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Abstract: - Due to the tremendous growth in telecommunications network, a large variety of combinatorial 
optimization problems have aroused people's enormous interest. In those problems, the terminal allocation 
attracts people's attention most. In this paper, we focus on studying the capability of Simulated Annealing 
Arithmetic for optimizing the terminal allocation problems in communications network. They take advantage of 
the best characteristic of the two effective scheduling strategies Round Robin and Shortest Distance based on 
local information at the terminal in the communications network. The effectiveness of the Simulated Annealing 
Arithmetic, where some cooling strategies are used, is passed judgment by comparing system performance 
under different terminal allocation algorithms including Round Robin and Short Distance. Experimental results 
show that the proposed Simulated Annealing Arithmetic provides an optimized combinatorial solution, 
therefore increase the whole throughput of the communications network system. 
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1 Introduction 
A lot of research on computer communications 
networks has grown explosively. This is because it 
is widely used in all walks of life, and this trend is 
increasing [1] [2]. Terminal Allocation is an 
important problem in telecommunication networks. 
It can increase the whole throughput of the networks, 
and decrease the cost of connections between the 
terminal and concentrator. The target of the terminal 
allocation problem implies fixing the minimum cost 
links to construct a network between a specified set 
of terminals and concentrators. The sets of terminals 
and concentrators have determined positions and are 
known. The necessary condition of each terminal, 
and all concentrators and the cost of connection are 
all known and can change. For obtaining the 
minimized the total systemic cost, the problem can 
be described as each terminal assigned to a 
concentrator according to some principles for 
Performance Optimization. First of the principles is 
each terminal must be associated to the only one of 
the concentrators. The second one is the whole 
power of any concentrator associated must not 
outmatch itself. 

The above Terminal Allocation Problem can be 
described as follows, set: 

Terminals as Tlll ,..., 21  
Weights as Twww ,..., 21  
Concentrators as Crrr ,..., 21  
Capacities Cppp ,..., 21  

iw is the weight, or capacity requirements of 
terminal il . The weights and capacity are positive 
integers and iw is smaller or equal to 

},...,min{ 21 Cppp  for Ti ,...2,1 . The T terminals 
and the C concentrators are place on the Euclidean 
grid, i.e., il  has coordinates ),( 21 ii ll  and jr  has 

coordinates ),( 21 jj rr . 
A simple and feasible method for this problem is 

to allocate each terminal node to one node of the 
concentrators set, so as to no concentrator overstep 
its capacity. Put differently, a simple and feasible 
method for solving the terminal allocation problem 
is a vector 

Txxxx ...21


, 
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Where jxi   means that the ith terminus node 
is allocated to the concentrator j, and 

Cxi 1  

ix is an integer, for Ti ,...2,1  
In other words, whole terminus node must be 

allocated, and 




jRi ji pw  

for Cj ,...2,1 , where 
}|{ jxiR ij  . It means that the capacity of 

one concentrator is not overstep itself, and Rj 
represents the terminus node is allocated to one of 
the concentrators j. 

The target of this combinatorial optimization 
problem is: 





T

i
ijtxZ

1
cos)(                                               (1) 

2
22

2
11 )()(cos jijiij rlrlroundt  Ti 1 (2) 

Z, the result of the aggregate of the distance 
between terminus node i and concentrator j, denotes 
the total cost of allocating every terminus node to 
one concentrator according to the method 
represented by vector x. 

The Terminal Allocation problem is a NP-
complete combinatorial optimization problem. This 
means that we cannot ensure to obtain the best result 
in a feasible amount of time. The key of this 
problem is a motivation for using Simulated 
Annealing Arithmetic to obtain approximate, rather 
than exact, results.  

Table 1 The coordinates and weigh of the 
terminal nodes 

Terminal node Coordinates Weigh
1 54,28 5 
2 28,75 4 
3 84,44 4 
4 67,17 2 
5 90,41 3 
6 68,67 1 
7 24,79 3 
8 38,59 4 
9 27,86 5 
10 07,76 4 

Table 2 the capacity and coordinates of the 
concentrator site 

Concentrator Capacity Coordinates
1 12 19,76 
2 14 50,30 
3 13 23,79 

Table 1 illustrate a collection of ten terminal 
nodes and three concentrator sites, i.e., T =10 

terminal sites and C=3. Table 1 shows the weight 
requirement and the coordinates based on a 

1010 Euclidean grid for each terminal site. Table 
2 listed the coordinates for the concentrator sites and 
their capacities. The cost of allocating a terminal 
node to a concentrator site is the Euclidean distance 
between them rounded to the nearest integer. 

