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Abstract: A class of multidimensional time-invariant hybrid systems is studied, which depends on ¢ continuous-
time variables and on r discrete-time ones. The formula of the input-output map of these systems is given. A
multiple (g, r)-hybrid Laplace transformation is defined and it is used to determine the transfer matrices of the
considered systems. The minimal realization problem is analysed and an algorithm is given which provides mini-

mal realizations.
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1 Introduction

The topic of 2D systems (and more generally, of nD
systems) has known an important development in the
last three decades. Their theory has become a dis-
tinct and significant branch of the Systems and Con-
trol Theory, due to their richness in theoretical ap-
proaches, as well as in potential application fields,
such as control and signal processing, circuits, image
processing, computer tomography, seismology etc.

A quite new direction in this theory is repre-
sented by the 2D hybrid (i.e. continuous-discrete)
systems, whose state-space representation includes
a differential-difference equation [5], [7], [8], [9].
These hybrid models are motivated by their applica-
tions in various areas such as long-wall coal cutting
and metal rolling [12], linear repetitive processes [3],
[11], pollution modelling [2] or in iterative learning
control synthesis [6].

In the present paper a multidimensional hybrid
model is studied. The state equation is a partial
differential-difference equation, the states, the con-
trols and the outputs being vector functions which de-
pend on ¢ > 1 continuous-time variables and » > 1
discrete-time variables. This model is an extension of
the Attasi’s 2D discrete-time system [1].

In Section 2 the state space representation is in-
troduced for the (g, ) multidimensional hybrid con-
trol systems, and the formulas of the state and of the
input-output map of these systems are derived from a
variation-of-parameters type formula.

In Section 3 a multiple (g,r)-hybrid Laplace
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transformation is introduced as an operator defined
on a class of suitable original functions. Some prop-
erties of this transformation are emphasized such as
linearity, first and second time-delay theorems, differ-
entiation of the original and differentiation and delay.
These properties are used to obtain the transfer matrix
of the considered class of systems. It is shown that the
transfer matrix is a separable proper rational function,
represented by a sum between a strictly proper matrix
and a constant one.

Section 4 is devoted to the minimal realization
problem. It is shown that a realization of a ratio-
nal function having the above described structure is
minimal if and only if it is a completely reachable
and completely observable hybrid system. A crite-
rion of minimality is obtained which is based on the
Markov parameters of the strictly proper matrix. A
sequence of block Hankel matrices is constructed by
recurrence and two families of shift operators are de-
fined. These devices are used to obtain an algorithm
which provides a minimal realization. This method
is an extension to multivariable hybrid systems of the
Ho-Kalman algorithm [4].

The following notations are used in the paper:
g € N and r € N being the number of contin-
uous and discrete variables respectively, a function
CC(tl,...,tq; k‘l,...,k‘r), ti € R, k; € Z will be
sometimes denoted by x(t; k), where t = (t1,...,t,),
k= (ki,...,kr). Bys <t, s,t € R?wemean s; <
t; Vi € g where ¢ = {1,2,...,q} and a similar sig-
nification has | < k, I,k € Z"; (s;1) < (t; k) means
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s<t, (I<k)and(s;l) # (t;k). Fort° t! € R?and
KOk e 2, t9 < t1, kY < k' we denote by [t9,¢!]

H[t?,tz]

=1

and [k, k'] respectively the sets [t°, 1] =

,
TIER) ) +1,.
i=1

If 7 = {i1,...,4} is a subset of 77, |7| := [ and
Fi=m\7;fori €m,i:=m\{i}andi = {i +
1,...,m}. The notation (7,4) C (q,7) means that T
and 0 are subsets of g and 7 respectively and (7, J) #

and [K0, k'] = N33

(g,7). For 7 = {i1,...,4;} and 6 = {j1,...,jn} the
operators 7 and o are defined by

T

0 o

—ax(t k)= ——x(t; k

(97"7;(7 ) 8751‘1...8751'11‘(’ )’

osx(t; k) = x(t; k + e5)
where
es =ej+...+ej;,, ¢, =(0,...,0,1,0,...,0) € R;
N——

j—1

when 7 = g and 6 = 7 we denote 9/01 = /0t and
o5 = 0.
If A;, i € T is a family of matrices, ZAi =0
€0
and H A, =1
i€

2 State space representation

The time set of the hybrid multidimensional system is
T =R xZ,qreN"

Definition 2.1. A (q,7)-D hybrid system is a set
Y = ({Auli € q},{Aqglj € 7}, B,C, D) with A,
i € qand Ay, j € T commuting n X n matrices
vVt € R?,Vk € Z" and B, C, D respectively n x m,
p X n and p X m real matrices; the state equation is

0 +r—|7|—]§]—1
aam(t; k) = Z,, (—1)atr=Irl=lol=1y
(1:6)C(@.r)
(2.1)
X (H ACZ) (H Adj> —osx(t; k) + Bu(t; k)
and the output equation is
y(t; k) = Cx(t; k) + Du(t; k) (2.2)
where
x(t; k) =x(t, ..., tg; k1, ... k) € R"
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is the state, u(t; k) € R™ is the input and y(t; k) €
R? is the output. The number n is called the dimen-
sion of the system Y. and it is denoted dim>_.

