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Abstract: - Chaotic and periodic motion of ship parametrical- highly excitation rolling dynamics system is 
researched by qualitative analysis method. Firstly, approximately harmonic solution is gained by researching 
the system model’s harmonic solution bifurcation with the theorem of Poincaré. Secondly, approximately sub-
harmonic solution is gained by researching system’s sub-harmonic solution bifurcation. Lastly, chaotic motion 
performance of dynamics system is talked by function. 
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1 Introduction 
Applying nonlinear dynamics theory, pitching 
influences on rolling is expressed as parametric 
excitation term. Blocki , Nayfeh, Dongyanqiu, 
Tangyougang have researched the ship stability and 
dynamic behaviour in longitudinal waves according 
to parametric resonance and main parametric 
resonance[1-5].Literature [6,7] has respectively 
researched the ship capsizing in rolling waves and 
the wide range rolling motion. But up to now, the 
ship’s dynamic characteristic suffered from 
parametric excitation and forced rolling excitation, 
is researched scarcely. According to parametrical-
highly excitation nonlinear rolling dynamics system, 
Literature [8] sets up the model of differential 
equation. And literature [9] gets second order 
approximately solution of the system model, and 
also discusses the phenomenon of 1/2 meta 
harmonic resonance of system and receives 
condition of rolling losing stability. This article on 
the basis of the system model of ship parametrical-
highly excitation nonlinear dynamic which is 
founded in literature [8], applying qualitative 
analysis method, researches harmonic solution 
bifurcation and sub- harmonic solution bifurcation 
of ship parametrical-highly excitation nonlinear 
dynamic system. That is periodic motion 

performance of system. Finally, applying   function, 
chaotic motion of dynamics system is talked about.  

The balance of the paper is organized as follows. 
Harmonic solution bifurcation of system  is stated in 
Section 2.  Sub-harmonic sulution bifurcation of 
system is described in Section 3.  Heteroxenous 
robit and chaos of system is given in Section 4.  
Ideogenous robit and chaos of system is presented in 
Section 5.   Finally, concluding remarks are drawn 
in Section 6. 
 
 
2 Harmonic Solution Bifurcation of 
System 
Differential equation model of ship parametrical-
highly excitation nonlinear dynamic system [8] is 
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 (1) 
where, ϕ  is rolling angel, I  is rolling rotor 

inertia, )3,1( =iDi
 is nonlinear damping coefficient, 

D  is displacement,  
0GM  is initial stability height, 

)sin( 00 δ+ΩtE  is regular wave forced rolling moment, 
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h  is parametric excitation amplitude, Ω  is 
interference frequency. 

In equation (1), set 
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Other coefficients calling small parameter ε , 
then we have 
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(2) 
To simplify calculation, set  

ω=Ω  
Then equation (2) will be 
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(3) 
Set νϕ == uu ,  
We obtain 
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              (4) 
To make equation (4) to PolderVan  

transformation, we reach 
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Then derivation to both sides of equation (5), we 
have  
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        (6) 
To put equation (5) and equation (6) into 

equation (3) and arrange to 
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 (7) 
To simplify calculation, set 

θ=θ= sin,cos ryrx  
Then we have 
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   (8) 
To put equation (8) into equation (7), we 

obtain 
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(9) 
By calculating, we obtain average equation of 

equation (9) 
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(10) 

Among them
222 yxr += , we have 
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That is 
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(11) 
To arrange equation (11) to 
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(12) 

So that r  satisfies 
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(13) 

And 
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(14) 
Therefore, according to literature [10], if only 

Jacobi  determinant 
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is not equal to zero, equation （9） must exist 
harmonic solution. And constant x and y  ,which 
defined by equation（12）and  equation（13）, 
can be considered approximately harmonic solution 

of  equation（12）(if only ε  sufficient small).So 
that , ( )θω −= tru cos  is approximately harmonic 
solution of  equation（17）.Next, we will prove 
equation (4) definitely existing harmonic solution by 
example. 

