 
measure, as there is no way to converge on the 
solution (no hill to climb). In these cases, a random 
search may find a solution as quickly as a GA. 
However, if the situation allows the success/failure 
trial to be repeated giving (possibly) different 
results, then the ratio of successes to failures 
provides a suitable fitness measure.  
 
Selection is clearly an important genetic operator, 
but opinion is divided over the importance of 
crossover versus mutation. Some argue that 
crossover is the most important, while mutation is 
only necessary to ensure that potential solutions are 
not lost. Others argue that crossover in a largely 
uniform population only serves to propagate 
innovations originally found by mutation, and in a 
non-uniform population crossover is nearly always 
equivalent to a very large mutation (which is likely 
to be catastrophic). There are many references that 
support the importance of mutation-based search, 
but across all problems the No Free Lunch theorem 
holds, so these opinions are without merit unless the 
discussion is restricted to a particular problem.  

  
Often, GAs can rapidly locate good solutions, even 
for difficult search spaces. The same is of course 
also true for evolution strategies and evolutionary 
programming.  

 
For specific optimization problems and problem 
instances, other optimization algorithms may find 
better solutions than genetic algorithms (given the 
same amount of computation time). Alternative and 
complementary algorithms include evolution 
strategies, evolutionary programming, simulated 
annealing, Gaussian adaptation, hill climbing, and 
swarm intelligence (e.g.: ant colony optimization, 
particle swarm optimization) and methods based on 
integer linear programming. The question of which, 
if any, problems are suited to genetic algorithms (in 

the sense that such algorithms are better than 
others) is open and controversial.  

 
As with all current machine learning problems it is 
worth tuning the parameters such as mutation 
probability, recombination probability and 
population size to find reasonable settings for the 
problem class being worked on. A very small 
mutation rate may lead to genetic drift (which is 
non-ergodic in nature). A recombination rate that is 
too high may lead to premature convergence of the 
genetic algorithm. A mutation rate that is too high 
may lead to loss of good solutions unless there is 
elitist selection. There are theoretical but not yet 
practical upper and lower bounds for these 
parameters that can help guide selection.  

 
The implementation and evaluation of the fitness 
function is an important factor in the speed and 
efficiency of the algorithm [15]. 

 
to achieve the  pasteurized  process cheese food 
product.  In  the  example  developed  here, Table 1 
lists some of the input resources that could be used 
in the manufacture of natural cheese. We will 
assume that Cheddar cheese is to be manufactured 
and some or all of it will be processed. 
 
The Cheddar cheese is to be made with a fat  on a  
dry basis  (FDB) of 53.5%.  This is accomplished by 
regulating the casein to fat ratio to be  .6925.  
Moisture of the cheese is assumed to remain at 37%. 
The values used in the cheese yield formula are  
1.09 salt solids retention factor, 93% fat retention, 
and 96% casein  retention.  It is assumed  that  the 
fat content  of  whey  cream  removed  is  45%. 
 
Table 1. Several input resources available for use in 
the manufacture of natural cheddar cheese. 
 

Resource 
 

Amount 
available 

Fat  
% 

Casein 
   % 

Cost/ 
pound 

Silo 1 300,000 3.55 2.44 0.1178 
Silo 2 300,000 3.57 2.49 0.1181 
NDM As needed 1.00 28.00 0.79 
Cream As needed 45.0 1.39 0.80 
Condense 
Skim milk 

As needed 0.37 9.20 0.228 

 
Whey fat is recovered at a rate of 100%. All of the 
raw  milk is used for cheese production.  The 
purchasable  quantities  of  nonmilk resources is 
assumed to be immeasurable. Potential inputs  for   
process  cheese  manufacture  are listed in Table 2.  

 

WSEAS TRANSACTIONS on SYSTEMS Anant Oonsivilai, Ratchadaporn Oonsivilai

ISSN: 1109-2777 48 Issue 1, Volume 8, January 2009



  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Flowchart of Genetic Algorithms [10].  
 
