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Abstract: A class of multidimensional time-invariant hybrid systems is studied, which depends on q continuous-
time variables and on r discrete-time ones. The formula of the input-output map of these systems is given. A
multiple (q, r)-hybrid Laplace transformation is defined and it is used to determine the transfer matrices of the
considered systems. The minimal realization problem is analysed and an algorithm is given which provides mini-
mal realizations.
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1 Introduction
The topic of 2D systems (and more generally, of nD
systems) has known an important development in the
last three decades. Their theory has become a dis-
tinct and significant branch of the Systems and Con-
trol Theory, due to their richness in theoretical ap-
proaches, as well as in potential application fields,
such as control and signal processing, circuits, image
processing, computer tomography, seismology etc.

A quite new direction in this theory is repre-
sented by the 2D hybrid (i.e. continuous-discrete)
systems, whose state-space representation includes
a differential-difference equation [5], [7], [8], [9].
These hybrid models are motivated by their applica-
tions in various areas such as long-wall coal cutting
and metal rolling [12], linear repetitive processes [3],
[11], pollution modelling [2] or in iterative learning
control synthesis [6].

In the present paper a multidimensional hybrid
model is studied. The state equation is a partial
differential-difference equation, the states, the con-
trols and the outputs being vector functions which de-
pend on q ≥ 1 continuous-time variables and r ≥ 1
discrete-time variables. This model is an extension of
the Attasi’s 2D discrete-time system [1].

In Section 2 the state space representation is in-
troduced for the (q, r) multidimensional hybrid con-
trol systems, and the formulas of the state and of the
input-output map of these systems are derived from a
variation-of-parameters type formula.

In Section 3 a multiple (q, r)-hybrid Laplace

transformation is introduced as an operator defined
on a class of suitable original functions. Some prop-
erties of this transformation are emphasized such as
linearity, first and second time-delay theorems, differ-
entiation of the original and differentiation and delay.
These properties are used to obtain the transfer matrix
of the considered class of systems. It is shown that the
transfer matrix is a separable proper rational function,
represented by a sum between a strictly proper matrix
and a constant one.

Section 4 is devoted to the minimal realization
problem. It is shown that a realization of a ratio-
nal function having the above described structure is
minimal if and only if it is a completely reachable
and completely observable hybrid system. A crite-
rion of minimality is obtained which is based on the
Markov parameters of the strictly proper matrix. A
sequence of block Hankel matrices is constructed by
recurrence and two families of shift operators are de-
fined. These devices are used to obtain an algorithm
which provides a minimal realization. This method
is an extension to multivariable hybrid systems of the
Ho-Kalman algorithm [4].

The following notations are used in the paper:
q ∈ N and r ∈ N being the number of contin-
uous and discrete variables respectively, a function
x(t1, . . . , tq; k1, . . . , kr), ti ∈ R, ki ∈ Z will be
sometimes denoted by x(t; k), where t = (t1, . . . , tq),
k = (k1, . . . , kr). By s ≤ t, s, t ∈ Rq we mean si ≤
ti ∀i ∈ q̄ where q̄ = {1, 2, . . . , q} and a similar sig-
nification has l ≤ k, l, k ∈ Zr; (s; l) < (t; k) means
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s ≤ t, (l ≤ k) and (s; l) 6= (t; k). For t0, t1 ∈ Rq and
k0, k1 ∈ Zr, t0 < t1, k0 < k1 we denote by [t0, t1]

and [k0, k1] respectively the sets [t0, t1] =
q∏

i=1

[t0i , t
1
i ]

and [k0, k1] =
r∏

i=1

{k0
j , k

0
j + 1, . . . , k1

j }.

If τ = {i1, . . . , il} is a subset of m, |τ | := l and
τ̃ := m \ τ ; for i ∈ m, ĩ := m \ {i} and ĩ := {i +
1, . . . , m}. The notation (τ, δ) ⊂ (q, r) means that τ
and δ are subsets of q and r respectively and (τ, δ) 6=
(q, r). For τ = {i1, . . . , il} and δ = {j1, . . . , jh} the

operators
∂

∂τ
and σδ are defined by

∂

∂τ
x(t; k) =

∂l

∂ti1 . . . ∂til
x(t; k),

σδx(t; k) = x(t; k + eδ)

where

eδ = ej1+. . .+ejh
, ej = (0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0) ∈ Rr;

when τ = q and δ = r we denote ∂/∂τ = ∂/∂t and
σδ = σ.

If Ai, i ∈ m is a family of matrices,
∑

i∈∅
Ai = 0

and
∏

i∈∅
Ai = I .

2 State space representation
The time set of the hybrid multidimensional system is
T = Rq

+ × Zr
+, q, r ∈ N∗.

Definition 2.1. A (q, r)-D hybrid system is a set
Σ = ({Aci|i ∈ q̄}, {Adj |j ∈ r̄}, B, C, D) with Aci,
i ∈ q and Adj , j ∈ r commuting n × n matrices
∀t ∈ Rq , ∀k ∈ Zr and B, C, D respectively n×m,
p× n and p×m real matrices; the state equation is

∂

∂t
σx(t; k) =

∑

(τ,δ)⊂(q,r)

(−1)q+r−|τ |−|δ|−1×

×
(∏

i∈τ̃

Aci

) 
∏

j∈δ̃

Adj


 ∂

∂τ
σδx(t; k) + Bu(t; k)

(2.1)

and the output equation is

y(t; k) = Cx(t; k) + Du(t; k) (2.2)

where

x(t; k) = x(t1, . . . , tq; k1, . . . , kr) ∈ Rn

is the state, u(t; k) ∈ Rm is the input and y(t; k) ∈
Rp is the output. The number n is called the dimen-
sion of the system Σ and it is denoted dimΣ.

For τ = {i1, . . . , il} ⊂ q, δ = {j1, . . . , jh} ⊂
r and ti ∈ R, i ∈ τ , kj ∈ Z, j ∈ δ, we use the
notation x(tτ ; kδ) := x(s1, . . . , sq; l1, . . . , lr)., where

si =

{
ti if i ∈ τ
0 if i ∈ τ̃

and lj =

{
kj if j ∈ δ

0 if j ∈ δ̃.

Definition 2.2. The vector x0 ∈ Rn is called an
initial state of the system Σ if

x(tτ ; kδ) =

(∏

i∈τ

eAciti

) 
∏

j∈δ

A
kj

dj


 x0 (2.3)

for any (τ, δ) ⊂ (q, r); equalities (2.3) are called the
initial conditions of Σ.

We can prove (see [9])

Proposition 2.3. The solution of the initial value
problem

∂

∂t
σx(t; k) =

∑

(τ,δ)⊂(q,r)

(−1)q+r−|τ |−|δ|−1·

·
(∏

i∈τ̃

Aci

) 
∏

j∈δ̃

Adj


 ∂

∂τ
σδx(t; k) + f(t; k)

(2.4)

with the initial conditions (2.3) is given by the gener-
alized variation-of-parameters formula

x(t; k) =

( q∏

i=1

eAciti

) 


r∏

j=1

A
kj

dj


 x0+

+
∫ t1

0
. . .