Example 1 in equation (4), set 
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Then according to equation (12), we have 
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And 222 yxr +=  must also satisfy 
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Clearly, ( )rf  is continued, and 
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According to Intermediate Value Theorem, exist 
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That is, exist ( )1,00 ∈r  to make equation (12) and 
equation (13) be founded. To calculate Jacobi  
Determinant, can make 
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And according to equation (14) 
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Jacobi  Determinant is 
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(17) 
Because 00 ≠J , equation (14) exists harmonic 

solution, that is harmonic solution bifurcation. To 
make a comprehensive survey, we obtain the 
following theorem 
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Theorem 1 Equation (4) must exist harmonic 
solution, and corresponding approximately 
harmonic solution is 

cos( )u r tω θ= −  
Where, 
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, 

r  is defined by equation (12) and equation (13) 
 
 
3 Sub-harmonic Solution Bifurcation 
of System 
Leading t0ωτ =  to make equation (1) to be 
dimensionless, where, Time is still expressed to be 

1h , rolling angle is still expressed to be ϕ , 
frequency Ω̂  is still expressed to be Ω . Leading 
small parameter ε , rewrite equation (1) to be 
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   Now discussing equation (18) exists sub-
harmonic solution. Not losing generality, To 
simplify calculation, can set 

0,1,2 00 ===Ω δE  
Then we have 
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First of all, when 0=ε , Equation (19) has 

harmonic solution ( ) tt 2cos
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When 0=ε , Equation (20) has first integr 
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According to Equation（4）、（20）and 

（22）, we have 
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   Meanwhile, we easily obtain 
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According to period of g  ( ) 1, 0 =Ω= hT π , we 
have 
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That is 
1,2 == km  

Therefore, we obtain second order harmonic 
ikovMe ln   function of Equation（20）is 
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Equation（19）has second order harmonic 
solution when sufficient small 0>ε  is considered. 
Next, we will prove Equation（19）definitely exist 
second order harmonic solution by example 2. 

Example 2 In Equation（25）, set 
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For certain 1h , Equation（26）is linear equation 
group about variable 53,aa .And whose coefficient 
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So that, Equation（22） exists  second order 
sub-harmonic solution bifurcation. 

To make a comprehensive survey, we obtain the 
following theorem. 

Theorem 2 Equation（23） must exist second 
order sub-harmonic solution and corresponding 
approximately harmonic solution is 
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4 Heteroxenous Robit and Chaos of 
System 
To make Equation（1） to be dimensionless, we 
have 
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In Equation（27）, set 
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then Equation（27）rewrite to be 
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Set 
xyx =ϕ= ,  

Then according to Equation（28）, we have 
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2
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2
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5

=

=

=
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∫
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dtthtth
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   Calculation of 4I  in Equation（ 33） is quite 
complicated. Firstly, considering odevity of function, 
we have 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0
4 0

0 0
0 0

0 0
0

0 0 2
0

2
0

cos

cos cos sin sin

sin sin

2 2 2sin sin sec
2 2 2

sin sin 2 sec

I x t y t t t dt

x t y t t t t t dt

t x t y t t dt

t x t y t t h t th t dt

t u h u th u du

+∞

± ±−∞

+∞

± ±−∞

+∞

± ±−∞

+∞

± ±−∞

+∞

−∞

= Ω + =

Ω Ω − Ω Ω

= − Ω Ω =

   
− Ω Ω       

   

= − Ω Ω

∫

∫

∫

∫

∫

 

Calculation of integration 

∫
∞+

∞−
Ω duuthuhu )()(sec)2sin( 2  also need apply )

2
2(csc2)cos()(0 ππ Ω±=Ω∫

∞+

∞− ± hdttty
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Residue Theorem which is belongs to theory of 
functions of a complex variable. 
 

 

Fig.1 The closed curvel computed by Integral 
 

According to the closed curve L  which is made 
up of by line CDBCAB ,,  and DA in Fig.1, 
function of the complex 

variable )()(sec)2sin( 2 ZthZhZΩ  has third order 
pole )2/,0( iπ  in L , residue is 

)
2
2()1( 2 Ωπ−Ω shi

.On the basis of Residue 
Theorem 

∫ πΩ−Ωπ=Ω
L

shiiZthZdZhZ ))
2
2()1((2sec)2sin( 22

 
Set 

∞→R  
We get 

)
2
2()1(2

sec)2(sin))2(1(

2

2

ΩΩ−

=ΩΩ+ ∫
∞+

∞−

ππ

π

sh

uthuduhuch
 

   That is 

)
2
2()

2
2(sec)1(sec)2(sin 22 ΩπΩπΩ−π=Ω∫

∞+

∞−
thhuthuduhu

   So 

)sin()
2
2()

2
2(sec)1( 0

2
4 tthhI ΩΩπΩπ−Ωπ=  (34) 

To synthesize the derived results, we obtain 

uutK

tKthhh
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uutKM

e

e

e

6
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3
2)cos()sin(2

)sin()]cos(2)
2
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2
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2
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2
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6
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3
2)sin(2