Figure 1 indicates an allocation of the first 9 
terminals node which cannot be extended to the 10th 
terminal node. That is because each of the 3 
concentrators site is not able to provide the capacity 
requirement of the10th terminal node. 

Fig. 1 Terminal nodes allocation to concentrator 
sites 

 
In figure 1, the whole cost is 233 including nine 

terminal nodes. For inclusion the 10th terminal node 
into the system, we can interchange the terminal 
node 4th and 8th, and allocate them to concentrator 
1th and 2th, the 1th concentrator have enough 
capacities to include 10th terminal node. 

The Simulated Annealing algorithm exploits the 
local information of the every terminal node and 
uses a random number generator in an attempt to 
select the suitable policy; different cooling policies 
are analyzed to search optimal results. Our 
investigation was developed using Matlab as 
simulation tool.  

The paper is structured as follows. In Section 2 
we present the related works on TA problem; in 
Section 3 we present the algorithm we proposed; in 
Section 4 we describe the experimental environment; 
while in Section 5, we present the simulation results; 
in Section 6 we report about the conclusions. 

 
 

2 Related Works 
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Some valuable efforts for the Terminal Allocation 
problem can be found in the literature.  

For choosing the optimal design of small scale 
communication networks, the Simulate Annealing 
was proposed in [3]. Two concepts of 
communication network reliability were considered 
by authors. The first one, the 's-t' reliability, is 
relevant for communication between a source 
station and a terminal station as in the case of a two 
way telephone communication. The second one, the 
overall reliability, is a measure of simultaneous 
connectedness among all stations in the network. An 
algorithm is presented which selects the optimal set 
of links that maximizes the overall reliability of the 
network subject to a cost restriction, given the 
allowable node-link incidences, the link costs and 
the link reliabilities. The algorithm employs a 
variation of the simulated annealing approach 
coupled with a hierarchical strategy to achieve the 
global optimum. For complex networks, the present 
algorithm is advantageous over the traditional 
heuristic procedures. The solutions of two 
representative example network optimization 
problems are presented to illustrate the present 
algorithm. The potential utilization of parallel 
computing strategies in the present algorithm is also 
identified. 

In [4], authors proposed Simulated Annealing 
Arithmetic to find solutions for packet switched 
communication networks. This paper presents an 
application of the simulated annealing heuristic to 
the problem of designing computer communication 
networks. This problem essentially consists in 
finding the least-cost network topologies that 
satisfies a given set of performance and reliability 
constraints. 

[12] describe an implementation of the Tabu 
search meta heuristic that effectively finds a low-
cost topology for a communications network to 
provide a centralized new service. Their results are 
compared to those of a greedy algorithm which 
applies corresponding decision rules, but without 
the guidance of the Tabu search framework. These 
problems are difficult computationally, representing 
integer programs that can involve as many as 10,000 
integer variables and 2000 constraints in practical 
applications. The Tabu search results approach 
succeeded in obtaining significant improvements 
over the greedy approach, yielding optimal solutions 
to problems small enough to allow independent 
verification of optimality status and, more generally, 
yielding both absolute and percentage cost 
improvements that did not deteriorate with 
increasing problem size 

A Tabu search procedure is developed to solve 
fibre optic communication network design problems 
with survivability constraints in [13]. Authors 
adopted Tabu Search, TS, to find a proper design of 
communications networks. Two systematic 
improving heuristics: delete-add and delete-link 
procedures are presented. The conditions for the 
candidate links to be added and deleted in the two 
procedures are examined by considering the feasible 
structures of the survivable network. A local 
improvement procedure is considered by combining 
the two heuristics for the downhill move in the 
search procedure. Computational results show that 
the proposed Tabu search outperforms the best 
known heuristic procedure in the literature. 