∫ tq

0

( q∏

i=1

eAci(ti−si)

)
·

·
k1−1∑

l1=0

. . .
kr−1∑

lr=0




r∏

j=1

A
kj−lj−1
dj


 f(s; l)ds1 . . . dsq;

(2.5)

here s = (s1, . . . , sq), l = (l1, . . . , lr); f : Rq ×
Zr → Rn is a continuous function with respect to
t = (t1, . . . , tq).

Theorem 2.4. The state of the system Σ (2.1) de-
termined by the initial state x0 ∈ Rn and the control
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u is

x(t; k) =

( q∏

i=1

eAciti

) 


r∏

j=1

A
kj

dj


 x0+

+
∫ t1

0
. . .

∫ tq

0

( q∏

i=1

eAci(ti−si)

)
·

·
k1−1∑

l1=0

. . .
kr−1∑

lr=0




r∏

j=1

A
kj−lj−1
dj




Bu(s, l)ds1 . . . dsq.

(2.6)

Proof. Equation (2.1) has the form (2.4) with
f(t; k) = Bu(t; k) and (2.6) results by replacing
f(t; k) in (2.5).

If we replace the state x(t; k) (2.6) in the output
equation (2.2) we obtain

Theorem 2.5. The general response of the (q, r)-
D hybrid system Σ (2.1), (2.2) is given by the formula

y(t; k) = C

( q∏

i=1

eAciti

) 


r∏

j=1

A
kj

dj


 x0+

+
∫ t1

0
. . .

∫ tq

0
C

( q∏

i=1

eAci(ti−si)

)
·

·
k1−1∑

l1=0

. . .
kr−1∑

lr=0




r∏

j=1

A
kj−lj−1
dj




Bu(s, l)ds1 . . . dsq + Du(t; k).

(2.7)

Example 2.6. Let us consider the (1,1)-D hybrid
system Σ = (Ac, Ad, B,C, D), where

Ac =

[
0 1
−1 −2

]
, Ad =

[
1 0
0 1

]
, B =

[
1
1

]
,

C =
[

1 −1
]

and D = 0. !!!!!!!

3 Multiple (q, r)-hybrid Laplace
transformation and transfer ma-
trices

Definition 3.1. A function f : Rq×Zr → C is said to
be a continuous-discrete original function (or simply
an original) if f has the following properties:

(i) f(t1, . . . , tq; k1, . . . , kr) = 0 if ti < 0 or kj <
0 for some i ∈ q̄ or j ∈ r̄.

(ii) f(·, . . . , ·; k1, . . . , kr) is piecewise smooth on
Rq

+ for any (k1, . . . , kr) ∈ Zr
+.

(iii) ∃Mf > 0, σfi ≥ 0, i ∈ q̄, Rfj > 0, j ∈ r̄

such that

|f(t1, . . . , tq; k1, . . . , kr)| ≤

≤ Mf exp

( q∑

i=1

σfiti

)
r∏

j=1

R
kj

fj

(3.1)

∀ti > 0, i ∈ q̄, ∀kj ≥ 0, j ∈ r̄.
The constants σfi, Rfj will be also denoted by

σi, Rj . The smallest such constants are called respec-
tively the indices of the order of growth and the radii
of convergence of the original function f .

We denote byOq,r the set of original functions f :
Rq × Zr → C. Sometimes we shall denote by f(t; k)
the value of f at t = (t1, . . . , tq), k = (k1, . . . , kr).

Definition 3.2. For any original f , the function

F (s1, . . . , sq; z1, . . . , zr) =

=
∫ ∞

0
. . .

∫ ∞

0

∞∑

k1=0

. . .
∞∑

kr=0

f(t1, . . . , tq; k1, . . . , kr)·
·e−s1t1 . . . e−sqtqz−k1

1 . . . z−kr
q dt1 . . . dtq

(3.2)

is called the (q, r)-hybrid Laplace transform (or the
image) of f .

We shall use also the notation which de-
fines the Laplace Transformation Lq,r: F (s; z) =
Lq,r[f(t; k)], where s = (s1, . . . , sq) and z =
(z1, . . . , zr).

The following results are proved in [10].
Proposition 3.3. The multiple improper integral

and the multivariable Taylor series in (3.2) are abso-
lutely convergent in the domain

D(f) = {(s1, . . . , sq; z1, . . . , zr) ∈ Cq+r|Re si >

> σfi, i ∈ q̄; |zj | > Rfj , j ∈ r̄}
(3.3)

and uniformly convergent on any domain

D′(f) = {(s1, . . . , sq; z1, . . . , zr) ∈ Cq+r|Re si ≥ σ′i,

i ∈ q̄; |zj | ≥ R′
j , j ∈ r̄}

with σ′i > σfi, i ∈ q̄ and R′
j > Rfj , j ∈ r̄.

Theorem 3.4 (Linearity). For any f, g ∈ Oq,r

and α, β ∈ C,

Lq,r[αf + βg] = αLq,r[f ] + βLq,r[g]. (3.4)

Theorem 3.5 (First time-delay theorem). For
any (a1, . . . , aq) ∈ Rq

+, (b1, . . . , br) ∈ Zr
+,

Lq,r[f(t1 − a1, . . . , tq − aq; k1 − b1, . . . , kr − br)] =

= exp

(
−

q∑

i=1

aisi

) 


r∏

j=1

z
−bj

j


 ·

·F (s1, . . . , sq; z1, . . . , zr).

(3.5)
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We shall use the following notations: for some
sets α = {i1, . . . , ip} ⊂ q̄ and β = {j1, . . . , jq} ⊂ r̄,
Eα = {ε|ε ⊂ α or ε = ∅}, E′

β = {δ|δ ⊂ β or δ = ∅}
For a = (ai)i∈α ∈ R|α|+ with ai > 0, ∀i ∈ α and

b = (bj)j∈β ∈ Z|β|+ , with bj > 0, ∀j ∈ β and for
ε = (ε1, . . . , εγ) ∈ Eα and δ = (δ1, . . . δµ) ∈ E′

β we
denote by Da,ε and D′

b,δ the sets Da,ε =
∏

i∈ε

[0, ai] and

D′
b,δ =

∏

j∈δ

{0, 1, . . . , bj−1} and by
∫

Da,ε

and
∑

D′
b,δ

the

multiple integral
∫ ε1

0
. . .

∫ εγ

0
, respectively the multi-

ple sum
bδ1
−1∑

kδ1
=0

. . .

bδµ−1∑

kδµ=0

; if ε = ∅ or δ = ∅ the corre-

sponding multiple integral or sum lack; f(t+a; k+b)
denotes

f(t1, . . . ti1−1, ti1 + ai1 , ti1+1, . . . , tip−1, tip+

+aip , tip+1, . . . , tq; k1, . . . , kj1−1, kj1+

+bj1 , kj1+1 . . . kjq−1, kjq + bjq , kjq+1, . . . , kr).