100
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0
2

3100
0

−−Ωδπ

±Ωδπ±ΩπΩπΩ−π

=ΩΩπΩπΩ−π

+−−δ+Ωπ±=±

(35) 
In Equation（35）, set 













+=

δπ±=λ

δπ±ΩπΩπΩ−π=λ

uua

K

Kthhh

e

e

6
22

3
2

)sin(2

)cos(2)
2
2()

2
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1

02

0
2

1

(36) 
When 21,λλ  is not zero at the same time, set 

again 

2
2

2
1

2
02

2
2
1

1
0 )sin(,)cos(

λ+λ

λ
=θ

λ+λ

λ
=θ   (37) 

Get 

])[sin()(
2
2

2
1

00
2
2

2
10

λ+λ
−θ+Ωλ+λ=±

attM
 

(38) 
When 

2
2

2
1 λλ +<a  

exist 00 =t  to satisfy 0)( 0 =±
± tM , and 

0)cos()( 00
2
2

2
10

' ≠+Ω+Ω=± θλλ ttM ,So )( 0tM ±  
has simple repeated root zero point, therefore 
Smale  horsehoe and chaos happen.[61~63].For 
which we have the following conclusion: 

Theorem 3  When 1λ  and 2λ  are not zero at the 
same time, and 2

2
2
1 λλ +<a , then equation (28) 

exists Smale  horsehoe and  appears chaotic 
phenomenon; when 1λ  and 2λ  are zero at the same 
time or 2

2
2
1 λλ +>a , then according to all 0t , 

0)( 0 ≠tM , so there is no chaos. 
 

 

5 Ideogenous robit and chaos of 
system 
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To make Equation (1) anamorphosis 
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45230311
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(39) 
Considering initial stability height is negative, 

also set 

1
. 0 −=
∆+ II

GMD , 13 =
∆+ II

k  

Other coefficients using small parameterε , 
We obtain 

( )0

5
5

3
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3
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 (40) 

Then set 

xyx == ,ϕ   
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3
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(41) 
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TyxX ),(=  

TxxyXf ],[)( 3−=  

T
e xKthxyuyutKtXg ])cos()sin(,0[),( 5

5
3

310 −Ω−−−δ+Ω=
   Get  

),()( tXgXfX ε+=               (42) 
According to 0=ε , Equation (41) is 

Hamilton  system, whose Hamilton  magnitude is 
422

4
1

2
1

2
1),( xxyyxH +−=

 
Characteristic equation of linear approximately 

system is 012 =−λ , characteristic root is 12,1 ±=λ , 
so )0,0(   is saddle point and also has symmetric 
ineogenous robit 

TT
i tthththtytxtq )]()(sec2),(sec2[)](),([)( 000 −±== ±±  

(43) 
On the basis of equation (43), 
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Therefore, ikovMe ln  function in Equation (41) 
is 

55433211
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On the basis of Residue Theorem, we get 
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532 ,, III  of equation (44) can be gained by 
applying odevity of function and substitution 
method of integration 
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According to equation (38), we have 
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To synthesize the derived results, we obtain 
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(45) 
In Equation (45), set 
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When 21,uu  are not zero at the same time, set 
again 
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We get 
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When 2
2

2
1 uub +< , 

exist 00 =t  to satisfy 0)( 0 =±
± tM , 

And 

0)cos()( 00
2
2

2
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' ≠+Ω+Ω=± θtuutM , so )( 0tM ±  
has simple repeated root zero point, therefore 
Smale  horsehoe and chaos happen. For which we 
get the following conclusion: 

Theorem 4  When 21,uu  are not zero at the 

same time, and 2
2

2
1 uub +< ,then Equation (40) 

exists Smale  horsehoe and appears chaotic 
phenomenon; when 21,uu  are zero at the same time 

or 2
2

2
1 uub +> , then according to all 0t , 

0)( 0 ≠tM , so there is no chaos. 
 
 
6   Conclusions 
This article applying Poincaré Theorem of plan 
periodic system and ikovMe ln  function, obtains 
the following achievements for ship parametric-
highly excitation rolling dynamics system: 
(1) Proved the system has harmonic solution 

bifurcation and gained approximately harmonic 
solution 

(2) Proved the system exists sub- harmonic 
solution bifurcation and gained corresponding 
approximately sub- harmonic solution. 

(3) Founded ideogenous robit and heteroxnous 
robit of the system, Proved the system would 
bring out chaotic motion under Smale  
horsehoe. 
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