A Genetic Algorithm with a penalty function as 
an alternative method for solving the Terminal 
Allocation problem was proposed in [8]. Authors 
proposed and compared the results with the Greedy 
Algorithm. The task is to allocate terminals to 
concentrators in such a way that each terminal is 
assigned to only one concentrator and the aggregate 
capacity of all terminals assigned to any 
concentrator does not overload that concentrator. 
Under these two hard constraints, an assignment 
with the lowest possible cost is sought. The 
proposed cost is taken to be the distance between a 
terminal and a concentrator. 

Two different Genetic Algorithms based on 
Hopfield Neural Network were proposed and 
compared the results with the Genetic Algorithm in 
[9]. The proposed algorithms suit for situations in 
which the cost of a single assignment is not known 
in advance, and only the cost associated with 
feasible solutions can be calculated. Their approach 
involves a Hopfield neural network which manages 
the problem's constraints, whereas a GA searches 
for high quality solutions with the minimum 
possible cost. They show that our algorithm is able 
to achieve feasible solutions to the Terminal 
Allocation in instances where the cost of a single 
allocation in not known in advance, improving the 
results obtained by previous approaches. They also 
show the applicability of their approach to other 
problems related to the TA. 

In [10], authors proposed a Tabu search 
approach to solve the problem with non-standard 
cost functions. A greedy decoding approach is used 
to generate the initial solution and then an effective 
and unique search approach is proposed to produce 
the neighbourhood, which exchange one of the 
terminals in each concentrator to improve the 
quality of solution. Simulation results with the 
proposed TS approach are compared with those 
using genetic and greedy algorithms. Computer 
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simulations show that their approach achieves very 
good results in solving this problem. 

[11] presents an extension of the terminal 
assignment problem in the case that groups of 
terminals must be assigned together. They analyze 
this situation by means of an equivalent problem: 
the wedding banquet problem. Authors provide a 
description of the problem and its mathematical 
definition. They also describe an application of the 
WBP to mobile communications network design. 
Two hybrid meta heuristics algorithms for the WBP 
are presented in the literature. 

In [2], firstly, a novel chromosome 
representation scheme based on concentrators is 
proposed. This representation compares favorably 
against the existing terminal-based representation, 
which scales poorly for large problems. The results 
show that our evolutionary algorithms using the 
concentrator-based representation outperform 
significantly existing genetic algorithms using the 
terminal-based representation. Secondly, a number 
of new search operators used in their algorithms 
were also investigated empirically in order to 
evaluate their effectiveness for the terminal 
assignment problem. Finally, different combinations 
of evolutionary algorithms and local search are 
studied in this chapter. Both Lamarckian evolution 
and Baldwin effect have been examined in 
combining an evolutionary algorithm and local 
search. Their results show that hybrid algorithms 
perform better than either evolutionary algorithms 
or local search. However, there is no significant 
difference between Lamarckian-evolution-style 
combination and Baldwin-effect-style combination. 

In the new applications of Grid computing, some 
significative efforts were present in [14][15][16][17]. 
Authors proposed a new framework for knowledge 
discovery based on Grid Computing. Some similar 
NP-Complete problem appeared in the architecture. 
Authors proposed some novel solution based on 
rough set for solving the NP-Complete problem. 
Rough set theory can provide us a sound solution. 
 
 
3 Proposed Algorithms 
In this section, we first explorer some famous 
Terminal Allocation algorithms, for example Round 
Robin algorithms and Shortest Distance algorithms 
applied to all Terminal nodes and concentrator sites. 
The communication between terminal nodes and 
concentrator sites conform to a wrap circle rule 
where each terminal node has a fixed and single 
neighbour to transport to, such that the direction of 
the packet is flowing on a circle and the length to 

the next node decides the quantity of packets that 
may be sent. 
 
 
3.1 Round Robin 
Round Robin is a disinterested queuing algorithm 
[18]. Round Robin is one of the simplest terminal 
allocation algorithms for processes in a network 
system, which allocates time slices to each terminal 
node in equal portions and in order, processing all 
terminal nodes without early or late. Round Robin 
algorithm is both simple and easy to carry out. 
Round Robin algorithm can also be implemented for 
other scheduling problems, such as data packet 
scheduling in computer networks. 

After studying the Round Robin and Shortest 
Distance allocation algorithms, we discuss how to 
improve the performance using the freedom of each 
node to choose the best allocation strategies based 
on the distance information to the next node. 

