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Abstract: - This paper proposes a new partial discharge (PD) pattern recognition method base on the extension 
theory. First, five types of defect models are well-designed on the base of investigation of many power 
equipment failures. A commercial PD detector is used to measure the three-dimension (3D) PD patterns, then 
two fractal features (fractal dimension and lacunarity) and mean discharges of phase windows are extracted from 
the raw 3D PD patterns. Second, the matter-element models of the PD defect types are built according to the PD 
features derived from practical experimental results. The PD defect type can be directly identified by correlation 
degrees between the tested pattern and the matter-element models. To demonstrate the effectiveness of the 
proposed method, comparative studies using a multilayer neural network (MNN) are conducted on 200 sets of 
field-test PD patterns with rather encouraging results. 
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1   Introduction 
Partial discharge (PD) measurement has been widely 
application in insulation diagnosis for power 
equipment. It is an important tool for power 
apparatus, such as XLPE power cable [1], gas 
insulation switch and power transformers diagnosis. 
The main purpose of insulation diagnosis for power 
apparatus is to give system operators the information 
on dielectric deterioration degree of HV equipment. 
Using commercial PD detectors can measure the 
electrical signal of electrical or magnetic field variety 
in defect model, and an experienced expert can use 
the PD patterns to identify the defect types in the 
tested object. The main parameters of the 3D PD 
patterns are phase angle φ , discharge magnitude q, 
and the numbers of discharge n. 

Fractal has been very successfully used in 
description of naturally occurring phenomena and 
complex shape [2], [3], such as mountain ranges, 
coastlines, clouds, and so on, wherein traditional 
mathematical were found to be inadequate. PD also is 
a natural phenomenon occurring in electrical 
insulation systems, which invariably contain tiny 
defects and non-uniformities, and gives rise to a 
variety of complex shapes and surfaces, both in a 
physical sense as well as in the shape of 3D PD 
patterns acquired using digital PD detector. This 

complex nature of the PD pattern shapes and the 
ability of fractal geometry to model complex shapes, 
is the main reason which encouraged the authors to 
make an attempt to study its feasibility for PD pattern 
interpretation. 

Various pattern recognition techniques, including 
fuzzy clustering [4], [5], and neural network (NN) [6], 
[7], have been extensively used in PD recognition. 
The main advantage of a MNN can directly acquire 
experience from the training data. However, the 
training data must be sufficient to describe a status. 
Another limitation of the MNN approach is the 
inability to use linguistic describe output, because it 
is difficult to understand the content of network. To 
overcome the limitation of the MNN mentioned 
above, a new PD recognition method base on 
extension theory is proposed for classifing PD defect 
model in this paper. The extension theory was first 
proposed by Cai Wen to solve contradictions and 
incompatibility problems in 1983 [8]. Extension 
theory consists of matter-element model and 
extended set theory. It does not require particular 
learning processes and artificial parameters. To 
demonstrate the effectiveness of the extension 
recognition method, 200 sets of PD patterns are 
tested. The results show that the extension 
recognition method is suitable as a practical solution. 
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2   Outline of Extension Theory 
Extension theory concepts contain the 
matter-elements and extension sets. The main 
purpose of extension theory is to solve contradiction 
and incompatibility problems. The matter-element 
can easily represent the nature of matter. The 
extension set is the quantitative tool of extension 
theory. It can represent the correlation degree of the 
matter-element by designed correlation function. 
Some definitions of extension theory are introduced 
in the following [8]: 
 
2.1  Matter-Element Theory 
In extension theory, a matter-element uses an ordered 
triad for describing things as 

)( vcTR ,,=  (1) 
where T represents the matter, c represents the 
characteristic, v represents the measure of the 
characteristics c. If we assume that 

),,,( 21 ncccC L= is a characteristics vector and 
),,,( 21 nvvvV L=  is a value vector of C. Then 

multidimensional matter-element can define as 
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where )21(  )( nivcTR iii ,,,,, L== is defined as the 
submatter-element of R. For example 
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It can be used to state that ball A weight is 100g, and 
radius is 10cm. Matter has many characteristics and 
one characteristic or one characteristic element can 
be proposed by many matters, etc. The base 
formulations in extension theory can be expressed as 
follows [8]: 

Nature 1: A matter has many characteristics, 
expressed as 

)( vcT ,, ┤{ })()()( 2211 nn vcTvcTvcT ,,,,,,,,, L  (4) 
It shows that matter T can have characteristics 

nccc L,, 21 . The symbol “ ┤ ＂ indicates the 
extension. 

Nature 2: One characteristic proposed by many 
matters, called one characteristic many matters, 
expressed as 

)( vcT ,, ┤{ })()()( 222111 nnn vcTvcTvcT ,,,,,,,,, L  (5) 

Nature 3: One characteristic-element can be 
proposed by many matters, expressed as 

)( vcT ,, ┤{ })()()( 2211 vcTvcTvcT nn ,,,,,,,,, L  (6) 

Using the matter-element, we can describes quality 
and quantity for a matter, which is a new concept 
theory compared with conventional mathmatics. 