For 7 = {il,...,’il} C 6,5 = {jl,...,jh} C
randt; € R,i € 7, k; € Z, j € §, we use the

notation x(t-; ks) := x(s1,...,8¢;11,...,1)., where
it ier R if jes
Sl_{o if ie7 a“dlﬂ_{o if jesd.

Definition 2.2. The vector 2° € R™ is called an
initial state of the system X if

x(tr ks) = <H eAeiti ) (H AS}) ¥ (2.3)

1ET j€ed

for any (7,9) C (g, 7); equalities (2.3) are called the
initial conditions of X..

We can prove (see [9])

Proposition 2.3. The solution of the initial value
problem

gax(t; k)=

_q)a+r=lrl=lol-1,
5 (=1)

>

(1.0)C(@7)
(2.4)

. <H Acz) (H Ad]) 0'5.%' t k) + f(t k)

1ET jJEO

with the initial conditions (2.3) is given by the gener-
alized variation-of-parameters formula

(HeAczt> (H Ad])
+/“ /tq (He it )

(2.5)

k1—1 kr—1 T ki1
. Z Z HAdj_j_ f(s;D)dsy ... dsg;
=0 =0 \j=1

here s = (s1,...,8¢), | = (l1,...,l); [ : R? x

Z" — R" is a continuous function with respect to
t=(t1,..., 1)

Theorem 2.4. The state of the system Y (2.1) de-
termined by the initial state xo € R" and the control

Issue 1, Volume 8, January 2009



WSEAS TRANSACTIONS on SYSTEMS

(H eAat> (Jﬁl Afé) 20+
/tl /tq <H€ e ) (2.6)

ki1—1 kr—1 T i L1
T ()

L1=0  1,=0 \j=1
Bu(s,l)dsy ... dsq

Proof. Equation (2.1) has the form (2.4) with
flt;k) = Bu(t;k) and (2.6) results by replacing
F(t: k) in (2.5).

If we replace the state x(¢; k) (2.6) in the output
equation (2.2) we obtain

Theorem 2.5. The general response of the (q,r)-
D hybrid system 3. (2.1), (2.2) is given by the formula

(Hef‘mt> (H Ad]>
+/tl /tq (He e Sl)) (2.7)

k1—1 kr—1 r P
53> (HAd; f )

L=0  1,=0 \j=1

Bu(s,l)dsy ...dsq + Du(t; k).

Example 2.6. Let us consider the (1,1)-D hybrid
system ¥ = (A, Aq, B, C, D), where

0 1 10 1

C = [ 1 -1 ] and D = 0. 111111

3 Multiple (gq,7)-hybrid Laplace
transformation and transfer ma-
trices

Definition 3.1. A function f : R? x Z" — Cis said to
be a continuous-discrete original function (or simply
an original) if f has the following properties:

@) f(tl,...,tq;kl,...,kqa) =0ift; <Oork; <
0 for some i € Gor j € T.

i) f(-y ..., k1,..., k) is piecewise smooth on
RY forany (ki,..., k) € Z7,.

(iii) My > 0,05, > 0,1 € ¢, Ry; > 0,5 €7
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such that
‘f(tl,...,tq;k‘l,...,kr)‘ S
q r
ks (3.1)
< My exp (Za’ﬁt@) H Rf]j
i=1 j=1

Vt; >0,1€q,Vk; >0,j €.

The constants o;, Ry; will be also denoted by
0;, %;. The smallest such constants are called respec-
tively the indices of the order of growth and the radii
of convergence of the original function f.

We denote by O, - the set of original functions f :
RY x Z" — C. Sometimes we shall denote by f(¢; k)
the value of fatt = (t1,...,t5), k = (k1,..., k).

Definition 3.2. For any original f, the function

F(si,..., sq;zl,... zr):
/ / k1=0 k (3.2)
f(tla"'vtq;kla-" )

p—S1t1 —sqtq ,—Fk1 —k
e co.e etz Tz rdty ... dt,

is called the (q,
image) of f.

We shall use also the notation which de-
fines the Laplace Transformation L, ,: F(s;z) =
Lyr[f(t;k)], where s = (s1,...,84) and z =
(21 -y 2r)-

The following results are proved in [10].

Proposition 3.3. The multiple improper integral
and the multivariable Taylor series in (3.2) are abso-
lutely convergent in the domain

DU = (o170 € T Re g2

> O 4y 1 € q; ‘Zj‘ >Rfj,j€77}

r)-hybrid Laplace transform (or the

and uniformly convergent on any domain
D'(f) ={(s1,---,8¢; 21, .-, 2r) € CT""|Re s; > 0,
i€q; |zl >R jer)

with o} > oy;, i € qand R; > Ryj, j € T
Theorem 3.4 (Linearity). For any f,g € Oy,
and o, 8 € C,

Lorlaf + B9l = alyr[fl + BLyslgl.  (3.4)

Theorem 3.5 (First time-delay theorem). For
any (ai,...,aq) € RL, (b1,...,b,) € Z7,

Eer[f(tl_a17"*7tq_aq;k1_bl,...,kr—br)]:

= exp (— Zl ai3i> (H1 Zij) ‘ (3.5)

F(S1,...,8¢; 215+, 2r).
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We shall use the following notations: for some
sets o« = {i1,...,0p} C gand B = {j1,...,Jq} C T,
Eo ={ele Caore =0}, Ej = {06 C Bord =0}