The selection decision is made by a Simulated 
Annealing arithmetic which uses the local 
information of the terminal nodes and concentrator 
sites to select the best allocation strategies, different 
cooling policies are analyzed to find optimal results. 
Our study was developed using Matlab as 
simulation tool. 
 
 
3.2 Shortest Distance 
The allocation systems apply Shortest Distance 
algorithm to construct connections based on the 
weight(x) in terminal node and concentrator site. 
The allocation system running Shortest Distance 
picks up and transfers the data in terminals and 
concentrators with closest target. If the weight of 
queued terminal nodes in the nearest node is less 
than x, the concentrator search the next closest 
target and construct the rest connections. 
 
 
3.3 Some Concept on Simulated 
Annealing Arithmetic 
Kirkpatrick introduced Simulated Annealing in 
1983 [19], which is a stochastic single agent 
optimization algorithm. Simulated Annealing (SA) 
is a generic probabilistic meta-algorithm for the 
global optimization problem, namely locating a 
good approximation to the global minimum of a 
given function in a large search space. It is often 
used when the search space is discrete (e.g., all tours 
that visit a given set of cities). For certain problems, 
simulated annealing may be more effective than 
exhaustive enumeration - provided that the goal is 
merely to find an acceptably good solution in a 
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fixed amount of time, rather than the best possible 
solution. 

The name and inspiration come from annealing 
in metallurgy, a technique involving heating and 
controlled cooling of a material to increase the size 
of its crystals and reduce their defects. The heat 
causes the atoms to become unstuck from their 
initial positions (a local minimum of the internal 
energy) and wander randomly through states of 
higher energy; the slow cooling gives them more 
chances of finding configurations with lower 
internal energy than the initial one. 

By analogy with this physical process, each step 
of the SA algorithm replaces the Round Robin 
solution by a random "nearby" solution, chosen with 
a probability that depends on the difference between 
the Round Robin desponding function values and on 
a global parameter T (called the temperature), that is 
gradually decreased during the process. The 
dependency is such that the Round Robin solution 
changes almost randomly when T is large, but 
increasingly "downhill" as T goes to zero. The 
allowance for "uphill" moves saves the method from 
becoming stuck at local minima-which are the bane 
of greedier methods. 

In the simulated annealing (SA) method, each 
point s of the search space is analogous to a state of 
some physical system, and the function E(s) to be 
minimized is analogous to the internal energy of the 
system in that state. The goal is to bring the system, 
from an arbitrary initial state, to a state with the 
minimum possible energy. 

 
3.3.1 The Basic Iteration 
At each step, the SA heuristic considers some 
neighbour s' of the Round Robin state s, and 
probabilistically decides between moving the 
system to state s' or staying in state s. The 
probabilities are chosen so that the system 
ultimately tends to move to states of lower energy. 
Typically this step is repeated until the system 
reaches a state that is good enough for the 
application, or until a given computation budget has 
been exhausted. 
 
3.3.2 The Neighbours of a State 
The neighbours of each state (the candidate moves) 
are specified by the user, usually in an application-
specific way. For example, in the travelling 
salesman problem, each state is typically defined as 
a particular tour (a permutation of the cities to be 
visited); and one could define the neighbours of a 
tour as those tours that can be obtained from it by 
exchanging any pair of consecutive cities. 
 

3.3.3 Acceptance Probabilities 
The probability of making the transition from the 
Round Robin state s to a candidate new state s' is 
specified by an acceptance probability function 
P(e,e',T), that depends on the energies e = E(s) and 
e' = E(s') of the two states, and on a global time-
varying parameter T called the temperature. 

One essential requirement for the probability 
function P is that it must be nonzero when e' > e, 
meaning that the system may move to the new state 
even when it is worse (has a higher energy) than the 
Round Robin one. It is this feature that prevents the 
method from becoming stuck in a local minimum-a 
state that is worse than the global minimum, yet 
better than any of its neighbours. 

On the other hand, when T goes to zero, the 
probability P(e,e',T) must tend to zero if e' > e, and 
to a positive value if e' < e. That way, for 
sufficiently small values of T, the system will 
increasingly favour moves that go "downhill" (to 
lower energy values), and avoid those that go 
"uphill". In particular, when T becomes 0, the 
procedure will reduce to the greedy algorithm-which 
makes the move only if it goes downhill. 

