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Abstract: - Chaotic and periodic motion of ship parametrical- highly excitation rolling dynamics system is
researched by qualitative analysis method. Firstly, approximately harmonic solution is gained by researching
the system model’s harmonic solution bifurcation with the theorem of Poincaré. Secondly, approximately sub-
harmonic solution is gained by researching system’s sub-harmonic solution bifurcation. Lastly, chaotic motion
performance of dynamics system is talked by function.
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1 Introduction

Applying nonlinear dynamics theory, pitching
influences on rolling is expressed as parametric
excitation term. Blocki , Nayfeh, Dongyanqiu,
Tangyougang have researched the ship stability and
dynamic behaviour in longitudinal waves according
to parametric resonance and main parametric
resonance[1-5].Literature [6,7] has respectively
researched the ship capsizing in rolling waves and
the wide range rolling motion. But up to now, the
ship’s dynamic characteristic  suffered from
parametric excitation and forced rolling excitation,
is researched scarcely. According to parametrical-
highly excitation nonlinear rolling dynamics system,
Literature [8] sets up the model of differential
equation. And literature [9] gets second order
approximately solution of the system model, and
also discusses the phenomenon of 1/2 meta
harmonic resonance of system and receives
condition of rolling losing stability. This article on
the basis of the system model of ship parametrical-
highly excitation nonlinear dynamic which is
founded in literature [8], applying qualitative
analysis method, researches harmonic solution
bifurcation and sub- harmonic solution bifurcation
of ship parametrical-highly excitation nonlinear
dynamic system. That is periodic motion
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performance of system. Finally, applying function,
chaotic motion of dynamics system is talked about.

The balance of the paper is organized as follows.
Harmonic solution bifurcation of system is stated in
Section 2. Sub-harmonic sulution bifurcation of
system is described in Section 3. Heteroxenous
robit and chaos of system is given in Section 4.
Ideogenous robit and chaos of system is presented in
Section 5. Finally, concluding remarks are drawn
in Section 6.

2 Harmonic Solution Bifurcation of
System
Differential equation model of ship parametrical-
highly excitation nonlinear dynamic system [8] is
~N 2 4
(I + Al + D+ Dyg* + f&i’;ﬂs‘ggﬁ” +ksp
= E,sin(Qt +5,)
1)
where, ¢ is rolling angel, | is rolling rotor
inertia, p (i=13) is nonlinear damping coefficient,
D is displacement, Gy, is initial stability height,
E, sin(Qt +5,) Is regular wave forced rolling moment,

Issue 12, Volume 7, December 2008



WSEAS TRANSACTIONS on SYSTEMS

h is parametric excitation amplitude, Q is
interference frequency.
In equation (1), set
o7 = D "GM,
I +Al
Other coefficients calling small parameter ¢ ,

then we hawe

$+ 0@ +eu,p+eusp’ +e[a,0° +agp’ +hcos(Qt)]e =
eK, sin(Qt +3,)
o . 2
To simplify calculation, set
Q=0
Then equation (2) will be

O+ 0°Q+eU,(+ely0° +e[a,0” +a,0" +hcos(ot)]e =
eK, sin(ot +9,) 3)
Setu=¢, U=
We obtain

14

u=v

v =—o’u+¢K, sin(ot +38,)—
uv—ugv® —agu® —

asu’ —hcos(wt)

(4)

to  vander Pol

To make equation
transformation, we reach

(4)

{u = xsin(t)+ y cos(wt )
v =o(xcos(wt) - ysin(ot))

Then derivation to both sides of equation (5), we
have

®)

U = xsin(owt)+ y cos(ot) + v
v = w(xcos(ot) - ysin(ot) — wmu) ©)
To put equation (5) and equation (6) into

equation (3) and arrange to

% = Z[K,sin(at +8,)-uy - uy® - au® - au® - h cos(atu]
@

cos(at)

y = —g[Kesin(wt +8,)- Uy —u® —au® —au® - hlcos(a)t)u}

sin(a)t)
o . ()
To simplify calculation, set
X=rcos6, y=rsin®
Then we have
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{u = x cos(mt ) + ysin(wt)=r cos(wt — 0)
v = o(x cos(wt) — ysin(wt))=—rsin(wt — 0)
(8)