Definition 3.6. For α = {i1, . . . , ip} ⊂ q̄ and
β = {j1, . . . , jq} ⊂ r̄, the (α, β)-partial (q, r)-hybrid
Laplace transform of the original f is defined by

Lα,β
q,r [f(t, k)] =

∫ ∞

0
. . .

∫ ∞

0

∞∑

kj1
=0

. . .
∞∑

kjr=0

f(t1, . . . , tq; k1, . . . , kr)·

· exp

(
−

∑

i∈α

siti

) 
∏

j∈β

z
−kj

j


 dti1 . . . dtip .

(3.6)

If α = q̄ and β = r̄, Lα,β
q,r = Lq,r; if β = φ,

Lα,φ
q,r = Lp (the multiple Laplace transformation); if

α = φ, Lφ,β
q,r = Zq (the multiple z-transformation); if

α = β = φ, Lφ,φ
q,r [f ] = f .

Theorem 3.7 (Second delay theorem). For any
a = (ai)i∈α ∈ R|α|+ and b = (bj)j∈β ∈ Z|β|+

Ln,m[f(t + a; k + b)] = exp

(∑

i∈α

aisi

) 
∏

j∈β

z
bj

j


 ·

·[F (s; z) +
∑

ε∈Eα

∑

δ∈Eβ

aisi(−1)|ε|+|δ|
∫

Da,ε

∑

D′
b,γ

Lε̄,δ̄
n,m[f(t, k)] exp

(
−

∑

i∈ε

siti

) 
∏

j∈δ

z
−kj

j


 ∏

i∈ε

dti.

(3.7)

We introduce the following notations: given
α = {i1, . . . , ip} ⊂ q̄, a p-tuple (γi1 , . . . γip) ∈
Np is denoted by γα or simply by γ and

∂γf

∂tγ
=

∂γi1
+...+γip

∂t
γi1
i1

+ . . . + ∂t
γip

ip

, sγ = s
γi1
i1

. . . s
γip

ip
. The family of

all unvoid subsets ε of α is denoted by Eα
γ or Eγ . For

ε ∈ Eα
γ , ε̄ = α\ε, sγε

ε =
∏

i∈ε

sγi
i and sγε̄

ε̄ = 1 if ε = α;

if ε = {ι1, . . . , ιρ} and ηε = (ηι1 , . . . , ηιρ) ∈ Nρ,
ηε ≤ γε means ηi ≤ γi, ∀i ∈ ε; f(0+

ε ; k) denotes the
limit from the right

f(t1, . . . tι1−1, 0 + tι1+1, . . . , tιρ−1,

0+, tιρ+1, . . . , tq; k1, . . . , kr);

if ε = {i} then f(0+
ε ; k) is denoted by f(0+

i ; k).
Similarly f(t; k1, . . . , kj−1, 0, kj , . . . , kr) is denoted
f(t; 0j) and we can use the notation f(0+

i ; 0j) which
combines these notations.

Theorem 3.8 (Differentiation of the original).
For any i ∈ q̄

Lq,r

[
∂f

∂ti
(t; k)

]
= siF (s; z)− Lĩ,r̄

q,r[f(0+
i ; k)] (3.8i)

Lq,r

[
∂γf

∂tγ
(t; k)

]
= sγF (s; z)+

+
∑

ε∈Eγ

(−1)|ε|sγε̄
ε̄

∑

ηε≤γε−1

sγε−ηε−1
ε Lε̃,r̄

q,r

[
∂γεf

∂tγε
(0+

ε ; k)
]
.

(3.8ii)

Theorem 3.9 (Differentiation and delay). For
any i ∈ q̄, j ∈ r̄,

Lq,r

[
∂f

∂ti
(t1, . . . , tq; k1, . . . , kj−1, kj + 1, kj+1, . . . ,

kr)] = sizjF (s, z)− sizjLq̄,j̃
q,r[f(t; 0j)]−

−zjLĩ,r̄
q,r[f(0+

i ; k)] + zjf(0+
i ; 0j)].

(3.9i)

For any γ = (γi1 , . . . , γip) ∈ Np,
b = (b1, . . . , br) ∈ Nr,

Lq,r

[
∂γf

∂tγ
(t; k + b)

]
= sγzbF (s, z)+

+zb
∑

ε∈Eγ

∑

δ∈Eβ

(−1)|ε|+|δ|sγε̃
ε̃

∑

ηε≤γε−1

sγε−ηε−1
ε ·

·
∑

D′
b,δ

Lε̃,δ̃
q,r

[
∂ηεf

∂tηε
(0+

ε ; 0δ)
] 

∏

j∈δ

z
−kj

j


 .

(3.9ii)
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Let us consider the time-invariant system Σ, i.e.
the system with constant matrices Aci, Adj , B, C and
D. Obviously, we can extend the multiple hybrid
Laplace to vector functions

x(t; k) = [x1(t; k) x2(t; k) . . . xn(t; k)]T

by
X(s; z) = L[x(t; k)] =

= [L[x1(t; k)] L[x2(t; k)] . . . L[xn(t; k)]].

By linearity (Theorem 3.4), if we apply the mul-
tiple (q, r)-hybrid Laplace transform Lq,r to the state
equation (2.1) we get

Lq,r

[
∂

∂t
σx(t; k)

]
=

=
∑

(τ,δ)⊂(q̄,r̄)

(−1)q+r−|τ |−|δ|−1

(∏

i∈τ̃

Aci

) 
∏

j∈δ̃

Adj


·

·Lq,r

[
∂

∂τ
σδx(t, h)

]
+ BLq,r[u(t; h)].

By Theorem 3.9, using formula (3.9ii) for a =
(1, 1, . . . , 1) ∈ Nq and b = (1, 1, . . . , 1) ∈ Nr this
equality becomes:

s1s2 . . . sqz1z2 . . . zrX(s; z) + T1 =

=
∑

(τ,δ)⊂(q̄,r̄)

(−1)q+r−|τ |−|δ|−1

(∏

i∈τ̃

Aci

) 
∏

j∈δ̃

Adj


 ·

·
(∏

i∈τ

si

) 
∏

j∈δ

zj


 X(s; z) + T2 + BU(s; z)

where

T1 = z1z2 . . . zr

∑

ε∈Eγ

∑

δ∈Eβ

(−1)|ε|+|δ|sγε̃
ε̃

∑

nε≤γε−1

srε−ηε−1
ε


∏

j∈δ

z
−kj

j


 ·

·
∑

D′
b,δ

Lε̃,δ̃
q,r

[
L

[
∂ηεx

∂tηε
(0+

ε ; 0δ)
]]

and

T2 = zδ
∑

ε∈Eτ

∑

λ∈Eδ

(−1)|ε|+|λ|sγε̃
ε̃

∑

ηε≤δε−1

sδε−ηε−1
ε ·

·
∑

D′
δ,λ

Lε̃,λ̃
q,r

[
∂ηεx

∂tηε
(0+

ε ; 0λ)
] 

∏

j∈λ

z
−kj

j


 .