For a = (a;)ica € le| with a; > 0, Vi € « and
b= (b)jes € Z7, with b; > 0,Vj € B and for

e=(e1,...,6y) € Eqand 6 = (01,...0,) € nge
denote by D, . and Dj, 5 the sets Dy e = H[(), a;) and
i€e
D5 =T[{0,1,....,b;j—1}andby [ and ) the
j€6 Da,s Dll,

&€ &
multiple integral / ' . / W, respectively the multi-
bs, —1 bgfl ‘
plesum Y ... > iife =0 oré = () the corre-
ks, =0 ks, =0
sponding multiple integral or sum lack; f(t+a; k+0b)
denotes

flte, o i1ty + @it 1, -t 1, i+
+ai,, tip 41,5 tg ki, .. kj—1,kj +
+bj ki1 k1 Ry, 0 K, k).
Definition 3.6. For o = {iy,...,i,} C ¢ and

B=A{j,...,Jq} C T, the («,3)-partial (¢, r)-hybrid
Laplace transform of the original f is defined by

LT A AP SRR >

Fltr, .tk k) (3.6)

- exp (— Z 8iti> (H zj_kj> dti, ... dt;,.
I€EQ jEB

LyPlf(tk

0

If =gand f = T, L’a’ﬁ— grs if B = @,

Lg? = L) (the multiple Laplace transformation); if
qﬁ 2’ = Z, (the multiple z-transformation); if
= =06, L30f] = 1.

Theorem 3.7 (Second delay theorem). For any
a = (a;)ica € R‘f' and b = (bj)jep € Zf‘

Lom[f(t+ a;k+b)] = exp (Z aisi) (H ng) .

1€ JjEB
F(s;z)+ > > agsi(—1)FH]
c€E, €Ey Da,e D’
- _k
‘C%,(Zn[f exp ( Zsz z) (H Zj J) Hdti-
i€ JES 1€e
(3.7)
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We introduce the following notations: given
= {i1,...,ip} C @ a p-tuple (vi,...7,) €

N? is denoted by ~, or simply by ~ and atic =
a'ﬁl +... 47 . i

= ’ 5. 8 = SZ” . .sjp. The family of

Ot + .ot ' r

all unV01d subsets ¢ of ais denoted by E or E.,. For

e€ kS E= a\e, s = Hs?’ and s = life = o

i€e

if e = {u1,...,0pand n. = (y,...,m,) € NP,

Ne < v means 1; < 7, Vi € &; f(0F; k) denotes the

limit from the right

f(tla .- 'tb1—170 +tL1+17 s 7tbp—17
0+7tLp+17 s 7tq;k17 .. ‘7k’r‘);

if ¢ = {i} then f(0F;k) is denoted by f(0;; k).
Similarly f(¢;k1,...,kj—1,0, kj,..., k) is denoted
f(t;0;) and we can use the notation f(0;7;0;) which
combines these notations.

Theorem 3.8 (Differentiation of the original).
Forany 1€ q

Lar [550:0)] = (532 - €570 0] (380

oY
Lgr {Gt{ (t; k)} =sVF(s;2)+
|€| ’Ya
+E€ZEW (3.8ii)

Z S'Ys Ne— IEET[O f(0+ k)

e
Ne<ve—1 ot

Theorem 3.9 (Differentiation and delay). For
anyti €q,j €r,

of

Lar L%i(th ootk ki ki L Ry,
kr)] = siz;F(s,2) — szzjﬁfw[f( 0,)]— (3.94)
— 2 L [F(0F; k)] 4 21 £(0F5.05)].
For any v . ..’%.p) e NP,

b_(bl,...,b;e(N

Lqr {(Z{ (t; k + b)} = sV F (s, 2)+

—|—Zb Z Z \E\-H(S\ ’Ys Z Sgg—ng—l.
é’:‘EE»y 5€E5 Ne<ye—1 (39’”/)
o f —k;
) .
Z,CE [3,7; ;,05):| (H Zj 3) .
JES

Issue 1, Volume 8, January 2009



WSEAS TRANSACTIONS on SYSTEMS

Let us consider the time-invariant system 3., i.e.
the system with constant matrices A.;, Ag;, B, C' and
D. Obviously, we can extend the multiple hybrid
Laplace to vector functions

z(t k) = [z1(t; k) 22t k) ... za(t; k)]T

by
X(s;2) = Llz(t; k)] =

= [Llz1 (8 B)] Llxa(t: K)] .. Llzn(t; K)])-

By linearity (Theorem 3.4), if we apply the mul-
tiple (g, r)-hybrid Laplace transform L, , to the state
equation (2.1) we get

Lo L;)t o(t; k)]

= Z (—1)atr=lrl=lol=1 (H Aﬂ.) (H Adj)'
(1.0)C(q,7) €7 =

Lur | gros(t.)] + BLy luti )L

By Theorem 3.9, using formula (3.9ii) for a =
(1,1,...,1) e N7and b = (1,1,...,1) € N" this
equality becomes:

S$189.. X(S;Z)+T1:

= (_1)Q+T—ITI—\5I—1 <H A@.) (H Adj) .
(1.0)C(a,7) €7 j€d

(Hsz) (sz> (s;2) + T + BU(s; 2)

. 8q2172 - .. Zp

1ET j€Eb
where
Tl = 2129...2 Z Z ‘€H-|§‘ ’76
EEE»Y 5EE5
O N1E
nES'Ys_l (]66 )
- 67751;
. g0 Yot
it e [ o]
Db,s
and
T2 —26 Z Z ‘E‘+|/\| ’Ys Z Sge_ne—l_
e€E; A\€E; Ne<de—1
—k;j
Z[’ g 0rov) (-sz )
JEX
ISSN: 1109-2777 26
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This equation can be written as

(12[ SZI Acz > (ﬁ(zjf - Adj)) X(S;Z) =

J=1

= BU(s;2) + T3(s; 2)

where T3(s;z) = Ty — T7.