To put equation (8) into equation (7), we
obtain

% = = cos(wt K, sin(t + 8, )+ uor sin(ot —0)+
()]

uzo°r3sin®(ot —0)-a,r?sin®(ot —0)-
agr® cos®(wt —0)— h,r cos(wt — 6)]

y = —Zsin(ot)[K, sin(ot + 8, )+ u,orsin(ot —0) +
()

uz0°r?sin®(ot —0)-a,r®sin®(ot - 0) -

a;r° cos®(wt — 0)— h,r cos(wt — 0)]

9)
By calculating, we obtain average equation of
equation (9)

xzjKe sing, —ulmx+jungrzx—jagrzy—Zasr“y}
y:_j}(e c0s3, +u1my+2u3w3r2y—ja3r2x—2a5r“x}

(10)
r’=x*+y?
Among them "~ Y" we have
F(X, y,O) = 2|:Ke SIn 50 - Ula)x + ZUSG)erX _ Zaery _ 8a5r4y:|
=0
G(x,y,0) = —;[Ke COS &, + Uy + %ugwsrzy _ %aSrzx B 2a5r4x}

=0
That is

3 3 5 .
(ulm—4u3m3r2jx+(4a3r2 +8a5r4jy: K,sing,

3 5 3
(Ara3r2 +8a5r4jx—(u1m+4u3oa3r2jy: K, cosd,

(11)
To arrange equation (11) to
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. 3 3 5
Ke_sm 80[u1w+4u3m3rzﬂ—cos€>o(4a3r2 +8a5r4j

2
(ilzulz ——(x)6u32r4 —[aBrz +a5r4)

[ 3 (3 5
Ke_cosso(ulm—4u3m3r2ﬂ—sm 60(4a3r2 +8a5r4j

9 3 5 2
2,2 6, 2,4 2 4
ouU ——ouU, I —|—aln +—a.r
! 16 : (4 3 8 ® j

(12)
So that r satisfies

2
9 3 5 Y
r’l ’u’ - —ofu.’r* - Zar?+=ar*
I:w i 160) 3 4a3 g%
2

3 9
=K, 0%, - Ew4u3u1r2.cos 25, + Ea)eufr“

. 3 5 3 5
—2sin28,.0u.| —a,r’ +=ar’ |+| ~a.r* +=ar’
ow1(4 3 g% ) (433 g% j

(13)
And
Zz:;{— u1w+%u3m3(r2 +2x2)—2a3xy—2a5xyr2}
Z';:;{—jas(rz +2y2)+§u3m3xy—ga5(r4 +4y2r2)}
i:—ﬂ—j%(rz +2x2)+§u30)3xy—ga5(r4 +4x2r2)]
?j:—ﬂulm+ju3w3(rz +2y2)—§a3xy—2a5xyr2}

(14)
Therefore, according to literature [10], if only
Jacobi determinant

_a(F.0) _(G_F@_a_@)
©oaxy)| »
is not equal to zero, equation (9) must exist

harmonic solution. And constant X and ¥ \which

defined by equation (12) and equation (13) ,
can be considered approximately harmonic solution

of equation (12) (if only |8| sufficient small).So
that , u=rcos(wt—@) is approximately harmonic
solution of equation (17) .Next, we will prove
equation (4) definite ly existing harmonic solution by
example.