This equation can be written as

( q∏

i=1

(siI −Aci)

) 


r∏

j=1

(zjI −Adj)


 X(s; z) =

= BU(s; z) + T3(s; z)

where T3(s; z) = T2 − T1.
For si ∈ C \ σ(Aci), ∀i ∈ q̄, zj ∈ C \ σ(Adj),

∀j ∈ r̄ (where σ(A)) denotes the spectrum of a matrix
A) we premultiply this equation by the products of
the matrices (siI −Aci)−1 and (zjI −Adj)−1 and we
obtain the formula of the state of the system in the
frequency domain

X(s; z) =

( q∏

i=1

(siI −Aci)−1

)
·

·



r∏

j=1

(zjI −Adj)−1


 BU(s; z) + T4(s; z)

(3.10)

where

T4(s; z) =

( q∏

i=1

(siI −Aci)−1

)
·

·



r∏

j=1

(zjI −Adj)−1


 T3(s; z).

(3.11)

Again by Theorem 3.4, by applying the operator
Lq,r to the output equation (2.2), one obtains

Y (s; z) = CX(s; z) + DU(s; z). (3.12)

By replacing the state X(s; z) given by (3.10) in
(3.12), we get the input-output map of the system Σ
in the frequency domain:

Y (s; z) =

[
C

( q∏

i=1

(siI −Aci)−1

)
·

·



r∏

j=1

(zjI −Adj)−1


 B + D


 U(s, z) + CT4(s, z)

(3.13)

Now we consider null boundary conditions

∂ηεx

∂tηε
(0+

ε ; 0δ) = 0 (3.14)

∀ε ∈ Eγ , ∀δ ∈ Eb, γ = (1, 1, . . . , 1) ∈ Nq,
b = (1, 1, . . . , 1) ∈ Nr. We obtain:

Theorem 3.10. For null boundary conditions
(3.14), the input-output map of the system Σ is

Y (s; z) = T (s; z)U(s; z) (3.15)
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where

TΣ(s; z) = C

( q∏

i=1

(siI −Aci)−1

)
·

·



r∏

j=1

(zjI −Adj)−1


 B + D. (3.16)

The matrix TΣ(s; z) (3.16) is called the transfer ma-
trix of the system Σ.

A rational matrix T (s; z) is said to be proper if its
elements have the form

tij(s; z) =
aij(s1, . . . , sq; z1, . . . , zr)
bij(s1, . . . , sq; z1, . . . , zr)

and degsk
aij ≤ degsk

bij , ∀k ∈ q̄, degzl
bij , ∀l ∈ r̄,

∀i ∈ p̄, ∀j ∈ m̄, where degsk
aij denotes the degree

of the polynomial aij w.r.t. the variable sk.
If all these inequalities are strict ones, T (s; z)

is said to be strictly proper. If T (s; z) =
1

π(s)θ(z)
M(s, z) where π(s) and θ(z) are polyno-

mials of the form π(s) = π1(s1) . . . πq(sq), θ(z) =
θ1(z1) . . . θr(zr) and M(s; z) is a polynomial matrix,
then T (s; z) is said to be with separable denominator.

The following characterization of TΣ(s; z) is a di-
rect consequence of (3.16):

Proposition 3.11. The transfer matrix of a (q, r)-
D hybrid system is a rational proper p × m matrix
with separable denominator. If D = 0 (the p×m null
matrix) then TΣ(s; z) is strictly proper.

We shall denote by TS(s; z) the set of the proper
rational matrices T (s; z) with separable denominator
which can be decomposed as a sum between a strictly
proper matrix and a constant one.

Example 3.12. The system Σ =
(Ac, Ad, B, C, D) considered in Example 2.6
has the strictly proper separable transfer matrix

TΣ(s, z) = C(sI −Ac)−1(zI −Ad)−1B + D

hence

TΣ(s, z) = [1 −1]
1

s2 + 2s + 1

[
s + 2 1
−1 s

]
1

z − 1
[

1 0
0 1

]
· ·

[
1
1

]
+ 0 =

4
(s + 1)2(z − 1)

.

4 Minimal realizations
In this section we shall give an algorithm which pro-
vides minimal realizations for proper matrices with
separable denominator.

Definition 4.1. Given a rational matrix T (s; z) ∈
TS(s; z), a system Σ = ({Aci|i ∈ q̄}, {Adj |j ∈
r̄}, B, C,D) is said to be a realization of T (s; z) is
T (s; z) = TΣ(s; z), i.e. if

T (s; z) = C

( q∏

i=1

(si −Aci)−1

)
·

·



r∏

j=1

(zj −Adj)−1


 B + D.

(4.1)

The realization Σ is said to be minimal if dimΣ ≤
dimΣ̂ for any realization Σ̂ of T (s; z).

Since the matrix D can be determined by (3.17),
the realization problem will be formulated as fol-
lows: given a strictly proper p ×m matrix T (s; z) ∈
TS(s; z), determine the system Σ = ({Aci|i ∈
q̄}, {Adj |j ∈ r̄}, B, C) such that

T (s; z) = C

( q∏

i=1

(siI −Aci)−1

)
·

·



r∏

j=1

(zjI −Adj)−1


 B.

(4.2)

Following the lines of the proof in [7, Theorem
5.4], we obtain (see [8] and [9]):

Theorem 4.2. A system Σ is a minimal realiza-
tion of a strictly proper matrix T (s; z) ∈ TS(s; z) if
and only if Σ is completely reachable and completely
observable.

Now, let us expand T (s; z) in Laurent series about
infinity:

T (s1, . . . , sq; z1, . . . , zr) =

=
∞∑

i1=0

. . .
∞∑

iq=0

∞∑

j1=0

. . .
∞∑

jr=0

Mi1,...,iq ;j1,...,jr ·

·
( q∏

k=1

s−ik−1
k

) (
r∏

l=1

z−jk−1
l

)
.

(4.3)

The constant p×m matrices Mi1,...,iq ;j1,...,jr are called
the Markov parameters of the matrix T (s; z).

Theorem 4.3. A system Σ = ({Aci|i ∈ q̄},
{Adj |j ∈ r̄}, B,C) is a realization of the strictly
proper matrix T (s; z) (4.3) if and only if

Mi1,...,iq ;j1,...,jr = C

( q∏

k=1

Aik
ck

) (
r∏

l=1

Ajl
dl

)
B

∀ik ≥ 0, k ∈ q̄, ∀jl ≥ 0, l ∈ r̄.