For s; € C\ 0(A), Vi € q, zj € C\ 0(Ag),
Vj € 7 (where o (A)) denotes the spectrum of a matrix
A) we premultiply this equation by the products of
the matrices (s;] — A¢;) ! and (2,1 — A4) "' and we
obtain the formula of the state of the system in the
frequency domain

X(S;Z) = (H(Szl — Aci)_1> .

=1
(3.10)

‘ (ﬁ(ZjI — Adj)_l) BU(s;2) + Tu(s; 2)

j=1

where

o i)

. (ﬁ(zjl - Adj)_l) T3(s; z).

=1

(3.11)

Again by Theorem 3.4, by applying the operator
Ly, to the output equation (2.2), one obtains
Y(s;2) = CX(s;2) + DU(s; 2). (3.12)
By replacing the state X (s;z) given by (3.10) in
(3.12), we get the input-output map of the system X
in the frequency domain:

= (3.13)
U(s,z)+ CTy(s,z)

: (ﬁ(Z]I - Adj)l) B+ D
j=1

Now we consider null boundary conditions

ez

O (02:05) = 0 (3.14)
Ve € Ey, Y0 € E,, v =(1,1,...,1) € N9,
b=(1,1,...,1) € N". We obtain:

Theorem 3.10. For null boundary conditions
(3.14), the input-output map of the system . is

Y(s;2) =T(s;2)U(s; z) (3.15)

Issue 1, Volume 8, January 2009



WSEAS TRANSACTIONS on SYSTEMS

where

o= (fer-)

)Bw.

The matrix Tx (s; z) (3.16) is called the transfer ma-
trix of the system 3.

A rational matrix T'(s; z) is said to be proper if its
elements have the form

(3.16)

' (ﬁ(zjf— Agy)~!

j=1

s Zr)
7ZT)

aij(sl, ey
bij(sh ey

Sqi 21y - -

biy(5;2) = S¢3 215 .-
and degs, a;; < degs, bij, Vk € @, deg.,b;j, VI € T,
Vi € p, Vj € m, where degs, a;; denotes the degree
of the polynomial a;; w.r.t. the variable s.

If all these inequalities are strict ones, 7'(s; 2)
is said to be strictly proper. If T(s;z) =

1
M (s, z) where 7(s) and 6(z) are polyno-

m(s)0(z)

mials of the form 7(s) = mi(s1)...74(sq), 0(2) =
01(z1)...0,(2z) and M (s; z) is a polynomial matrix,
then 7'(s; z) is said to be with separable denominator.

The following characterization of 7% (s; z) is a di-
rect consequence of (3.16):

Proposition 3.11. The transfer matrix of a (q,)-
D hybrid system is a rational proper p X m matrix
with separable denominator. If D = 0 (the p X m null
matrix) then Tx(s; z) is strictly proper.

We shall denote by 7s(s; z) the set of the proper
rational matrices T'(s; z) with separable denominator
which can be decomposed as a sum between a strictly
proper matrix and a constant one.

Example 3.12. The system X =
(A., Ay, B,C, D) considered in Example 2.6
has the strictly proper separable transfer matrix

Ts(s,z) = C(sI — A) Y2l — Ag)"'B+ D

hence

1
s2+2s+1

Ty(s,z) =[1 —1]

“H..

4 Minimal realizations

-1 s |z—1

s+ 2 1] 1

1

| T0=

(s+1)2(z—1)

In this section we shall give an algorithm which pro-
vides minimal realizations for proper matrices with
separable denominator.

ISSN: 1109-2777

27

Valeriu Prepelita

Definition 4.1. Given a rational matrix 7'(s; z) €
Ts(s;z), a system X = ({Aali € ¢}, {Ag4lj €
7}, B,C, D) is said to be a realization of T'(s; z) is
T(s;2) = Tx(s;2),i.e. if

=C (1:[(81 — Aci)_l> .

' (ﬁ(zj

Jj=1

(4.1)
— Adj)—l) B+ D.

:Fhe realization X is sqid to be minimal if dimY» <
dim3’ for any realization X of T'(s; 2).

Since the matrix D can be determined by (3.17),
the realization problem will be formulated as fol-
lows: given a strictly proper p x m matrix T'(s; z) €

Ts(s;z), determine the system X = ({Agli
q},{Aqglj € 7}, B, C) such that
q
T(s;2) =C <H(3i[ - Aci)l) :
i=1
(4.2)

.
' (H(zjf— Adj)_l) B.
j=1

Following the lines of the proof in [7, Theorem
5.4], we obtain (see [8] and [9]):

Theorem 4.2. A system Y is a minimal realiza-
tion of a strictly proper matrix T(s;z) € Tg(s; z) if
and only if 3 is completely reachable and completely
observable.