 
 
All  of the  manufactured  cheese is  either sold or 
processed. It is possible to divide the manufactured  
cheese,  i.e.,  one-third  can  be sold and two-thirds 
processed or half sold and half processed. The value 
of the output products  (cheese,  whey  cream,  and  
separated whey)  and the  resources  used  for  
process cheese manufacture are related to the value 
 
 

Table 2. Several input resources available for use in 
the manufacture of process cheese. 
 

Resource 
 

Fat  
% 

Moisture 
% 

Cost/ 
pound 

Cheese Determined
 by LP. 

37.0 Determined
by LP 

Whey protein 
concentrate 

3.5 1.5 0.4825 

Emulsifiers 0 0 0.535 
Fat 83.0 17.0 1.53 
Whey cream 
Water 

45.0 
0 

55.0 
100.0 

0.78 
0.01 

 
of the  final  process  cheese  product.  The  end 
product  is pasteurized  process block cheese valued 
at a block wholesale price of $1.50/lb.  
 
 
3.1 Decision Variables 
The  decision  variables  for  the  natural cheese  
manufacture  are identified  with  the resources that 
may be used and the amount of cream  that  can  be  
removed  from  a  milk resource during a 
standardization [1]. Other variables are the direct 
inputs to the process cheese food.  
 
3.2 Constraints 
In the model presented here in the casein: fat ratio 
of the cheese mik is 0.6925. A  summing up  of 
contraints  for  this  model  could be found in Table 
3. Studies  have  shown  relationships between the 
casein: fat ratio in milk, manufacturing  conditions,  
and the  resulting  FDB, moisture  in the  nonfatty  
substance  (MNFS), and fat and moisture  
percentage  in the cheese.  The  greater control is 
needed when range is superior  allowed during  the 
manufacturing  operation  to maintain  a consistent 
quality  product. The  general format  for the 
constraint  is:  
 

6925.0
tan

tan
=

milkdardizedsofpercentagefat

milkdardizedsofperentageCasein

 
This ratio was chosen to establish the FDB  of the 
natural  cheese at 53.5%, which is the FDB of  
unstandardized  milk  in  this  example. Other ratios 
could be calculated from cheese yield formula:  
 

( )
( ) ( )[ ]SRCCRFFR

FFR
FDB

+
=  

 

 

Start 

Start 

Randomly initialize 2k+1 
individual 

Fitness calculation for the first time 

1) Pass the best individual to next generation 
2) Crossover 2k individual 

Fitness is  
Constant? 

No 

Yes 

Mutate with 
Constant probability 

Increase 
Mutation rate 

New generation 

Fitness calculation 

Generation or 
Fitness 

Satisfied? 

Yes 

End 
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where:  FR  = fat retention  percentage  divided by  
100,  F =  fat  percentage  of  standardized milk,  CR  
=  casein  retention  percentage  divided  by  100,  C 
=  casein  percentage  of standardized  milk, and  SR  
= salt solids retention  factor.  
 
The determination of final form  of this  constraint  
is  considering all  additions  and  subtractions 
separately from  the cheese  milk  of  casein  and  
fat.  (We  may remove  cream  from  the  batch,  for  
instance.)  
 
The  result for this case is: 
 
Table 3. Constraints for the model. 
 

1) 0.0002x1 + 0.0002x2 + 0.2977x3  
+ 0.2974x4 + 0.2731x5 + 0.0894x6 
- 0.2977x7 ≥ 0 
casein to fat ratio constraint 