(4.4)

Proof. For any square matrix A and |s| >
max

λ∈σ(A)
|λ|, the following Laurent series expansion
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holds: (sI − A)−1 =
∞∑

i=0

Ais−i−1. Then (4.2) gives

for any realization Σ of T (s; z):

T (s; z) =
∞∑

i1=0

. . .
∞∑

iq=0

∞∑

j1=0

. . .
∞∑

jr=0

C

( q∏

k=1

Aik
ck

)
·

·
(

r∏

l=1

Ajl
dl

)
B

( q∏

k=1

s−ik−1
k

) (
r∏

l=1

z−jl−1
l

)
.

(4.5)

Therefore, Σ is a realization of T (s; z) if and only
if the Laurent series in (4.3) and (4.5) are equal, and
this condition is equivalent to the equality of all their
corresponding coefficients, i.e. with (4.4). ut

Now we shall use the following notations: k and
j denotes respectively k1, . . . , kq and j1, . . . , jr while
îa denotes ia, ia+1 . . . , iq and ĵb jb, jb+1, . . . , jr.

We associate to the strictly proper matrix T (s, z)
the following sequence of block Hankel matrices, for
iα ≥ 0, kα ≥ 1, α ∈ q̄, dβ ≥ 0, lβ ≥ 1, β ∈ r̄

H
i2,...,iq ;j1,...,jr

k1
=

=




M0,̂i2,;j M1,̂i2,;j . . . Mk1−1,̂i2,;j

M1,̂i2,;j M2,̂i2,;j . . . Mk1 ,̂i2,;j

. . . . . .

Mk1−1,̂i2,;j Mk1 ,̂i2,;j . . . M2k1−2,̂i2,;j




(a pk1 ×mk1 matrix).

H
i3,...,iq ;j1,...,jr

k1,k2
=

=




H0,̂i3;j
k1

H1,̂i3;j
k1

. . . Hk2−1,̂i3;j
k1

H1,̂i3;j
k1

H2,̂i3;j
k1

. . . Hk2 ,̂i3;j
k1

. . . . . .

Hk2−1,̂i3;j
k1

Hk2 ,̂i3;j
k1

. . . H2k2−2,̂i3;j
k1




(a pk1k2 ×mk1k2 matrix).
Generally, being determined the block Han-

kel matrices H
ia,ia+1,...,iq ;j1,...,jr

k1,...,ka−1
, we define the

pk1k2 . . . ka ×mk1k2 . . . ka block Hankel matrix

H
ia+1,...,iq ;j1,...,jr

k1,...,ka−1,ka
=

=




H
0,̂ia+1,j
k1,...,ka−1

H
1,̂ia+1,j
k1,...,ka−1

. . . H
ka−1,̂ia+1,j
k1,...,ka−1

H
1,̂ia+1,j
k1,...,ka−1

H
2,̂ia+1,j
k1,...,ka−1

. . . H
ka ,̂ia+1,j
k1,...,ka−1

. . . . . .

H
ka−1,̂ia+1,j
k1,...,ka−1

H
ka ,̂ia+1,j
k1,...,ka−1

. . . H
2ka−2,̂ia+1,j
k1,...,ka−1




Then
Hj2,...,jr

k1,...,kq ;l1
=

=




H0,j2,...,jr

k1,...,kq
H1,j2,...,jr

k1,...,kq
. . . H l1−1,j2,...,jr

k1,...,kq

H1,j2,...,jr

k1,...,kq
H2,j2,...,jr

k1,...,kq
. . . H l1,j2,...,jr

k1,...,kq

. . . . . .

H l1−1,j2,...,jr

k1,...,kq
H l1,j2,...,jr

k1,...,kq
. . . H2l1−2,j2,...,jr

k1,...,kq




(pk1 . . . kql1 ×mk1 . . . kql1 matrix).
Finally, we obtain the pk1 . . . kql1 . . . l2 ×

mk1 . . . kql1 . . . lr matrix

Hk1,...,kq ;l1,...,lr−1,l2 = (4.6)

=




H0
k;l1,...,lr−1

H1
k;l1,...,lr−1

. . . H lr−1
k;l1,...,lr−1

H1
k;l1,...,lr−1

H2
k;l1,...,lr−1

. . . H lr
k;l1,...,lr−1

. . . . . .

H l1−1
k;l1,...,lr−1

H l1
k;l1,...,lr−1

. . . H2lr−1
k;l1,...,lr−1




.

Sometimes the matrix (4.6) will be denoted Hk;l.
Proposition 4.4. For any realization Σ of

T (s; z) ∈ TS(s; z) and any ka ≥ 1, lb ≥ 1, a ∈ q̄,
b ∈ r̄,

rankHk1,...,kq ;l1,...,lb ≤ dimΣ. (4.7)

Proof. Let us consider a realization as in Defini-
tion 2.1, hence n = dimΣ. We shall define by recur-
rence the following controllability-type block matri-
ces:

C(Ac1; B; k1) = [B Ac1B A2
c1B . . . Ak1−1

c1 B]

C(Ac1, Ac2; B; k1, k2) = [C(Ac1;B; k1)

C(Ac1; Ac2B; k1) . . . C(Ac1; Ak2−1
c2 B; k1)]

C(Ac1, Ac2, . . . ,Ac,i−1, Aci;B;k1, k2, . . . , ki−1, ki)=

= [C(Ac1, Ac2, . . . , Ac,i−1;B; k1, k2, . . . , ki−1)

C(Ac1, Ac2, . . . , Ac,i−1; AciB; k1, k2, . . . , ki−1) . . .

C(Ac1, Ac2, . . . , Ac,i−1; Aki−1
ci B; k1, k2, . . . , ki−1)],

∀i, 2 ≤ i ≤ q. ForAc =(Ac1, Ac2, . . . , Ac,q−1, Acq)

and k = (k1, k2, . . . , kq−1, kq) we denote

C(Ac; B; k) =

C(Ac1, Ac2, . . . , Ac,q−1, Acq;B; k1, k2,. . . , kq−1, kq).
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Then

C(Ac; Ad1; B; k; l1) =

[C(Ac; B; k) C(Ac; Ad1B; k) . . . C(Ac; Al1−1
d1 B; k)],

C(Ac; Ad1, Ad2;B; k; l1, l2) = [C(Ac; Ad1, B; k; l1)

C(Ac;Ad1,Ad2B; k; l1) . . . C(Ac;Ad1;Al2−1
d2 B; k; l1)],

. . . . . . . . . . . .

C(Ac;Ad1,Ad2, . . . ,Ad,j−1,Adj ;B;k;l1,l2, . . . ,lj−1,lj)

= [C(Ac; Ad1, Ad2, . . . , Ad,j−1; B; k; l1, l2, . . . , lj−1)

C(Ac;Ad1,Ad2, . . . ,Ad,j−1;AdjB;k;l1,l2, . . . , lj−1). . .