Example 1 in  equation (4), set

Ke :1,80 :g’mul :1]%033% :1,%613 :1, §a5 =1
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Then according to equation (12), we have

1+r?
X = .
l—r“—(r2 +r4)
r2+rt
y=-

2
1-rt (12 + 1%
And r? = x* + y* must also satisfy

rzb—r4 —(r2 +r“)z]2 =(1+ r2)2 +(r2 +r“)2

That is

rzh—r4 —(r2 + r“)z]2 —(1+ rz)2 —(r2 +r“)2 =0 (16)
Set
f(r)= rzb—r4 —(r2 + r“)z]2 —(1+ r2f -2+ r“)2
Clearly, ¢(r) is continued, and
f(0)=-1<0,f(1)=8>0
According to Intermediate Value Theorem, exist
r, € (0,1) to satisfy

f(r,)= rozh— r)' —(ro2 + ro“)z]Z —(1+ roz)2 —(ro2 + r04)2 =0
That is, exist r, < (0,1) to make equation (12) and

equation (13) be founded. To calculate Jacobi
Determinant, can make

(15)

« =y o
0 yO '\/E
And according to equation (14)
We obtain
oF 1 2 4
—=—\-1+3r," +2r,
OX 2( ° 0)
a—|:=—§r02(1+r02)
Joy 2
oG 3 2
—=—r, 1+
ox 2° ( ? )
G _ a3y 2r)
oy 2
Jacobi Determinant is
oF oF
ox 0oy 1 6 8
JO:@G G :Z(1+6r0 +9r, )¢o
ox oy _

Xo—‘)’():%
(17)
Because j, »0, equation (14) exists harmonic

solution, that is harmonic solution bifurcation. To
make a comprehensive survey, we obtain the
following theorem
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Theorem 1 Equation (4) must exist harmonic
solution, and  corresponding  approximately
harmonic solution is

u=rcos(wt —8)

Where,

6 = arctan Y

X
I' is defined by equation (12) and equation (13)

3 Sub-harmonic Solution Bifurcation
of System

Leading 7=t to make equation (1) to be
dimensionless, where, Time is still expressed to be
h . rolling angle is still expressed to be ¢,

frequency Q s still expressed to be Q. Leading
small parameter ¢, rewrite equation (1) to be

@+ @+ e+ ely0° + e[a,p’ + a0’ +hcos(Qt)]p =
E, sin(Qt +9,)

(18)

Where

D U. - D, wz_DGMo _ k,
1 1 3 Yo T A3 1

2(1 +Al) I +Al | +Al I +Al

ks h U

a, = H=—2"u="2u,=U.x0
N EN L+Al" w0 T

Now discussing equation (18) exists sub-
harmonic solution. Not losing generality, To
simplify calculation, can set

0=2,E =16,=0

Then we have

p+o=sin2t- s(ul('p +U,0° +2,0° +a,0° +h, s 2t.<p)

(19)
First of all, when ¢=0, Equation (19) has
harmonic solution %(t) = —%cos 2t, set
X =0=0g(t) 9, =0—(t)
According to Equation (19), we have
X =%

3 5
X, ==X~ {a{x1 —;cos 2tj + as[x1 —écos 2tj +h, cos2t-

(xl —;cos 2t)+u1(x2 +2sin 2t)+ u3(x2 +4sin 2t)3]
(20)
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Whene¢ =0, Equation (20) has first integr
1
H(x,, x2)=§(x12 + xzz)
Corresponding closed locus is

L, : x=q(t,h)=(\/ﬁsint,\/ﬁcost)T, h>0

On the basis of
T(h)=2n, Q(h)=——=1

We have

G(@,h):q(%,hj:q(@,h) (21)
And

5

3
g(t,x){o,—a{xl—%cosm] —as[xl—%cos?[] —h, cos2t-

(xl —%cos 2t) - ul(x2 +Zsin 2t)+ ug(x2 +2sin 2t)3]r

(22)

According to Equation (4) . (20) and

(22) ,we have
alt+1t,h)g(t,qlt +t,,h)) =
[Q(h)g(t,alt +t,,h) A 6, (t +t,h)/ F(alt +t,h)) A

q,(t+t,,h)= %sin(t +t0)a3[\/ﬁsin(t +1,)- écos(Zt)j3 +a,
(\/ﬁsin(t +to)—;cos(2t)j5 + hl(\/ﬁsin(t +to)—%cos(2t))cos 2t