2) X1 = 300,000. 
3) X2 = 300,000 use all milk constraints 
4) 0.0789x1 – x3 ≥ 0 
5) 0.0793x2 – x4 ≥ 0, limiting the amount of cream 

removed constraints. 
6) 0.0977x1 + 0.0988x2 – 0.747x3 – 0.7472x4

+ 0.4812x5 + 0.1588x6 + 0.7472x7 = M+S 
7) 0.0055x1+ 0.0056x2 – 0.73x3 – 0.07x4 

+ 0.0013x5 + 0.0005x6 + 0.07x7 = Z2+Z1 
8) M+ B1 + B3+ B5 ≥ 0.70P. where 

P=(M+ B1 + B3+ B5+ y3+y4+y5+y6 
Natural heese in the blend constraint  

9) y3= 0.03P emulsifier  constraint. 
10) y4 ≤ 0.10P whey protein conentrate  

constraint 
11) 0.0y3 + 0.015y4 + 0.17y5 + 1.0y6 + 0.55Z1

+ 0.37B1+ 0.36B3 + 0.35B5 ≤ 0.43P 
moisture in the processed cheese onstraint 

12) 0.0y3 + 0.35y4 + 0.83y5 + 0y6 + 0.45Z1 
+ 0.33B1+ 0.33B3 + 0.33B5+ 0.3371M  
≥ 0.24P 
fat content onstraint 

13) -0.005x1 – 0.005x2 – 0.307x3 – 0.307x3  
-0.307x4 + 0.85x5 + 0.15x6 + 0.307x7 ≤ 0 
allowable solids constraint 

14) M + B1 ≥ 0.2 (M + B1 + B3 + B5) 
M + B1 ≤ 0.6 (M + B1 + B3 + B5) 
 
B3 ≥ 0.2   (M + B1 + B3 + B5) 
B3 ≤ 0.35 (M + B1 + B3 + B5) 
 
B5 ≥ 0.15 (M + B1 + B3 + B5) 
B5 ≤ 0.20 (M + B1 + B3 + B5) 
chees blend constraints  

 

6925.0

745.060037.0501.0

445.0345.020357.010355.0

70139.06092.0528.04142.0

30139.020249.010244.0

=

+++

−−+

+++

−−+

xxx

xxxx

xxxx

xxx

 
Rearranging the equation yields: 
-0.0002x1 + 0.0002x2 + 0.2977x3 + 0.2974x4 
+ 0.2731x5 + 0.0894x6 – 0.2977x7 ≥ 0. 
 
 
The same format would be used for constraining the 
casein:fat ratio between two limiting values. The 
optimum casein: fat ratio is that which maximizes 
the net return of the process cheese product. 
accordingly, the cheese milk may or may not be 
standardized, depending on the profit contributions  
of the milk components and the natural cheese 
toward the final process cheese product. The casein: 
fat ratio has been constrained here to show the 
difference that could occur during manufacturing of 
natural cheese to  maximize  the  value  of the  
processed cheese product. A manufacturer might 
test several different casein: fat ratios to  ascertain 
the impact different fat cheese have on the final 
processed product. 
Constraint  2.  xl = 300,000  and  x2  =  300,000. 
These constraints require all the milk to be used.  
 
Constraint 3. x3, x4, x5, x6 ≥ 0.  
 
Constraint 4. 0.0789xl- x3 ≥ 0 and .0793x2 - x4 ≥ 0.  
These two  constraints  limit amount  of cream that 
could be removed from the  two  milk resources.  
Silo  1 has  3.5%  fat and 45% fat cream may be 
removed.  In this case  there  are  3.5/45  =  0.078  
lb  of 45%  fat cream  available  from  each  pound  
of  3.5% milk from  silo  1.  The constraint to limit 
the amount of cream removed is:  
 

0.078x1 ≥ x3, 
 
and rearranged:  
 

0.078xl  -  x3 ≥ 0. 
 

Constraint 5. The connecting link between the raw 
cheese manufacture and the blending of the process 
cheese ingredients is the cheese yield formula 
represented by the equation: 
 
.0977xl  + .0988x2 -.7472x3  -.7472x4  
+ .4812x5 + .1588x6 + .7472x7 =M + S 
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where:  M = pounds  of cheese manufactured and 
processed, S = pounds of cheese manufactured  and 
sold, and  M + S = total pounds  of cheese 
produced.  
  