C(Ac;Ad1,Ad2, . . . ,Ad,j−1;A
lj−1
dj B;kj ;l1,l2, . . . ,lj−1)],

∀j, 2 ≤ j ≤ r. Finally, we denote,
for Ad = (Ad1, Ad2, . . . , Ad,r−1, Adr) and l =
(l1, l2, . . . , lr−1, lr)

C(Ac;Ad;B;k;l) :=C(Ac;Ad1,Ad2, . . . ,Ad,r−1,Adr;

B; k; l1, l2, . . . , lr−1, lr).
(4.8)

Similarly, we define by reccurence the observabil-
ity type matrices:

O(Ac1;C; k1) =




C
CAc1

. . .

CAk1−1
c1


 ,

O(Ac1, Ac2; C; k1, k2) =




O(Ac1;C; k1)
O(Ac1; CAc2; k1)

. . .

O(Ac1; CAk2−1
c2 ; k1)




and so on. Finally, we obtain the matrix (as in (4.7)):

O(Ac;Ad;C; k; l) := O(Ac;Ad1, Ad2, . . . , Ad,r−1;

C; k; l1, l2, . . . , lr−1, lr).
(4.9)

Using (4.6), (4.8) and (4.9), we can prove that

Hk1,...,kq ;l1,...,lr =

= O(Ac;Ad;C; k; l)C(Ac; Ad; B; k; l)
(4.10)

Now we shall employ Sylvester’s inequalities. If
P is a p× n matrix and M is an n×m matrix, then

rankP + rankM − n ≤ rankPM ≤
≤ min(rankP, rankM).

(4.11)

Obviously,O(Ac;Ad;B; k; l) is a pk̃l̃×n matrix
and O(Ac; Ad; B; k; l) is an n × mk̃l̃ matrix, where
k̃ = k1k2 . . . kq and l̃ = l1l2 . . . lr.

By the second inequality (4.11) and by (4.10) we
get

rankHk1,...,kq ;l1,...,lr ≤ min(rankO(Ac;Ad;C; k; l),

rankO(Ac; Ad; C; k; l)) ≤ n,

i.e. (4.7), since n = rankΣ. ut
Now let us assume that

T (s; z) =

( q∏

a=1

πa(sa)

)−1 (
r∏

b=1

θb(zb)

)−1

M(s; z)

where M(s; z) = M(s1, . . . , sq; z1, . . . , zr) is a poly-
nomial matrix and πa(si), θb(zj) are polynomials of
degree ka and lb respectively, a ∈ q̄, b ∈ r̄.

We define the first level shift operators σ̃α
a , a ∈ q̄,

α ≥ 1 by
σ̃α

a H
ia+1,...,iq ;j1,...,jr

k1,...,ka−1,ka
= (4.12)

=




H
α,̂ia+1,j
k1,...,ka−1

H
α+1,̂ia+1,j
k1,...,ka−1

. . .H
α+ka−1,̂ia+1,j
k1,...,ka−1

H
α+1,̂ia+1,j
k1,...,ka−1

H
α+2,̂ia+1,j
k1,...,ka−1

. . . H
α+ka ,̂ia+1,j
k1,...,ka−1

. . . . . .

H
α+ka−1,̂ia+1,j
k1,...,ka−1

H
α+ka ,̂ia+1,j
k1,...,ka−1

. . .H
α+2ka−2,̂ia+1,j
k1,...,ka−1




Similarly, the first level operators δ̃β
b , b ∈ r̄, β ≥ 1 are

defined by
δ̃β
b H

jb+1,...,jr

k;l1,...,lb−1,lb
= (4.13)

=




H
β,ĵb+1

k;l1,...,lb−1
H

β+1,ĵb+1

k;l1,...,lb−1
. . .H

β+lb−1,ĵb+1

k;l1,...,lb−1

H
β+1,ĵb+1

k;l1,...,lb−1
H

β+2,ĵb+1

k;l1,...,lb−1
. . . H

β+lb,ĵb+1

k;l1,...,lb−1

. . . . . .

H
β+lb−1,ĵb+1

k;l1,...,lb−1
H

β+lb,ĵb+1

k;l1,...,lb−1
. . . H

β+2lb−2,ĵb+1

k;l1,...,lb−1




The second level shift operators σα
a and δβ

b , a ∈
q̄, b ∈ r̄, α, β ≥ 1 acting on the block Han-
kel matrix Hk;l = Hk1,...,kq ;l1,...,lr (4.6) are defined
as follows: σα

a Hk;l is the matrix obtained by recur-
rence as Hk;l (4.6) by replacing H

ia+1,...,ik;j1,...,jr

k1,...,ka−1,ka
by

σ̃α
a H

ia+1,...,ik;j1,...,jr

k1,...,ka−1,ka
; δβ

b Hk;l is the matrix obtained by

recurrence as Hk;l (4.6) by replacing H
jb+1,...,jr

k;l1,...,lb−1,lb
by

δ̃β
b H

jb+1,...,jr

k,l1,...,lb−1,lb
.

We shall denote σ1
a and δ1

b by σa and δb respec-
tively.

WSEAS TRANSACTIONS on SYSTEMS Valeriu Prepelita

ISSN: 1109-2777 29 Issue 1, Volume 8, January 2009



Assume that the polynomials in the denominator
of T (s; z) are

πa(sa) = ska
a + αa,ka−1s

ka−1
a + . . . + αa,1sa+

+αa,0, a ∈ q̄,
(4.14)

and

θb(zb) = zlb
b + βb,lb−1z

lb−1
b + . . . + βb,1zb+

+βb,0, b ∈ r̄,
(4.15)

We associate to the polynomials πa and θb the com-
panion cells Ka =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . .

0 0 0 . . . 0 1

−αa,0 −αa,1 −αa,2 . . . −αa,ka−2 −αa,ka−1




and Lb =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . .

0 0 0 . . . 0 1

−βb,0 −βb,1 −βb,2 . . . −βb,lb−2 −βb,lb−1




.

We consider (for a ∈ q̄ and b ∈ r̄) the matrices

F̃a=




q⊗

i=a+1

Iki


⊗




r⊗

j=1

Ilj


⊗Ka⊗

(
a−1⊗

i=1

Iki

)
⊗Ip (4.16)

F̂a=




q⊗

i=a+1

Iki


⊗




r⊗

j=1

Ilj


⊗KT

a ⊗
(

a−1⊗

i=1

Iki

)
⊗Im (4.17)

G̃b=




r⊗

j=b+1

Ilj


⊗Lb⊗




b−1⊗

j=1

Ilj


⊗

( q⊗

i=1

Iki

)
⊗Ip (4.18)

Ĝb=




r⊗

j=b+1

Ilj


⊗LT

b ⊗



b−1⊗

j=1

Ilj


⊗

( q⊗

i=1

Iki

)
⊗Im (4.19)

where ⊗ denotes the Kroneker product of matrices,

A⊗B=




a11B . . . a1nB

. . . . .

am1B . . . amnB


 if A=




a11 . . . a1n

. . . . .

am1 . . . amn




(hence F̃a = Ika+1 . . . kql1 . . . l2 ⊗Ka ⊗ Ik1...kap and
F̂a, G̃b, Ĝb have similar representations).