+ ul[\/ﬁcos(t +1,)+ gsin(Zt)j + us[\/ﬁcos(t +1,)+ gsin(ZI)js}

Meanwhile, we easily obtain

DH(q(t+t,,h))a(t, gt +1,.h)) = {— as(\/ﬁ sin(t+1,)- ;coS(zt)T ¥
a{@ sinft +1,)- gcos(Zt)j5 + h{\/ﬁ sinft +1,)- icos(Zt)]cosZt

4 ul(\/ﬁ cosft +1,)+ ésin(Zt)j ¥ u{\% cosft +1,)+ gsin(Zt)ﬂ

According to period of g T =1, Q(h,)=1, we
have

m 2r 2
== _9_Z
k  Qh, )T 1
That is

m=2k=1

Therefore, we obtain second order harmonic
Melnikov  function of Equation (20) is
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M(t,.h)=[ " DH(q(t +t,,h))a(t, alt +t,, h))dt

(23)
And

N(t,, h)=j02”a(t +1t,,h)g(t, gt +t,, h))dt
(24)
After calculating, we gain
M (t,,h)= 2(2 - nja3h cost, + i7zash .
4 12

(5hcost, —cos 2t, )+ 2u,zhsin 2t, + %ﬂhl

1 1
N(to,h):%a{g+gh2j+a57zh2 :

(iﬁ+%ﬁh+%ﬁhzj—%ml cos 2t,

216
(25)

According to literature [11], if existing

h,€J, t, €(0.27) to satisfy

o(M,N)
d(t,,h)

Mt hy )= N, by )=0, det

(to* o )

Equation (19) has second order harmonic
solution when sufficient small £ > 0 is considered.

Next, we will prove Equation (19) definitely exist
second order harmonic solution by example 2.

Example 2 In Equation (25) , set
hy =1 t=0 g set Mlts"hs)=N(t,",hy)=0
Then we have

3 5 1
Z(Z— TCJaG +§asﬂ: = —gﬂihl

za{;gjmaﬂ[iﬂﬁ)zgnhl

2 216 9 3
(26)

For certain h, , Equation (26) is linear equation

group about variable a,,a; .And whose coefficient

determinant is clearly unequal to zero. To set it’s
solution to be

a; = a3(h1)’ a = a5(h1)’
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that is, for certain h, if only

a; = aS(hl)’ as :aS(hl),

*

Then we must have M (to*, ho)z N(tO ,ho)z 0

When

We have

a(M,N) 365 5

det ' =U,| V2a, 7 +—~27+—|#0
Olto:h) [y, {f 7 108" 6)

So that, Equation (22) exists second order
sub-harmonic solution bifurcation.
To make a comprehensive survey, we obtain the
following theorem.
Theorem 2 Equation (23) must exist second
order sub-harmonic solution and corresponding
approximately harmonic solution is

X(t) = q(t+1;,hy ) =[,/2h, sin(t +1,),/2h, cos(t +t,)]"
Where t",h,t',h, satis v

o(M,N)

Ne)= NG )=0, - det e

M (t,

(to" o)

4 Heteroxenous Robit and Chaos of
System

To make Equation (1) to be dimensionless, we
have

@+ lp+ K +ug+uep’ +

(27)
K.p* + H cos(Qt)p = K_ sin(Qt + 5,)
Where
U, - D, U, - D, ’%Z:DGMO’ - K
2(1 +Al) I +Al I +Al I +Al

K o b E

TR Al  TALE 1Al
In Equation (27) , set
ol =1K, =-1

Other coefficients calling small parameter € |
then Equation (27) rewrite to be
O+0—¢° +e(U,+Uyp° + Kyo' +H cos(Qt)p) =

eK, sin(Qt +§,)
(28)