Constraint 6. The whey cream by-product resulting 
from the cheese manufacture is:  
 

( )( )
WF

WFRFFRF
WCY

*−
=  

 
where: WCY = whey cream yield per  100 lb., WFR 
= whey fat recovery percentage divided by  100,  
and  WF  = fat  percentage  of whey cream divided 
by 100. 
 
Constraint 7. There must be a constraint to maintain  
a  certain  amount  of cheese  is  the rocess cheese 
blend. The total process cheese batch is represented 
by P, where:  
 
 
 P = M + B1 = B3 + B5 + y3 + y4 + y5 + y6. 
Constraint 8. It is assumed that the process cheese 
batch size is known and constant. Thus P = batch 
size of process cheese blend.  
Constraint  9.The  amount  and  type  of emulsifiers 
used for processing must be incorporated into the 
program in a similar manner as  that done  for  
cheese  (Constraint  7). 
 
Constraint 10. WPC is a supplement to the raw  
cheese  and  is generally  accepted  for its lower cost 
and the improved sensory qualities it could impart 
to the final process cheese food product. Because  
sensory  qualities  can  be adversely affected by too 
much WPC,  limits must be set (24). Management 
and experience play a major role in deciding the 
quantity to be used.  In this example, WPC  is 
limited to less than or equal to 10% of the total 
batch, where y4 is pounds of WPC. 
 

y4 ≤ 0.10P 
 

Constraint 11. The moisture in the process cheese 
product must be constrained to comply with the egal 
standards of identity and the characteristics of the 
product as set by management. Because moisture 
adds to the yield of the  product with next to no 
cost, the  LP model  will  add  as  much  moisture  
as it  is  
allowed  by  the  constraints.  therefore, only an 
upper limit constraint  is needed.  To ensure the 

final product has less than or equal to the legal 
moisture of 43% requires the following constraint:  
 

0y3  +  .15y4+ .17y5+ 1.0y6 + .55zl + .37B1 
+  .36B3 + .35B5 + .37M ≤.43P. 

 
Constraint 12. Another constraint is necessary to 
ensure the fat content  of the process cheese food 
meets the standard of identity for the  specific  
product.  Pasteurized  process cheese foods must 
contain at least 23% fat. An extra  I% is  added  for  
a  safety margin. The general inequality is: 

 
pounds fat in process cheese  ≥ .24 (total proc-  
ess cheese batch). 
 
Constraint 13. A constraint on the allowable  solids  
content  of the  raw milk  used  for cheese  making  
has  been  included  in  this model [labeled  (*)].  
This  has  been done  for several  reasons.  If  milk  
concentrated  by reverse osmosis or ultrafiltration is 
used, it is necessary to set a limit on the solids 
content of the cheese milk.  Using reverse osmosis,  
Barbano  and  Bynum  (1,  7)  have  shown that  at 
about  a  15%  reduction  in  volume (about 14.17% 
solids content),  the increased  lactose of the cheese 
may become the limiting factor in  producing  a  
good  quality  aged  Chedar cheese. They also go on 
to say that a low moisture barrel cheese used within 
60 d may tolerate a reduction in volume of greater 
than 15%. 
 
Constraint  14.  Finally,  there  are  several 
onstraints that must establish the acceptable age 
blends used in the processed cheese product. These  
age blends  may be set as absolute or given as a 
range. For xample, an absolute age  blend  could  
consist  of  60%  l-mo-old cheese, 30% 3-mo-old 
cheese, and  10% 5-mo- old cheese.  Alternately,  an  
acceptable  range could  be  50  to  60%  1-mo-old  
cheese,  20  to 35%  3-mo-old  cheese,  and  15 to  
20%  5-mo- old cheese. The advantage of a range of 
values is   that  it  allows  some  flexibility  in  the  
program depending on cost, availability, grade of 
cheese, etc.  
 