Proposition 4.5. The matrices F̃a, a ∈ q̄ and G̃b,
b ∈ r̄ are commutative; F̂a, a ∈ q̄ and Ĝb, b ∈ r̄ are
commutative matrices.

Proof. For a, c ∈ q̄, a < c, we have

F̃aF̃c =







q⊗

i=a+1

Iki


⊗




r⊗

j=1

Ilj


⊗Ka ⊗

(
a−1⊗

i=1

Iki

)
⊗ Ip


 ·

·






q⊗

i=c+1

Iki


⊗




r⊗

j=1

Ilj


⊗Ka ⊗

(
c−1⊗

i=1

Iki

)
⊗ Ip


 =

=







r⊗

j=1

Ilj


⊗




q⊗

i=a+1

Iki


⊗ Ikc ⊗




c−1⊗

i=a+1

Iki


⊗

⊗Ka ⊗
(

a−1⊗

i=1

Iki

)
⊗ Ip

]
·

·






r⊗

j=1

Ilj


⊗




q⊗

i=c+1

Iki


⊗Kc ⊗




c−1⊗

i=a+1

Iki


⊗

⊗Ika ⊗
(

a−1⊗

i=1

Iki

)
⊗ Ip

]
=

=




r⊗

j=1

Ilj


⊗




q⊗

i=c+1

Iki


⊗Kc ⊗




c−1⊗

i=a+1

Iki


⊗

⊗Ka ⊗
(

a−1⊗

i=1

Iki

)
⊗ Ip = F̃cF̃a

We used the properties of the Kronecker prod-
uct: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for matri-
ces A,B, C,D with suitable dimensions; In ⊗ Im =
Inm = Im⊗In. Similarly, one obtains F̃aG̃b = G̃bF̃a,
∀a ∈ q̄, b ∈ r̄, G̃bG̃d = G̃dG̃b, ∀b, d ∈ r̄, F̂aF̂c =
F̂cF̂a, F̂aĜb = ĜbF̂a, ĜbĜd = ĜdĜb. ut

Proposition 4.6. The second level shift operators
σa and δb verify the equalities

σaHk;l = F̃aHk;l = Hk;lF̂a, a ∈ q̄, (4.20)

δbHk;l = G̃bHk;l = Hk;lĜb, b ∈ r̄. (4.21)

Proof. The main idea of the proof is the fact that
the product

πa(sa)T (s; z) =

= πa(sa)T (s1, . . . , sa, . . . , sq; z1, . . . , zr) =

=




q∏
i=1
i6=a

πi(si)



−1 


r∏

j=1

θj(zj)



−1

M(s; z)
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is a polynomial matrix with respect to sa, a ∈ q̄,
hence the coefficient of the negative powers of sa van-
ish. This gives recurrence formulas for the Markov
parameters of T (s; z), taking into account (4.14), for
instance

Mi1,...,ia−1,ia+ka,ia+1,...,iq ;j1,...,jr =

= −
ka−1∑

c=0

αa,cMi1,...,ia−1,ia+c,ia+1,...,iq ;j1,...,jr

∀i1, . . . , ia, . . . , iq, j1, . . . , jr ≥ 0, ∀a ∈ q̄.

Then a long calculus which is omitted verifies (4.20)
and (4.21). ut

We obtain by induction
Corollary 4.7. For any α, β ≥ 1, a ∈ q̄, b ∈ r̄,

σα
a Hk;l = F̃α

a Hk;l = Hk;lF̂
α
a , (4.22)

δβ
b Hk;l = G̃β

b Hk;l = Hk;lĜ
β
b . (4.23)

We shall use the following notations: 0m
p is the

null matrix with p rows and m columns; Ip is the unit
matrix of order p; Em

p is the p×m matrix defined by

Em
p =





[Ip 0m−p
p ] if p < m

Ip if p = m

 Im

0m
p−m


 if p > m.

Obviously, these matrices have the following proper-
ties:

i) If p < m and M =

[
M1

M2

]
is a matrix with

M1 p× q and M2 (m− p)× q, then

Em
p M = M1 (4.24)

ii) If p > m and M = [M1 M2] is a matrix with
M1 q ×m and M2 q × (p−m) then

MEm
p = M1 (4.25)

iii) If n ≤ p, n ≤ m then

Ep
nEn

p = In and En
p Em

n =


 In 0m−n

n

0n
p−n 0m−n

p−n


 .(4.26)

Algorithm 4.8. (of minimal realization). Let
T (s; z) = T (s1, . . . , sq; z1, . . . , zr) be a strictly
proper matrix, T (s; z) ∈ TS(s; z).

Stage I. Expand T (s; z) in Laurent series (4.3)
about infinity:

T (s; z) =
∞∑

i1=0

. . .
∞∑

iq=0

∞∑

j1=0

. . .
∞∑

jr=0

Mi1,...,iq ;j1,...,jr

·
( q∏

k=1

s−ik−1
k

) (
r∏

l=1

z−jk−1
l

)
.

Stage II. Determine the degrees ki, i ∈ q̄ and lj ,
j ∈ r̄ of the polynomials πi(si) and θj(zj) respec-
tively in the l.c.d of the entries of T (s; z).

Stage III. Using the Markov parameters
Mi1,...,iq ;j1,...,jr write the block Hankel matrices Hk;l,
σaHk;l, a ∈ q̄, δbHk;l, b ∈ r̄ for k = (k1, . . . , kq) and
l = (l1, . . . , lr) and write the array

A =

[
Ip̃ Hk;l

Im̃

]

where p̃ = k1 . . . kql1 . . . lrp and m̃ =
k1 . . . kql1 . . . lrm.

Stage IV. By applying elementary rows opera-
tions (ERO) on the first block rows of A (i.e. on
[Ip̃ Hk;r]) and elementary column operations (ECO)

on the second block column of A (i.e. on

[
Hk;r

Im̃

]
)

transform A into the array

Ã =

[
P H̃

M

]
where H̃ =

[
In 0m̃−n

n

0p̃−n 0m̃−n
p̃−n

]
(4.27)

Stage V. Determine the minimal realization Σ =
({Aci, i ∈ q̄}, {Adj , j ∈ r̄}, B, C by the following
formulas:

Aca = Ep̃
nP [σaHk;l]MEn

m̃, a ∈ q̄ (4.28)

Adb = Ep̃
nP [δbHk;l]MEn

m̃, b ∈ r̄ (4.29)

B = Ep̃
nP Hk;lE

m
m̃ , (4.30)

C = Ep̃
pHk;lMEn

m̃, (4.31)

Proof. The matrices P and M being the results of
ERO and respectively of ECO on the unit matrix, they
are products of the corresponding elementary matri-
ces, which are nonsingular, hence P and M are non-
singular too. Moreover, by (4.26) and (4.27) we get

PHk;lM = H̃ = En
p̃ Em̃

n (4.32)

The matrix Q = MEn
m̃Ep̃

nP is the pseudoinverse of
Hk;l, i.e.