Now, let us expand 7'(s; z) in Laurent series about
infinity:

.,ZT):

T(s1,-..
-y LYY >m
11=0 14=0j1=0 7r=0

(I (i)

The constant p x m matrices M, ., .i,.....j. are called
the Markov parameters of the matrix T'(s; z).

Theorem 4.3. A system ¥ = ({Auli € g},
{Ag4lj € 7},B,C) is a realization of the strictly
proper matrix T'(s; z) (4.3) if and only if

q T
M, ivige=0C Ai’“ Al B
s elits) (1)

k=1 =1
Vi, >0, keq, Vj; >0, lerT.

2 Sq3 21, - -

Zl: 77447.]17 9.77‘

(4.3)

Proof. For any square matrix A and |s| >

mz@(‘ |A|, the following Laurent series expansion
A€o
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holds: (sl — A)~ ZAl ~=1. Then (4.2) gives

(f1)

for any realization ¥ of T (s;2):
(4.5)

=D 31 SN SYe

i1=0 1q=0j1=0 7r=0

'(EA%) (L) )

Therefore, X is a realization of 7'(s; z) if and only
if the Laurent series in (4.3) and (4.5) are equal, and
this condition is equivalent to the equality of all their
corresponding coefficients, i.e. with (4.4). O

Now we shall use the following notations: k£ and
Jj denotes respectively k1, ..., kg and j1,. .., j while
1q denotes iq, g1 - - -, g and Jp b, Jot1, - - - 5 Jr-

We associate to the strictly proper matrix 7'(s, 2)
the following sequence of block Hankel matrices, for
ia > 0,ka >1,0€qdg>0,lg=>1,8€r

H’zcgl,...,zq,jl,...,]r .

0,23 IRPRY k1—1,i2,3j
. Lyiz,ij 2,i2,3j k1,iz,;
k1—1,i2,5 k1,2, M2k1—2,%2,%j

(a pky x mkq matrix).

Z‘37-~7iq§j1,-~-:jr

k1,k2 -
[ 0,033 1,35 ka—1,i3;]
Y HW9 . Hp
1,03;7 2,i3;5 k2,35
B Hy Hy L. HE
HFe-Lisid prkaisid pp2ke—2.si
L k1 k1 k1 ]

(a pkiks x mkqko matrix).
Generally, being determined the block Han-

Tayl yeesb 3T 1y ees]
kel matrices H,*"*%! @Il e define the

LTseeey a 1
pkiks ... kg X mk1k2 . k, block Hankel matrix
ia+17---7iq§j17---7jr o
klrnykafhka -
[ 770siat1.] Liat1,] ka—1,ia+1,J
Hk1,~~~,ka71 Hklw-’kafl Hk17~~~:ka—1
17%!1"(‘17]' 27i¢l+17j kaﬁa-‘-l,j
| He e Hry e ik
k -1 7’&+17J k’a,la+1,] 2ka—27%0«+17j
Hkl, ka—1 Hkla wka—1 k1,..ska—1 i
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Then
j27---7jr _
Hk}h...,k’q;ll -
M 770,J2,--00r 1,92, Jr l1—1jo,ndr 7]
Hkl,... kq Hkl,...,k’ te Hkl,...7kq
7]2, 7]27 11,92, Jr
B Hk Hk Hy
11717‘]‘2""7]} llvj?""vj’r 2l1727j27"'7j7‘
L Hkl,“.,kq Hkl,“.,kq te Hk'l,...,kq i
(pkl R kqh x mkiy ... kqh matrix).
Finally, we obtain the pky...kgli...lo X
mkq ... kgly ... [, matrix
Hkh kgl nlr—1,l2 — (4'6)
HY H} Hir |
kil lr—1 Kkily,olp—1 " kil ylr—1
1 2 l
o Hk’;ll,...,lr_l Hk;h,...,lr_l e Hk";ll,...,ly‘_l
1—1 I 20,.—1
L e ity - Higlh oy

Sometimes the matrix (4.6) will be denoted Hy,;.

Proposition 4.4. For any realization ¥ of
T(s;z) € Ts(s;z) and any kg, > 1,1, > 1,a € @,
ber,

rankHp,, < dimX. (4.7)

7kq;lly"'7lb

Proof. Let us consider a realization as in Defini-
tion 2.1, hence n = dimX. We shall define by recur-
rence the following controllability-type block matri-
ces:

C(Aa;B;k1) = [B AuB A% B... AM71B]
C(Ac1, Ac2; By k1, ko) = [C(ACI§B'k1)
C(Aer; AB; k) ...C(Aer; A7 B k)]

C(Ac, Aco, .. JAci—1, Acis Bsk, ko, . ko1, ki) =
= [C(Ac1,Aca, ..., Acio1; Bi k1, ko, ... kiq)

C(Ac1,Acoy .., Aci—13 AciBi ki, ko, oo kict)
C(Act, Ay s Aci1; ABTIB ey ks k)],

Vi, 2 S ) § q. FOI‘ACZ(Ad, ACQ, e 7A07q—17 Acq)

and k = (k1, ko, ..., kg—1,kq) we denote

C(Ac; By k) =

C(Aclv A027 L) Ac,q—la Acq;B; kly k?a' R kq—b kq)
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Then
C(Ac; Aqr; By k) =
[C(Ac; B; k) C(Ac; A Bs k) ... C(Ag; A4 Bs k),
C(Ac; Adr, Aaz; By ks 1, lo) = [C(Ag; Aar, By k3 1)
ClAciAar, AwB; ki 1) ... C(AciAar: A% By ks 1),

C(AciAanAdz, - ..\ Agj—1,A4;B3k;l1 1o, . .
= [C(A¢; Aar, Agz, -
C(AC;Adl)Aan ..