In the original description of SA, the probability 
P(e,e',T) was defined as 1 when e' < e - i.e., the 
procedure always moved downhill when it found a 
way to do so, Round Robin respective of the 
temperature. Many descriptions and 
implementations of SA still take this condition as 
part of the method's definition. However, this 
condition is not essential for the method to work, 
and one may argue that it is both counterproductive 
and contrary to its spirit. 

The P function is usually chosen so that the 
probability of accepting a move decreases when the 
difference e' - e increases—that is, small uphill 
moves are more likely than large ones. However, 
this requirement is not strictly necessary, provided 
that the above requirements are met. 

Given these properties, the evolution of the state 
s depends crucially on the temperature T. Roughly 
speaking, the evolution of s is sensitive to coarser 
energy variations when T is large, and to finer 
variations when T is small. 
 
3.3.4 The Annealing Allocation 
Another essential feature of the SA method is that 
the temperature is gradually reduced as the 
simulation proceeds. Initially, T is set to a high 
value (or infinity), and it is decreased at each step 
according to some annealing schedule-which may 
be specified by the user, but must end with T = 0 
towards the end of the allotted time budget. In this 
way, the system is expected to wander initially 
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towards a broad region of the search space 
containing good solutions, ignoring small features 
of the energy function; then drift towards low-
energy regions that become narrower and narrower; 
and finally move downhill according to the steepest 
descent heuristic. 
 
3.3.5 Selecting the Parameters 
In order to apply the SA method to a specific 
problem, one must specify the following parameters: 
the state space, the energy (goal) function E(), the 
candidate generator procedure neighbour(), the 
acceptance probability function P(), and the 
annealing schedule temp(). These choices can have a 
significant impact on the method's effectiveness. 
Unfortunately, there are no choices of these 
parameters that will be good for all problems, and 
there is no general way to find the best choices for a 
given problem. The following sections give some 
general guidelines. 
 
3.3.6 Diameter of the Search Graph 
Simulated annealing may be modelled as a random 
walk on a search graph, whose vertices are all 
possible states, and whose edges are the candidate 
moves. An essential requirement for the neighbour() 
function is that it must provide a sufficiently short 
path on this graph from the initial state to any state 
which may be the global optimum. (In other words, 
the diameter of the search graph must be small.) In 
the travelling salesman example above, for instance, 
the search space for n = 20 cities has n! = 
2432902008176640000 (2.5 quintillion) states; yet 
the neighbour generator function that swaps two 
consecutive cities can get from any state (tour) to 
any other state in n(n − 1) / 2 = 190 steps. 
 
3.3.7 Transition Probabilities 
For each edge (s,s') of the search graph, one defines 
a transition probability, which is the probability that 
the SA algorithm will move to state s' when its 
current state is s. This probability depends on the 
current temperature as specified by temp(), by the 
order in which the candidate moves are generated by 
the neighbour() function, and by the acceptance 
probability function P(). (Note that the transition 
probability is not simply P(e,e',T), because the 
candidates are tested serially.) 
 
3.3.8 Acceptance Probabilities 
The specification of neighbour(), P(), and temp() is 
partially redundant. In practice, it's common to use 
the same acceptance function P() for many 
problems, and adjust the other two functions 
according to the specific problem. 

In the formulation of the method by Kirkpatrick 
et al., the acceptance probability function P(e,e',T) 
was defined as 1 if e' < e, and exp((e−e')/T) 
otherwise. This formula was superficially justified 
by analogy with the transitions of a physical system; 
it corresponds to the Metropolis-Hastings algorithm, 
in the case where the proposal distribution of 
Metropolis-Hastings is symmetric. However, this 
acceptance probability is often used for simulated 
annealing even when the neighbour() function, 
which is analogous to the proposal distribution in 
Metropolis-Hastings, is not symmetric, or not 
probabilistic at all. As a result, the transition 
probabilities of the simulated annealing algorithm 
do not correspond to the transitions of the analogous 
physical system, and the long-term distribution of 
states at a constant temperature T need not bear any 
resemblance to the thermodynamic equilibrium 
distribution over states of that physical system, at 
any temperature. Nevertheless, most descriptions of 
SA assume the original acceptance function, which 
is probably hard-coded in many implementations of 
SA. 