Hk;lQHk;l = Hk;l. (4.33)
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Indeed

PHk;lQHk;lM = PHk;lMEn
m̃Ep̃

nPHk;lM
(4.32)
=

En
p̃ Em̃

n En
m̃Ep̃

nEn
p̃ Em̃

n
(4.26)
= En

p̃ Em̃
n

(4.26)
= PHk;lM.

By premultiplying and postmultiplying this equality
by P−1 and M−1 respectively, we get (4.33).

Now let as show that Aca and Adb are commuta-
tive matrices. By (4.20), (4.28) and (4.33) we have,
for a1, a2 ∈ q̄: Aca1Aca2 =

= (Ep̃
nP [σa1Hk;l]MEn

m̃)(Ep̃
np[σa2Hk;l]MEn

m̃) =

= Ep̃
nPF̃a1Hk;lQHk;lF̂a2MEn

m̃ =

= Ep̃
nPF̃a1F̃a2Hk;lMEn

m̃ = Aca2Aca1

since F̃a1F̃a2 = F̃a2F̃a1 by Proposition 4.5. Similarly,
we can prove that AcaAdb = AdbAca and Adb1Adb2 =
Adb2Adb1 and by induction we get

( q∏

a=1

Aia
ca

) (
r∏

b=1

Ajb
db

)
=

= Ep̃
nP

( q∏

a=1

F̃ ia
a

) (
r∏

b=1

G̃jb
b

)
Hk;lMEn

m̃

∀ia ≥ 0, a ∈ q̄, ∀jb ≥ 0, b ∈ r̄.

(4.34)

Now, let us prove that (4.4) holds. Firstly, by
(4.30), (4.31), (4.33), (4.24), (4.25) and by the defi-
nition of H(k; l) we have

CB = (Ep̃
pHk;lMEn

m̃)(Ep̃
nPHk;lE

m
m̃) =

= Ep̃
pHk;lQEm

m̃ = Ep̃
pHk;lE

m
m̃ = M0,...,0;0,...,0.

For i1, . . . iq; j1, . . . , jr ≥ 0, by (4.34), (4.30), (4.31),
(4.33), (4.22) and (4.23) we obtain

C

( q∏

a=1

Aia
ca

) (
r∏

b=1

Ajb
db

)
B =

= (Ep̃
pHk;lMEn

m̃)

(
Ep̃

nP

( q∏

a=1

F̃ ia
a

)
·

·
(

r∏

b=1

G̃jb
b

)
Hk;lMEn

m̃

)
· Ep̃

nPHk;lE
m
m̃) =

= Ep̃
pHk;lQ

( q∏

a=1

F̃ ia
a

) (
r∏

b=1

G̃jb
b

)
Hk;lQHk;lE

m
m̃ =

= Ep̃
pHk;lQHk;l

( q∏

a=1

F̂ ia
a

) (
r∏

b=1

Ĝjb
b

)
Em

m̃ =

= Ep̃
p

[( q∏

a=1

σia
a

) (
r∏

b=1

δjb
b

)
Hk;l

]
Em

m̃ =

= Mi1,...,iq ;j1,...,jr

i.e. the first p×m block of

( q∏

a=1

σia
a

) (
r∏

b=1

σjb
b

)
Hk;l,

by the definitions of Hk;l and of the shift operators σa

and δb. Therefore (4.4) holds and by Theorem 3.2 Σ
(4.28)-(4.31) is a realization of T (s; z).

Obviously, the dimension of this realization is
dimΣ = n where n is determined in (4.27). Since P
and M are nonsingular matrices, we get by (4.32) and
(4.27) rankHk;l = rankH̃k;l = n = dimΣ. It follows
from Proposition 4.4 that dimΣ = rankHk;l ≤ dimΣ̂
for any realization Σ̂ of T (s; z), hence Σ is a minimal
realization.

Example 4.9. Let us consider the strictly
proper separable function obtained in Example 3.12

T (s; z) =
4

(s + 1)2(z − 1)
. Therefore π(s) = s2 +

2s + 1, θ(z) = z − 1, q = r = 1, p = m = 1, l = 2,

l = 1. Using the geometric series
1

1− x
=

∞∑

n=0

xn,

|x| < 1 and its derivative
1

(1− x)2
=

∞∑

n=1

nxn−1 one

obtains for |s| > 1 and |z| > 1:

T (s; z) =
4

s2z
· 1(

1 +
1
s

) · 1

1− 1
z

=

=
4

s2z

(
1− 2

s
+

3
s2
− 4

s3
+ . . .

)
·

·
(

1 +
1
z

+
1
z2

+ . . .

)
=

=
4

s2z
− 8

s3z
+

12
s4z

− 16
s5z

+ . . . +

+
4

s2z2
− 8

s3z2
+

12
s4z2

− 16
s5z2

+ . . .

Since T (s; z) =
∞∑

i=0

∞∑

j=0

Mijs
−i−1z−j−1 we get

M0j = 0, M1j = 4, M2j = −8, M3j = 12, M4j =
−16, ∀j ≥ 0. Since k = 2 and l = 1, we deter-

mine the Hankel matrices H0
2 =

[
M00 M10

M10 M20

]
=

[
0 4
4 −8

]
, H2,1 = [H0

2 ] and the action of the

shift operators is σ̃H0
2 =

[
M10 M20

M20 M30

]
=

[
4 −8
−8 12

]
, σH2,1 = σ̃H0

2 =

[
4 −8
−8 12

]
and

σ2H2,1 = [H1
2 ] =

[
M01 M11

M11 M21

]
=

[
0 4
4 −8

]
.
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We have the array

A =

[
I2 H2,1

I2

]
=




1 0 0 4
0 1 4 −8

1 0

0 1




.

By the permutation of the first two rows and then
by the addition of the second row multiplied by
2 to the first row we transform A into Ã =


1/2 1/4 1 0
1/4 0 0 1

1 0

0 1




, hence H̃ =

[
1 0

0 1

]
, P =

[
1/2 1/4

1/4 0

]
, M =

[
1 0

0 1

]
. By (4.28) - (4.31)

we get the minimal realization

Ac = E2
2P [σ1H2,1]ME2

2 =

=

[
1/2 1/4

1/4 0

] [
4 −8
−8 12

] [
1 0
0 1

]
=

[
0 −1
1 −2

]
,

Ad = E2
2P [σ2H2,1]ME2

2 =

=

[
1/2 1/4

1/4 0

] [
0 4

4 −8

]
=

[
1 0
0 1

]
,

B = E2
2PH2,1E

1
2 =

=

[
1/2 1/4

1/4 0

] [
0 4
4 −8

] [
1

0

]
=

[
1

0

]
,

C = E2
1H2,1ME2

2 = [1 0]

[
0 4
4 −8

]
= [0 4].
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