.,ljfl,lj)
A1 Bkl o, i)
. aAd,j—l;Aij§k§l1’l2y ey ljfl). ..

l.f
ClAcAn,Agz, - - - Aaj-1:44 lBSkj;llal% colion)],

vy, 2 < 3 < Finally, we denote,
for Ad = (AdlaAan'--aAdm—laAdr) and [ =

(l17 l27 SRR l?‘fla lT)
C(Ac;Aq;Bikil) :=C(Ac; Aar,Aaz, - - - ,Ad,r—laAdr(;él 8)
Bikily,la, ... b1, 1y). '

Similarly, we define by reccurence the observabil-
ity type matrices:

C
OAu; Cik) = | “A |
cAk—t
O(Acl; C; kl)
O(Aa;CApns k
O(Ac1, Ac2; Cs Ky, ko) = (Aa 2ik1)
O(Aq; AR k)
and so on. Finally, we obtain the matrix (as in (4.7)):
O(Ae; Ag; Ci k3 1) := O(Ag; Aa, Aaz, - - - ,Ad,r(—41;9)
Cikslyla, ol 1), ‘

Using (4.6), (4.8) and (4.9), we can prove that

Hyy ..o kgilyylr =

(4.10)
= O(Ac; Ag; O k3 1)C (A Ag; By ks )

Now we shall employ Sylvester’s inequalities. If
Pis ap x n matrix and M is an n X m matrix, then

rank P + rankM — n < rankPM <

(4.11)
< min(rank P, rank M ).
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Obviously, O(A.; Ag; B; k; 1) is a pkl x n matrix
and O(A¢; Ag; By k;l) is an n x mkl matrix, where
k=rkiky.. . kgandl=1ly...1,.

By the second inequality (4.11) and by (4.10) we
get

rankHy, 1 1, < min(rankO(A.; Ag; Cs k3 1),

q;llv"?
rankO(A.; Ag; Ci k3 1)) < n,
i.e. (4.7), since n = rank>.. O

Now let us assume that

1

q -1 T -
T(s;2) = <H ﬂa(sa)> (H 95(25)) M(s; z)
a=1 b=1

where M (s;z) = M(s1,...,54;%1,...,%)is apoly-
nomial matrix and 7, (s;), 05(z;) are polynomials of
degree k, and [, respectively,a € q, b € 7.

We define the first level shift operators ¢&, a € @,
a > 1by

~Q ia+17“"iq;j17"'7j’f _
Oa Hkl,...,ka_l,ka = (4.12)
[ oot at1iat1,] atka—1,ia 41,
klv"'7ka—1 klv"~7ka—1 e k17~“7ka—1
a+17%a+17j a+27%a+11j a+kaa'za+17j
_ k1,.ka—1 ki,nka—1 " k1, ka1
atka—1Liat1,J pratkaiari.d o+2ka 2,104 1,
L k1, ka—1 k1yeeka—1 T k1yeiskg—1

Similarly, the first level operators i ,ber, 8> 1are
defined by

~ﬂ jb+17'-'7j'l‘ _
Oy Higy "0 1ty = (4.13)
[y Bsdbt1 B+1,5p+1 B+ly—1,5p+1 T
Hk;ll,-~~7lb—1 Hk§ll7---7lb—1 T ksl el
B+1,5p+1 B+2,5p+1 By, Jb+1
_ kilayelp—1 kiliyelp—1 "7 " ksl lp
Btly—1,7p11 7B+, Jot1 B+2l,—2,5b 11
L™ kslayeelp—1 kili,olp—1 =" T kslaelp o .

The second level shift operators of and P , a4 €
g b € 7, a,f > 1 acting on the block Han-
kel matrix Hk;l = Hkh.--,kq;ll,..-,lr (4.6) are defined
as follows: og Hy, is the matrix obtained by recur-

Loees¥h3J1se 50
wkafl:ka by

rence as Hy, (4.6) by replacing Hli?