Thus,  the  1-mo-old  cheese,  M  and  B1, could be 
greater than 50% but less than 60% of  the  total  
cheese  used  in  processing.  
Rewritten:  
 

M + BI ≥ .5 (M + BI + B3 + B5) 
 M + B1≤ .6 (M + B1 + B3 + B5) 
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Likewise,  
B3 ≥ .2 (M + B1 + B3 + B5) 
 B3 ≤ .35(M + B1 + B3 + B5) 

 
and  

B5 ≥ .15 (M + B1 + B3 + B5) 
B5 ≤ .20 (M + B1 + B3 + B5). 

 
3.3   Objective funtion 
The  objective function is to maximize the net  
returns  of  a  pasteurized  process  cheese product.  
Net  return  is defined  as  the  difference between 
revenue and cost.  
2.3.1 Net  Process  Cheese  Profit.  The  process  
cheese batch is represented  by the following  
equation:  
 

M + B1 + B3 + B5 + Y3 + Y4 + Y5 + Y6 + Z1 
 
If the selling price of block process cheese is 
$1.50/lb.  the  expression  gives  the  revenue from 
its sale:  
 

$1.50 (M  +  B1  +  B3  +  B5  +  Y3 
+ Y4+Y5  + Y6 + Z1) 

 
The  ingredient  costs  for  the  processing materials 
are just their purchase prices. Whey cream  
produced  from  the  Cheddar  cheese manufacturing 
process has a "cost" value calculated from its 
foregone fat revenue. If whey cream fat is valued at 
$1.73/lb and 45% of the cream is fat, then:  
 

$1.73/lb.  fat * .45 fat in cream 
=$.78 (value of fat/lb, cream) 

 
The  expression  representing  the  cost  of the  
processing ingredients is: 
  

.535y3 + .4825y4 + 1.535y5 + .01y6 + .78zl. 
 
The  direct  labor  and  overhead  cost  estimate  is  
based on  total  pounds  of  process cheese 
produced.  It  is  necessary  to  include these costs 
because process cheese production and  natural  
cheese  production  are  separate operations  
requiring  different  equipment, facilities,  and  
labor.  The  inclusion  of  the labor and overhead 
estimate is written as:  
 

$.35 (M + B1 + B3 + B5 + Y3 + Y4 + Y5 
+ Y6 + Z1). 

 

Combined, this part of the objective function is 
written as:  
 

1.15M  +  1.15B1  +  1.15B3  +  1.15B5 
+ .615y3 + .6675y4 -  .385y5 + 1.14y6 + .37zl. 

 
2.3.2 Cost to Manufacture Natural Cheese. The cost  
to  produce  Cheddar  cheese  was  not included 
directly in the profit from processed cheese to  allow 
for the  option  of selling the manufactured  cheese 
or processing it. There are the ingredients costs to 
consider as well as the direct labor and overhead 
that go into the manufacturing  operation.  The  
sweet  cream represented by  x3  and  x4  have  
positive "costs" since any cream removed and sold 
is revenue (18). The sweet cream fat is valued at  
 

$1.82/lb with 45% fat in the cream. 
$1.82/lb fat * .45 fat in cream 
=$.82 (value of fat/lb cream) 

 
Direct  labor  and  overhead  costs  are  calculated  
on  the  total  pounds  of natural  cheese produced, 
whether sold or processed.  

 
.11278xl  + .l181x2-.8x3  -.8x4  + .79x5 

+  .228x6 + .82x7 + .25 (M+  S). 
 
2.3.3 Cost to Buy Natural Cheese.  Cost values  
are based on the estimated cost to buy Ched-  
dar cheese of varying ages:  
 

1.51B1 + 1.55B3 + 1.59B5. 
 

2.3.4 Revenue from Natural Cheese (and Whey  
Cream).  
 

1.49S + .78z2 
 

Note that the sold cheese [S] value is $.02 less than  
the  1-mo-old cheese that could be purchased. It is 
assumed that it costs more to buy than  is  gained  
through  sale  of  similar products. The  objective 
function to be maximized is a combination of all 
four components:  
 

-.1178xl  -.1181x2  + .8x3 + .8x4 -.79x5 
-.228x6  -.82x7  +.615y3 +.6675y4 -.38y5 

+ 1.14y6 +.37zl  + 1.24S +.9M-.36B1 
-.4B3  -.45B5. 