Set

X=0,y=X

Then according to Equation (28) , we have
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X =

y = zx +x° + (K, sin(Qt +6,)—u,y— (29)
u,y® — hxcos(Qt) — K x*)
To rewrite Equation (29) as matrix

X = f(X)+eg(X,t) (30)
Where
X = (Xv y)T ’ f (X) = (y,—X+ X3)T )
g(X,t) =[0,K, sin(Qt +8,) -u,y —u,y* - hxcos(Qt) - K. x°]’

When ¢=0, Equation (30) is Hamilton
system, whose Hamilton magnitude §

H(x,y) = —y +;x ix“ (31)
Characteristic equatlon of linear approximately

system is 2* +1=0, Characteristic root is 7, = +i,s0
that ,(0,0)is the center, and also has two singular
point (+1,0). Characteristic equation is

0-A 1
—1+3x> 0-X
W2 =20, =142

Therefore (+1,0) are two saddle points and two
heteroxenous robits are

=0

,J_r—sech

G (1) =D 0, y: O =[2th(=-

according to Equation (32) , we have
f (a7 () =[y? @), —x2 (@) + (X2 (t)°]
g (qg (t),t + to) = [0, Ke Sin(Q(t + to) + 50) - u1yg (t)
— Uy (Y2(1))° — hxC(t) cos(Q(t + 1)) — Ks (< (1)
f(a7 ()~ g(a’ (1), t+1t,) =[K, sin(Qt+1t,) + ;)
—u, Y2 (1) —ug (y2 (1)° — hxZ (t) cos(Q(t +t,))
~ Ky (2 () 1y2 (1)
So that, MeInikov function of Equation (30) is

\f V2 \f
2!

(32)

MI(t) =] Ha' (1) A g(g () t+t,)dt =

- —00

[T, sin(@t+ 1) + 8,) -,y () - u (Y2 (1))° -

hx (t) cos(Q(t +1,)) — K (] (1))° y2 (1)] =
Kl =ul, —u,l, —hl, =K, I,
(33)
On the basis of Residue Theorem

I j: yS (t) cos(Qt)dt = ++/27 cse h(%ﬂﬂ)
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So that
=] Y20)sin(@t +t;) + &,

= '[7 (sin(Qt) cos(Qt, + &) +cos(Q)sin(Q, +5,)) ys (t)dt
=sin(Qt, +5,) j cos(Qt)y° (t)dt

=+2n csch(‘fgz;z)sin(gt0 +5,)

l,,15,1; in Equation (30) can be gained by

applying odevity of function and variable
substitution method of integration.
oo 1 e V2
l, = o(t))’dt ==| sech’—tdt
o= [ (i) dt=—f 5

= QJ‘M sec h*udu = ﬁrw(l—chU)dthu
2 1 2 -

2 1
=2
3

I, = jf:(yg (1)*dt = %jf:sec hagtdt
= %Ifsech%du

= %J’f:a— 3thu + 3th?u — th®u)dthu
_~2

[oewy yomdt

. ’\/E +® . 5 ’\/E 2 ’\/E
_7jiwth (7t)sech (Tt)dt

=0

Calculation of 1, in Equation ( 33) is quite

complicated. Firstly, considering odevity of function,
we hawe

I -j 2 (1) y2 (t)cos(Q(t+1,))dt =
'[ij (t)y2(t)(cosQ(t)cos (€, )-sinQ(t)sin (O, )t
=—sin(Qt0).[7w X (t)y: (t)sinQ(t)dt =

—gsin (Qto).[j: X (t)y: (t)sinQ(t)sech? [gt]th [@tjdt

=-sin (Qto)_[j:sin(ﬁfzu)sec h? (u)th(u)du
Calculation of

J'j:sin(\/EQu) sech?(u)th(u)du also need apply

integration
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Residue Theorem which is belongs to theory of
functions of a complex variable.

b

2r w2

ReZ
Fig.1 The closed curvel computed by Integral

According to the closed curve L which is made
up of by line AB,BC,CD and DA in Fig.1,
function of the complex

variable  sin(~/2Qz)sech?(z)th(z) has third order
pole (0,7i/2) in L , residue is