 
3.3.9 Efficient Candidate Generation 
When choosing the candidate generator neighbour(), 
one must consider that after a few iterations of the 
SA algorithm, the current state is expected to have 
much lower energy than a random state. Therefore, 
as a general rule, one should skew the generator 
towards candidate moves where the energy of the 
destination state s' is likely to be similar to that of 
the current state. This heuristic (which is the main 
principle of the Metropolis-Hastings algorithm) 
tends to exclude "very good" candidate moves as 
well as "very bad" ones; however, the latter are 
usually much more common than the former, so the 
heuristic is generally quite effective. 

In the travelling salesman problem above, for 
example, swapping two consecutive cities in a low-
energy tour is expected to have a modest effect on 
its energy (length); whereas swapping two arbitrary 
cities is far more likely to increase its length than to 
decrease it. Thus, the consecutive-swap neighbour 
generator is expected to perform better than the 
arbitrary-swap one, even though the latter could 
provide a somewhat shorter path to the optimum 
(with n − 1 swaps, instead of n(n−1)/2). 

A more precise statement of the heuristic is that 
one should try first candidate states s' for which 
P(E(s),E(s'),T) is large. For the "standard" 
acceptance function P above, it means that E(s')-E(s) 
is on the order of T or less. Thus, in the travelling 
salesman example above, one could use a 
neighbour() function that swaps two random cities, 
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where the probability of choosing a city pair 
vanishes as their distance increases beyond T. 
 
3.3.10 Round Robin Avoidance 
When choosing the candidate generator neighbour() 
one must also try to reduce the number of "deep" 
local minima - states (or sets of connected states) 
that have much lower energy than all its 
neighbouring states. Such "closed catchment basins" 
of the energy function may trap the SA algorithm 
with high probability (roughly proportional to the 
number of states in the basin) and for a very long 
time. 

As a rule, it is impossible to design a candidate 
generator that will satisfy this goal and also 
prioritize candidates with similar energy. On the 
other hand, one can often vastly improve the 
efficiency of SA by relatively simple changes to the 
generator. In the travelling salesman problem, for 
instance, it is not hard to exhibit two tours A, B, 
with nearly equal lengths, such that (0) A is optimal, 
(1) every sequence of city-pair swaps that converts 
A to B goes through tours that are much longer than 
both, and (2) A can be transformed into B by 
flipping (reversing the order of) a set of consecutive 
cities. In this example, A and B lie in different "deep 
basins" if the generator performs only random pair-
swaps; but they will be in the same basin if the 
generator performs random segment-flips. 

 
3.3.11 Cooling Schedule 
The physical analogy that is used to justify SA 
assumes that the cooling rate is low enough for the 
probability distribution of the Round Robin state to 
be near thermodynamic equilibrium at all times. 
Unfortunately, the relaxation time-the time one must 
wait for the equilibrium to be restored after a change 
in temperature-strongly depends on the 
"topography" of the energy function and on the 
Round Robin temperature. In the SA algorithm, the 
relaxation time also depends on the candidate 
generator, in a very complicated way. Note that all 
these parameters are usually provided as black box 
functions to the SA algorithm. 

Therefore, in practice the ideal cooling rate 
cannot be determined beforehand, and should be 
empirically adjusted for each problem. The variant 
of SA known as thermodynamic simulated 
annealing tries to avoid this problem by dispensing 
with the cooling schedule, and instead automatically 
adjusting the temperature at each step based on the 
energy difference between the two states, according 
to the laws of thermodynamics. 

 
 

3.4 Our Proposed Simulated Annealing 
Arithmetic 

In our proposed Simulated Annealing arithmetic, the 
allocation system with an initial structure with 
energy E is assigned in the start state at an enough 
large temperature T0. A random digit is also 
assigned and the fluctuation in energy between the 
start and the conversion states is measured. If 
change reduce internal energy, the system 
probability accept this new situation, otherwise the 
system will make a variation with some random 
digit from the change of temperature and energy, it 
can be describe formally as follows: 

)()( kT
E

ewg


 , where 0|<g(w)<1                      (1) 
In the above expressions, w is a Gaussian 

random vector with probability distribution g(w). 
After each iteration k the temperature T(k) is 
decreased according to a cooling condition gived 
and the operation is repeated until the whole minima 
is obtained. 