 

4. Results 
Results  of  applying  genetic algorithms to the 
model described are presented in  Tables 4. There  
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are several  underlying assumptions common to the 
scenario.  
First is that all raw milk resources are used in their  
entirety  to  make  natural  Cheddar cheese. A 
second assumption is that there is no waste. Third, 
the process cheese batch size is  known  and  
constant.  Fourth,  all  ingredients are of known 
quality and composition and  there  is  no  problem  
with  availability. Fifth,  marginal  revenue  and  
costs  are  not applicable over the stated batch sizes.  
The optimum input resources to maximize the 
profits of the process cheese manufacturing 
operation, their amounts and some costs are listed in 
Table 4.  
Genetic Algorithms gives  an  economic evaluation 
of standardizing  milk  for  cheese  making.  The 
objective is to maximize the profit of the natural 
cheese.  
The  constantly  changing  economic environment  
regularly  influences  the  optimal solution to the 
model. A small change in the cost  of  an  input  
resoure  can  dramatically change  the  optimal  
solution.  An  important  question  is  how  sensitive  
the  solution  is to these changes.  It is important to 
know how close  the  unused  decision  variables  
(those held  a  value  0) came  to  be  included  in  
the optimal solution. If using a resource 
corresponding  to  a  decision variable  is  obviously  
not  profitable,  then  little  extra  effort  is needed to 
accurately estimate its cost.  Conversely, if a small 
change in a decision variable  results  in  a  new  
optimal  solution,  that decision variable and the 
constraints limiting ts use should be analyzed. 
 
Table 4. The optimum formulation and profit 
potential that results from modeling the natural 
cheese operation. 
 

 GA Results 
  
Process cheese input  
resources 
y3 = Emulsifier 
y4 = WPC 
y5 = Fat 
y6 = Water 
z1 = Whey cream used 
z2 = Whey cream sold 
M = Manufacturing cheese 
S  = Cheese sold 
B1 = Purchased cheese, 1 mo. 
B2 = Purchase cheese,  3 mo. 
B3 =  Purchase cheese, 5 mo. 
 
Total processed batch size, lb 

 
      
     3,000 
     9,382 
        329 
   17,288 
            0 
     3,322 
    58,935 
    16,935 
           0 
    17,500 
    10,500 
 
  100,000 

Cheddar cheese yield, lb 
Total Cheddar cheese cost 
Cost/lb Cheddar cheese 
 
Objective function value  

    58,935 
$  85,522 
$  1.4511 
 
$  4,365 
 

 
 
 
5. Conclusion 
The model is a guideline to assist in decision 
making.  Its assumptions  and  solutions must  be  
regularly  tested  as  economic  and manufacturing  
conditions  change.  Human judment  is needed to 
evaluate the proposed solution and adjust it to the 
specific situation. 
This paper illustrates the genetic algorithms to 
estimate parameters of the natural cheese process. 
The obtained parameters from genetic algorithms 
are investigated.  GAs efficiently exploit past 
information to explore new regions of the decision 
space with a high probability of finding improved 
performance.  
 
 
References: 
[1] G.L. Kerrigan and J.P. Norbak. 1986. Linear 

programming in the alloation of milk resources 
for cheese making. J. Dairy Si. 69: 1432. 

[2] K.L. Craig, J. P. Norback, and M. E. Johnson. 
1989. A linear programming model intregated 
resource allocation and product acceptibility for 
processed chesse products. Journal of dairy 
science. 72: 3098 – 3108. 

[3]A. Akramizadeh, A. Akbar Farjami, and H. 
Khaloozadeh, Nonlinear Hammerstein model 
identification using Genetic algorithms, 
Proceeding of the 2002 IEEEInternational 
Conference on Artificial Intelligence Systems 
ZCAIS’02), 2002. 