2

i(Q2 —1Dsh(—nQ) ] ]
2 .On the basis of Residue

V2

§sin(ﬁQZ)sec h?ZthzdZ = 2ri(i(Q? —l)sh(TQn))

Theorem

Set
R—w
We get
(L+ch(v22) [ sin(v/2Qu)sech?uthudu =
27(1- Qz)sh(%nQ)
That is
jjwsin(ﬁQu)sec huthudu = n(l—Qz)sech(\zE nQ)th(\f Q)

So

V2 A2

|, =n(Q* -1)sech( —nQ th( —nQ)sm(Qt ) (34)

To synthesize the derlved results we obtain
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MY = +/21K, sin(Qt, +3,) -E\Eu1 -@u3

1(1-Q?)hsech( £nQ th £nQ)sm(Qt )=
[n(1-Q%)hsech( £nQ th £7rQ +an cos(8,)1sin(x,) £
an sin(3,) cos(Qt;) «ful—[u

(35)

In Equation (35) , set

V2 A2

A, = n(l-Q%)hsech( —nQ th(—ng)iﬁnKe c0s(5, )
kz_ianesm (9]

2 V2
=—4/2U0, +—U
3‘F1 6

(36)
When 4,4, is not zero at the same time, set
again

A . A
cos(0,) = ——=—, sin(0,) = —2— (37)
o R Y
Get

M, (t,) = A2 + A2 [sin(Qt, +6,) — ]

a
AL +2G

(38)
When

la| <y 25 + 25

exist t,=0 to satisfy M (tf)=0 , and
M. (t,) = Qy A2 + 22 cos(Qt, +6,) =0 S0 M_(t,)
has simple repeated root zero point, therefore

Smale horsehoe and chaos happen.[61~63].For
which we have the following conclusion:

Theorem 3 When 4, and A, are not zero at the
same time, and 8] < [+, , then equation (28)

exists Smale horsehoe and  appears chaotic
phenomenon; when 4, and A, are zero at the same

time or o> JZ+ 22 then according to all t,
M (t,) = 0, SO there is no chaos.

5 Ideogenous robit and chaos of

system
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To make Equation (1) anamorphosis
D, . D .3{D.GMO+ Kk, k.

D+ + + +
¢ I+AI¢ I+AI¢ I +Al I+Al(p I+AI¢

h E
Qt)|-p=
+ Al COS( )} ? I+

OAI sin(Qt +6,)

(39)
Considering initial stability height is negative,
also set
DGM, _ , K

I+Al  1+Al
Other coefficients using small parameter ¢,

We obtain

P—+0° +eup+Uusp® +hocos(Qt +a,¢°)] =

eK, sin(Qt +3,) (40)
Then set
X=¢,y=X
K=y
J=x-X* +e(K, sin(Qt +8,)-u,y-u,y* ~hxcos(Qt) - a,x°)
(41)
Set
X =y

F(X) =Ly, x=x°T"

g(X,t) =[0,K,sin(Qt +8,) -u,y - u,y* - hxcos(Qt) - K. x°'
Get

X = f(X)+eg(X,t) (42)
According to ¢=0 , Equation (41) s
Hamilton system, whose Hamilton magnitude is

1, 1., 1,
HX,y) ==y  ——X"+—X
y) =2y —ox +7

Characteristic equation of linear approximate ly
system is 2? —~1=0, characteristic root is 4 , =+1,

so (0,0) is saddle point and also has symmetric
ineogenous robit

A’ (®) =[x @), Y2 O] = #[v/2 sech(t) —/2 sech(®)th(®)]"