The goal of this research is to interchange 
between Shortest Distance and Round Robin 
algorithms, so according to the weight between 
terminal nodes and concentrator site on each time 
piece, the quantity of the weight should be 
minimum. A Simulated Annealing algorithm is 
adopted to search the perfect switch condition so as 
to get the optimization results. 

For the considered question, the assembled 
distance or reference distance during the real time 
piece and the length of the transmission represent 
the situation and the energy of the system in that 
situation respectively. The process of the computed 
distance value to a new one depends on the energy 
of the system in the actual state and in the possible 
new state. The mutation is always made if the latter 
is smaller than the former, otherwise with a 
probability depending on the difference between 
energies as well as on the present temperature of the 
algorithm. 

The cooling schedule specifies the behaviour of 
the temperature and decreases it according to the 
time slot on the actual step of the simulation, 
therefore the probability of making a mutation to a 
worse state is higher at the beginning of the process 
and decreases till the point where only transitions 
leading to better energy reduction are allowed. 

The temperature schedules investigated include 
the Gaussian, Cauchy and Adapted Simulated 
Annealing cooling disciplines whose expressions for 
temperature and random number generators are 
shown in Table 3. 
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According to the value of the accumulated 
distance as reference and the value of the actual 
distance between nodes, the mobile node decides to 
implement a discipline in such a way that SHORT 
DISTANCE is used if the distance between nodes is 
less than the accumulated distance, otherwise the 
ROUND ROBIN scheduling algorithm will be 
applied. 

Table 3 Different Cooling Disciplines and 
Probability Distributions 

 
 
 
4 Experimental Environment 
 
 
4.1 Experimental Solution 
The solution includes terminal nodes waiting for 
connection message to other concentrator site based 
on wrap around method, that is, every node can send 
packets to its fixed next hop, so the packet flow is 
flowing as a circle, where every packet include a 
header message with target, original, and time stamp 
message and has a life cycle. The quantities of 
packets are sent to other nodes within a time piece 
rest with the length between nodes. 

Each terminal node has a buffer array, one 
buffer for each possible destination, and a routing 
table including the index for the terminal nodes, 
target, length in hops to reach the target and distance 
of buffer that the packets are using. According to the 
terminal allocation algorithm packets are got to 
together into a send buffer using first in first out, 
then send it to the next node and inserted in the 
proper buffer. If the maximum life cycle time is 
arrived, the packet will be thrown off. 

The memory capacity of the buffers is continued 
to get the action of the intelligent system trying to 
minimize the distance of buffer. 
4.2 Model Abstraction 

The problem is changed into an objective function 
computed as an algorithm with some nodes (M) and 
of hops (N) as input parameters and the aggregate 
length of the transmission system, the length 
between adjoining nodes, the routing table, medium 
matrix and buffer matrix of the system as outputs. 

The System Allocation Algorithm describes the 
objective function of the considered question. It 
starts and influences the M Subsystem Nodes (SN) 
and is in charge of creating both the Buffer Matrix 
(BM) of all terminal nodes and concentrator sites 
according to the value of M and N, and the Medium 
Matrix (MM) that describes the medium between 
each pair of nodes according to the wrap around 
technique. 

MM

S:1
D:2

MM

S:2
D:3

MM

S:3
D:4

MM

S:4
D:5

MM

S:P-1
D:P

MM

S:N
D:1

 
 
Fig. 1 System allocation Algorithm Representation.  
 

SN

 
 
Fig. 2. Subsystem Node and its subsystem 
 

Each terminal and concentrator nodes are 
represented by the Subsystem Node (Fig 2) which 
includes Subsystem Input, the Subsystem Buffer-SB 
and the Subsystem Allocation Algorithm-SAA. The 
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Subsystem input checks the packets addressed to the 
node removes them from the Medium Matrix and 
analyses its time stamp so as to compute the whole 
system capability of process and the packets thrown 
off. The Subsystem Buffer control the routing table 
and the Subsystem Allocation Algorithm apply 
Shortest Distance or Round Robin based on the 
output of the optimization algorithm. 
 
 
4.3 Performance measures 
For a certain experiment with fixed parameter of the 
situation, for example, the perimeter of the circle 
where the packets are sending to, the probability of 
packet creation and maximum number of packets 
that can be sent, one can get message on 
performance according to the outputs of the model 
by the following measures: 

 Thrown off: the packets that cannot get their 
target within their life cycle time. 