[4] K.Benatchba, M. Kondil., H. Drias., and R. 
Belkacem. 2003. An adapted genetic algorithms 
for solving Max-Sat problems. WSEAS 
TRANSACTIONS on SYSEMS. Issue 4, 
Volume 2, October, ISSN: 1109 – 2777. 

[5] D.E. Goldberg. 1989. The genetic algorithms 
insearch, optimization, and machine learning. 
New York; Addison-Welsey. 

[6] A. Oonsivilai and B. Marungsri. 2008. Solving 
the unit commitment problem using an adaptive 
immune genetic algorithm. Int. Conf. on Power 
Control and Optimization, ICPCO. Chiang Mai, 
July 18-20. Thailand 

WSEAS TRANSACTIONS on SYSTEMS Anant Oonsivilai, Ratchadaporn Oonsivilai

ISSN: 1109-2777 53 Issue 1, Volume 8, January 2009



[7] A. Oonsivilai and R. Oonsivilai. 2008 Genetic 
Algorithm Approach to Twin-Screw Food 
Extrusion Process Frequency Domain Parameter 
Estimation. WSEAS  April 6-8, Hangzhou, 
China. 

[8] A. Oonsivilai, and R. Oonsivilai. 2008 
Parameter Estimation of Frequency Response 
Twin-Screw Food Extrusion Process using 
Genetic Algorithm. WSEAS TRANSACTIONS 
on SYSTEMS. Issue 7 Volume 7, July, ISSN: 
1109 – 2777. 

[9] S. Gunasekaran, and M. Mehmet Ak. 2003. 
Cheese rheology and texture. CRC Press. 
London. 

[10]  M. Mohebbi, J. Barouei, M. R. Akbarzadeh-T, 
A.R.Rowhanimanesh,  M.Yavarmanesh, 
M.B.Habibi-Naja   Modelling and optimization 
of viscosity in enzyme-modified cheese by fuzzy 
logic and genetic algorithm. Computers and 
Electronic in Agriculture. 62: 260 – 265. 

[11] D. W. Everett , M. A. E. Auty. Cheese 
structure and current methods of analysis. 
Internation dairy journal. 18 : 759 – 773. 

[12] Smith, J. P., B. Ooraikul, and E. D. 
Jackson.  1984. Linear programming: a tool 
in reformulation studies to  extend  the  shelf life  
of  English-style crumpets. Food Technol. Aust. 
36:454. 

[13]Marungsri, B., Meeboon, N., and Oonsivilai,         
       A. 2006. “Dynamic Model Identification of     
       Induction Motors using Intelligent Search  
       Techniques with taking Core Loss into  
       Account”. WSEAS TRANSACTIONS on   
       POWER SYSTEMS Issue 8, Volume 1,  
       August ISSN: 1790-5060. 
[14]Pao-La-Or. P, Kulworawanichpong, T., and  
       Oonsivilai, A. 2008. Bi-objective  intelligent  
       optimization for frequency domain parameter  
       identification of a  synchronous generator.  
        WSEAS  TRANSACTIONS on POWER  
        SYSTEMS. Isuue 3, Volume 3, March, ISSN:  
        1790 – 5060. 
[15]Oonsivilai, A. and Oonsivilai, R. 2008  
        Parameter Estimation of Frequency Response  
       Twin-Screw Food Extrusion Process using  
       Genetic Algorithm. WSEAS TRANSACTIONS  
       on SYSTEMS. Issue 7 Volume 7, July, ISSN:  
       1109 – 2777. 
[16]Oonsivilai, A. and Marungsri, B. 2008. Stability  
      Enhancement for Multi-machine Power System     
       by Otimal PID Tuning of Power System  
       stabilizer using particle swarm optimization.  
       WSEAS TRANSACTIONS on POWER  
       SYSTEMS. Issue 5 Volume 3. May. ISSN:  

      1790-5060. 
 
 

WSEAS TRANSACTIONS on SYSTEMS Anant Oonsivilai, Ratchadaporn Oonsivilai

ISSN: 1109-2777 54 Issue 1, Volume 8, January 2009