~ o prlatlstkidlsdr, 5B ; ; i
Oa Hy, E e 0, Hj.,; is the matrix obtained by

yeensJr

recurrence as Hy; (4.6) by replacing H ,ib[: by
B rpdbt+1sdr
Oy Hid L iy

We shall denote o and &} by o, and &, respec-

tively.
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Assume that the polynomials in the denominator
of T'(s; z) are

Ta(Sq) = s’;a + aa,ka,lsﬁa_l + ... Fag18.+

+Oéa70, ac q_a
(4.14)
and

Op(2) = le)b + ﬂb,zb—mlf’_l +.. 4+ Bzt
+ﬁb,07 be T,
(4.15)
We associate to the polynomials 7, and 6 the com-
panion cells K, =

0 1 0 - 0 0 i
0 0 1 0 0
0 0 0 0 1
L —®a,0 —Qq1 —CQq2 ... —Qqk,—2 —Ogk,—1 |
and L
0 1 0 0 0 T
0 0 1 0 0
0 0 0 .. 0 1
L —Bbo —Bb1 —Bb2 - —Boi—2 —DBbi—1 |

We consider (for a € ¢ and b € 7) the matrices

Fa:( é I,ﬂ) (@Il )@Ka@; (@ Iy, )@I (4.16)

1=a+1 7j=1 =1

q r a—1
a:( ® Ikl)®<®llj>®[(g®<®[kz>®[m (417)
j=1

i=a+1 =1

j=b+1

T b— q
éb=< ® Ilj)®Lb® (é Ilj)®<®lki>®jp (4.18)
j i=1

Gb_( X 1, )@Lb ®(®Il ) (é[ki>®[m (4.19)

j=b+1 i=1

where ® denotes the Kroneker product of matrices,

CLHB e alnB a1 ...01n
AR B= e if A=
amiB ... amnB Aml - - - Qmn,
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(hence Fa =1y, iy kgli. 2 ® Kq @I, ., pand
Fa, éb, G’b have similar representations). ~
Proposition 4.5. The matrices F,,, a € ¢ and Gy,
b € 7 are commutative; Fa, a € ¢ and @b, b e 7 are
commutative matrices.
Proof. For a,c € G, a < ¢, we have

F,F, =

i=a+1 =1

We used the properties of the Kronecker prod-
uct: (A® B)(C ® D) = (AC) ® (BD) for matri-
ces A, B,C, D with suitable dimensions; I, ® I, =
nm = I @1, Slmﬂarly, one obtains F| Gb GbFa,
Va€q,b€r GbGd—GdGb,VdeT FF =
F Fa, F Gb GbFa, GbGd = GdGb O

Proposition 4.6. The second level shift operators
0, and & verify the equalities

~

0uHyy = Folyy = HyyFa, a€q,  (4.20)

(Ska;l = Gka;l = Hk;léba ber. (4.21)

Proof. The main idea of the proof is the fact that
the product

Ta(8q)T' (85 2) =

= Ta(Sa)T(S1,- - Sas- s 8qi 2155 2p) =
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is a polynomial matrix with respect to s, a € ¢,
hence the coefficient of the negative powers of s, van-
ish. This gives recurrence formulas for the Markov
parameters of 7'(s; z), taking into account (4.14), for
instance

My ... sia1jia+hkariastmiqiitrmir =

koa—1

= - Z OéaycMilr--,iaflaia,+cy7:a+l7~~'7iq§j1r~~7j’r
c=0

Vil,...,ia,...,iq,jl,...,jr >0, Ya € q.

Then a long calculus which is omitted verifies (4.20)
and (4.21). O
We obtain by induction
Corollary 4.7. Forany a,3 > 1,a € ¢, b € T,

00 Hyy = FOHyy = Hy F2, (4.22)
8y Hiy = Gy Hyg = Hiy Gy, (4.23)

We shall use the following notations: 0" is the
null matrix with p rows and m columns; I, is the unit
matrix of order p; £ is the p X m matrix defined by

[, 057 F] if p<m
. I, it p=m
E} =
I,
if p>m.
{ Opm ]

Obviously, these matrices have the following proper-
ties:
My
DIfp <mand M = is a matrix with
M,
M p x gand My (m — p) X g, then
E)'M = M, (4.24)
ii) If p > mand M = [M; M>] is a matrix with
Mi g x mand My g X (p — m) then

ME™ = M, (4.25)

iii) If n < p, n < m then

D N n pm In OZT—W
EPE! = I, and ENET = o g .(4.26)
p—n p—n

Algorithm 4.8. (of minimal realization). Let
T(s;z) = T(s1,...,8¢;21,...,%) be a strictly
proper matrix, 7'(s; z) € Tg(s; 2).
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Stage 1. Expand 7'(s; z) in Laurent series (4.3)
about infinity:

o oo o oo
8, 2) = . . R PRy I
T(s; 2) D2 M

i1=0  ig=0j1=0  j,=0
q

.
—ij—1 —j—1
k=1 =1

Stage II. Determine the degrees k;, i € ¢ and [},
j € 7 of the polynomials ;(s;) and 6;(z;) respec-
tively in the l.c.d of the entries of T'(s; z).

Stage III. Using the Markov parameters
M, ... ig:j1,....5» Write the block Hankel matrices Hy,
UaHk;la a € q, (5ka;[, berfork = (kl, cey kq) and
l=(l1,...,l,) and write the array

I Hi.
A:[ f k,l]
I,

where p = k..
k.. kgly ... Lym.
Stage IV. By applying elementary rows opera-
tions (ERO) on the first block rows of A (i.e. on
[I; Hp.]) and elementary column operations (ECO)

Hk;r
il

ckgli .. l,p and m =

on the second block column of A (i.e. on l

transform A into the array

. P H . I, om™n
A= l M ] where H = l 05n OZ:ZL ] (4.27)

Stage V. Determine the minimal realization 3 =
({Aci,i € q},{Aq,5 € 7},B,C by the following
formulas:

Ay = EPPlo Hyy)MEL, acq  (4.28)
Agy = EPP[6,Hyy)MEY, beET (4.29)
B = EPP Hy,E?, (4.30)
C = EHy ME}, (4.31)

Proof. The matrices P and M being the results of
ERO and respectively of ECO on the unit matrix, they
are products of the corresponding elementary matri-
ces, which are nonsingular, hence P and M are non-
singular too. Moreover, by (4.26) and (4.27) we get

PH M = H = E}E] (4.32)
The matrix Q = ME? EP P is the pseudoinverse of
H k:l» ie.