 Average length: Average size of every 
queue of a node per time piece. 

 Average throughput: Average number of 
packets received/time piece within their 
lift cycle time. 

 Delay: The time delay it takes to complete a 
packet from one node to its neighbor hop, 
an average value along a certain time 
domain is made taking into account every 
individual delay of each received packet. 

 
 
5 Simulation Results 
Average performance values are got after the 
experiment for four perimeters of the data flow 
circle (550m, 1100m, 1650m and 2200m) with 15 
mobile nodes, 5 hops as maximum distance of 
transmission between nodes, 20% probability of 
packet creation and a maximum transmission of 10 
packets/time piece (ts) in a time domain of 1000 ts. 

First of all, we study the performance of Round 
Robin or Shortest Distance as allocation strategies. 
Figures 3a, b show that Shortest Distance has a 
better average throughput than Round Robin but in 
terms of average length of buffer, Shortest Distance 
supplies better results only for perimeters under 
770m, this action is the major motivation for our 
proposal because, using the distance to the next hop 
as reference to decide which allocation strategy to 
choose, it is possible to optimize performance and 
minimize buffer size, see Fig 3b. 

In terms of delay, see Fig. 3c, Shortest Distance 
shows a low and almost constant behavior compared 
to Round Robin and Simulated Annealing, 
nevertheless, the investigated optimization 

algorithms provide better average values than 
Round Robin. Also the number of thrown off, see 
Fig. 3d, packets is less for Shortest Distance than for 
the other algorithms followed by Gaussian, it is 
remarkable to see the high value of thrown off 
packets by implementing Round Robin. 
Computation time, see Fig 3e, is less for Short 
Distance and Round Robin because there is no 
additional processing in order to improve 
performance. 

Analyzing the action of the different Simulated 
Annealing algorithms, shows to be faster than 
Cauchy and Gaussian as theory formulates [20]. In 
general terms, a better performance is obtained by 
carrying out Gaussian, especially the best average 
buffer length. For comparison reasons and in order 
to define whether a fair random choice between 
Short Distance or Round Robin would improve 
performance, the state is simulated in such a way 
that at every time piece each node randomly 
manages its buffers applying Short Distance or 
Round Robin giving 50% of probability for each 
option, in our case this algorithm is called”Random”. 

Although the”Random” selection provides a 
better average length of buffer than SHORT 
DISTANCE, the SA optimization algorithms result 
in better performance, as shown in figure 3. 

According to the simulation results, one can 
establish that increasing probability of packet 
creation as well as distance between nodes or 
mobility result in an increment of the queue length. 

 
 

6 Conclusion 
In this paper we study the classical terminal 
allocation algorithms Round Robin and Shortest 
Distance in communication networks and the 
performance optimization. Based on local 
information of the terminal nodes, concentrator sites 
and a reference given by the SA optimization 
algorithm, each node has the possibility to choose 
the proper scheduling discipline according to its 
environment. 

Simulation results show a strong relation 
between number of accepted mutations and 
performance improvement, also a balanced selection 
of the Round Robin or Shortest Distance allocation 
algorithm has a positive effect on average 
performance. Why the intelligent decision obtains 
better results compared to just a random switching 
between Round Robin and Shortest Distance lies in 
the local information of the node, specifically on its 
instantaneous buffer size and distance to its 
neighbor which, with the actual reference, are the 
inputs to the SA algorithms. Different SA 
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algorithms are investigated; each of them shows 
advantages which may be more or less important 
according to the requirements of the system 
application. SAA is faster in terms of computation 
time, whereas Gaussian provides the best 
performance in terms of throughput and buffer size 
for perimeters between 700 and 1.65km. For 
perimeters over 1.65km Cauchy provides a better 
throughput than the other SA algorithms. 
Nevertheless, compared to SD or RR this 
improvement is slight. In terms of buffer size, it is 
strongly affected by the length of frame or perimeter 
and the probability of packet creation. Previous 
investigation results are confirmed proving the lack 
of influence of the buffer size on throughput, 
nevertheless our simulation results do not 
corroborate the direct proportional relation between 
length of buffer and delay. 

 

 

 

 

 

 
 
Fig. 3 Average performance values applying Round 
Robin and Shortest Distance Allcation algorithms 
and the proposed optimization algorithms 
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