(43)
On the basis of equation (43),
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(a2 ) =Ly (©),—x2 @)+ (x2@)°T
g(al (1), t+15) = [0, K, Sin(Qt +1,) + &) — Y2 (1) -
Uy (Y2 (1) — hx (£) cos(Qt +1,)) — & (X2 (0)°T
F(07(0) A 9007 (0), + 1) = [K, sin(Q(t +1) + ) — U, Y2 (1) -
U5 (y2 (1))° P (£) cos(Q(t +1)) — 3 (2 (1) T2 (1)
Therefore, MeInikov function in Equation (41)

M2 =10 0) A 9(a .t +t)dt =

—00

[T sin(@(t+1) + 8) ~uyy S () - us (2 0)° -
] (€ cos(t +1,) - a5 (1 (0)° 2 ()] =
K1, —u,l, —u,l, ~hl, -,
(44)

On the basis of Residue Theorem, we get

[ sin(Qt) sech(t)th(t)dt = QO csc h(g Q)

So that
L= Y msin@(t+

= j B (sin(Qt) cos(Q, + ) +cos(Qt)sin(Q, +d,))yS (t)dt

t,) +0,)dt

= 20050, + ;)| f:sin(gt)sec h(t)th(t)ct

- 1210 csch(% Q)cos(Q, + )

l,,15,1; of equation (44) can be gained by

applying odeV|ty of function and substitution
method of integration

> = (y2()?dt = 2[ “sech’tthh2tdt

— zrwthztdtht _4
oo 3

= [(y2(t))*dt = 4 " sec h*tth*tdt

16
_4I th*t(1— th%t)dtht = =

= j_w (X°(t))°y°(t)dt =0 j_wth(t) sec h® (t)dt

=0
According to equation (38), we have
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=] X202 () cos(t +t, )t

= J jxﬁ () yg (t)(cos(Qt) cos(Qt, ) —sin(€at) sin(Qt,, ))dt

=sin(Qt,)| sech?tth(t)sin(Qt)dt

2

= 1( —%) sech(Q)th(Q)sin(Qt, )

To synthesize the derived results, we obtain

16

T 4
MO = +/27K, csc(E Q) cos(Q, + 5,) — 345

U, +

2

7[(% —Dhsech(zQ)th(72) sin(Qt,)

= J_r«/izzKE csc(% Q) cos(d,) cos(Qt,)

2

+ [ﬂ(% - Dhsech(zO)th(z0) T V27K, cse(s )sin(a,)]

sin(Qt,) — gul _16

u
35 °

(45)
In Equation (45), set

u, = i\/EﬂKe csc(%Q) cos(o,)

u, = 7[(022 —-hsech(zQ)th(#Q2) ¥ \/ZzKe csc(% Q)sin(s,)

4 16
b=—u +—u,
3" 35
When u,,u, are not zero at the same time, set

again

i u, u,
sinal, = ——=——, COSQ, = ———2—
Ju? +u? Ju? +u’l
(46)

We get

: b
M. (t) = u; +u; [sin(Qt; + o) ~—=—=]
Ju? +u?

(47)

When [o|<Ju’ +u; ,

exist t, =0 to satisfy M, (t¥) =0,

And
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M., (t,) = Qy/u +uZ cos(Qt, +6,) 0,50 M_(t,)
has simple repeated root zero point, therefore

Smale horsehoe and chaos happen. For which we
get the following conclusion:

Theorem 4 When u,,u, are not zero at the

same time, and |b| <y/uf +u; then Equation (40)
exists Smale horsehoe and appears chaotic
phenomenon; when u,,u, are zero at the same time

or |b|>+/uf+u; , then according to all t,

M(t) # 0, so there is no chaos.

6 Conclusions
This article applying Poincaré Theorem of plan

periodic system and Melnikov fynction, obtains
the following achievements for ship parametric-
highly excitation rolling dynamics system:

(1) Proved the system has harmonic solution
bifurcation and gained approximately harmonic
solution

Proved the system exists sub- harmonic
solution bifurcation and gained corresponding
approximately sub- harmonic solution.
Founded ideogenous robit and heteroxnous
robit of the system, Proved the system would

bring out chaotic motion under Smale
horsehoe.

2
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