HiyQHyy = Higy.- (4.33)
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Indeed
PHQHM = PHy ME® EPPH, M "2
grerpn pr e 20 prpn 29 pEo

By premultiplying and postmultiplying this equality
by P~ and M ! respectively, we get (4.33).

Now let as show that A., and Ay are commuta-
tive matrices. By (4.20), (4.28) and (4.33) we have,
foray,az € ¢: Acay Acay, =

= (ELPoa, Hyy) M E ) (ERploa, Hiy| M EP, ) =
— EPPE, H QHy F,,ME", =
= EgPFalﬁaQHk;lMErTTL@ = AcagAcal

since FaIFaQ = Fa2 ﬁ‘al by Proposition 4.5. Similarly,
we can prove that A, Agy = AgpAcq and Agp, Agp, =
Agp, Agp, and by induction we get

({L2z) (111) -

_ .. LA (4.34)
= EPP (H ;) (H G{)b> Hy MEY
=1 b=1
Vig >0, a€q, Vjp >0, ber.
Now, let us prove that (4.4) holds. Firstly, by

(4.30), (4.31), (4.33), (4.24), (4.25) and by the defi-
nition of H (k; 1) we have

CB = (Eng;lMEgL)(EgPHWEg) =

= Eng;lQE%l = Eng;lEg = My,...0,0,....0-

For i1,...14;71,...,7r = 0, by (4.34), (4.30), (4.31),
(4.33), (4.22) and (4.23) we obtain

C (ﬁ Ai;;) <H Aﬁﬁ)) B=

a=1 b=1

q
= (ERHp ME}) (EQP (H Fﬁ“) :

a=1

'
- (H é{f) HMEm) ELPHE) =
b=1

q o
= Eng;lQ <H Féa) <H sz> PI/ﬁlQI‘Ik;lE%1 =

a=1 b=1

) i) -
) e -

1»~--’iq§j17-~-7j7“

q
= EbHpyQHpy (H

-##| (1
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q r
i.e. the first pxm block of (H aj;> (H agb> Hy,
a=1 =1
by the definitions of H},; and of the shifbt operators o,
and 0. Therefore (4.4) holds and by Theorem 3.2 X
(4.28)-(4.31) is a realization of T'(s; z).

Obviously, the dimension of this realization is
dim> = n where n is determined in (4.27). Since P
and M are nonsingular matrices, we get by (4.32) and
(4.27) rank H},; = rankHy,; = n = dimX. It follows
from Proposition 4.4 that dimY = rankH}, < dim3

for any realization 3. of T'(s; z), hence ¥ is a minimal
realization.

Example 4.9. Let us consider the strictly
proper separable flinction obtained in Example 3.12
T(s;2) = GRG0 Therefore 7(s) = s2 +
2s4+1,0(z)=z—1l,g=r=1Lp=m=11=2,

o0

1 n
= Zx .
- n=0
1 [o.¢]
(1_737)2 = Z n:rn_1 one
n=1

obtains for |s| > 1 and |z| > 1:

I = 1. Using the geometric series 1

|z| < 1 and its derivative

12
T2, sz shr & S
4 8 12 16
5222 8322 slx2 522

00 00 '
ZZMijsflilz j—1

i=0 j=0
M(]j =0, Mlj = 4, sz = -8, M3j =12, M4j =
2 and [ = 1, we deter-

—16, V5 > 0. Since k =
Moo Mlol _

Since T'(s;z2) we get

mine the Hankel matrices HS = l M W
10 20

[ 2 —48 ] Hy; = [HY] and the action of the
. . My Moo
shift operators is ¢HY = =
P 2 Moy M3zg
4 -8 o [ 4 -8
[ —8 12 ‘|, UH271 = O'H2 = [ —8 12 1 and
M, M 0 4
Hy o — [H — 01 | _
7221 2] Mir Moy 4 -8
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We have the array

I Hy;
I

By the permutation of the first two rows and then
by the addition of the second row multiplied by
2 to the first row_we transform A into A =

O =
—= O

A:

o R K~ O
\
(0.)

[1/2 1/4 1 0
/4 0 0 1 . 10
1 0 |>hence H = , P =
01
I 01
[1/2 1/4 10
, M = . By (4.28) - (4.31)
| 1/4 0 01

we get the minimal realization

|

A, = E3P[oyHo1 |ME3 =

IRIERIR

1/2 1/4
Ag = E3PloyHy |ME3 =

1/4 0
/2 14770 41
e S|

N l 1/4 0
B = E3PH, E} =
1
] ) [ 0

Lo o AL
]z[ozu.

1/4 0
C = E{Hy ME35 = [10] l 2 _48
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