 
2.2  Extension Set 
Set theory is a kind of mathematical scheme that 
describes the classification about an object. The 
membership function of traditional fuzzy set 
describes value of matter at interval [0, 1]. The 
extension set extends the fuzzy set from [0, 1] to 
[ ]∞∞−  , . As a result, it allows us to define a set that 
includes any data in the domain. An extension set is 
composed two definition as follows [8]: 

Definition 1: Let U be a space of objects and x an 
element of U, then extension set E~ in U is defined as 

{ }) ,()( ,),(~
∞−∞∈=∈= xKyUxyxE  (7) 

where )(xky =  is called the correlation function for 
extension set E~ . The )(xK describes level 
between ∞−  to ∞  for each element. An extension 
set E~  in U can be denoted by 

−+= EZEE UU 0
~  (8) 

where  
{ }0)(,),( >=∈=+ xKyUxyxE  (9) 

{ }0)(,),( <=∈=− xKyUxyxE  (10) 

{ }0)(,),(0 ==∈= xKyUxyxZ  (11) 
+E  represents 0)( >= xky  the positive field. −E  

represents 0)( <= xKy  the negative field. 0Z  
represents 0)( == xKy  the zero boundary. 

Defintion 2: If ],[0 baX = and ],[0 gfX = are two 
intervals in the real number field, and XX ⊂0 , 
where 0X  and X  are the classical and neighborhood 
domains, respectively. The correlation function in the 
extension theory can be defined as 
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The correlation function can calculate the 
membership grade between x and 0X . The extension 
correlation function concept is shown in Fig.1. When 

0)( ≥xK , it means x in the interval [a,b]. When 
0)( <xK , it describes x does not belong to 0X . 

When 0)(1 <<− xK , it is called the extension 
domain, which means that the element still has a 
chance to become part of the set if conditions change. 

 
Fig.1  Extension membership function 
 

3   Extraction of PD Features 
Fractals have been very successfully used to address 
the problem of modeling and to provide a description 
of naturally occurring phenomena and shapes, 
wherein conventional and existing mathematical 
methods were found to be inadequate. In recent years, 
this technique has increased attention for 
classification of textures and objects present in 
images and natural scenes [9], and for modeling 
complex physical processes. In this theory, fractal 
dimensions are allowed to depict surface asperity of 
complicated geometric things. Therefore, it is 
possible to study complex objects with simplified 
formulas and fewer parameters [10]. PD also is a 
natural phenomenon occurring in electrical insulation 
systems, which invariably contain tiny defects and 
non-uniformities, and gives rise to a variety of 
complex shapes and surfaces, both in a physical sense 
as well as in the shape of 3D PD patterns acquired 
using digital PD detector. This complex nature of the 
PD pattern shapes and the ability of fractal geometry 
to model complex shapes, is the main reason which 
encouraged the authors to make an attempt to study 
its feasibility for PD pattern interpretation. 

The fractal features, fractal dimension and 
lacunarity, and the mean discharges of phase 
windows are extracted to highlight the more detailed 
characteristics of the raw 3D PD patterns. The 
extracted features in this paper are introduced as 
follows: 
 

3.1 Fractal Dimension (Input Parameter 1) 
While the definition of fractal dimension by 
self-similarity is straightforward, it is often difficult 
to estimate/compute for a given image data. However, 
a related measure of fractal dimension, the box 
dimension, can be computed more easily. In this 
work, the method suggested by Voss, and others in 
[9], [11], for the computation of fractal dimension D 
from the image data has been followed. Let p(m,L) 
define the probability that there are m points within a 
box of size L (i.e. cube of side L), which is centered 
about a point on the image surface. P(m,L) is 
normalized, as below, for all L. 
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where N is the number of possible points within the 
box. Let S be the number of image points (i.e. pixels 
in an image). If one overlays the image with boxes of 
side L, then the number of boxes with m points inside 
the box is (S/m)p(m,L). Therefore, the expected total 
number of boxes needed to cover the whole image is 
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this value is also proportional to DL−  and the box 
dimension can be estimated by calculating ),( Lmp  
and )(LN  for various values of L, and by doing a 
least square fit on ))](log(),[log( LNL . To 
estimate ),( Lmp , one must center the cube of size L 
around an image point and count the number of 
neighboring points m, that fall within the cube. 
Accumulating the occurrences of each number of 
neighboring points over the image gives the 
frequency of occurrence of m. This is normalized to 
obtain ),( Lmp . Values of L are chosen to be odd to 
simplify the centering process. Also, the centering 
and counting activity is restricted to pixels having all 
their neighbors inside the image. This will obviously 
leave out image portions of width = 2/)1( −L  on the 
borders. This reduced image is then considered for 
the counting process. As is seen, large values of L 
results in increased image areas from being excluded 
during the counting process, thereby increasing 
uncertainty about counts near border areas of the 
image. This is one of the sources of errors for the 
estimation of ),( Lmp  and thereby D. Additionally, 
the computation time grows with the L value. Hence, 
L = 3, 5, 7,  and 11 were chosen for this work. Fig.2 
shows a sample plot of the set [ ]))(log(),log( LNL −  
for the different size L. 
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Fig.2 The sample plot of the set 
[ ]))(log(),log( LNL for  different  box size L 
 
3.2 Lacunarity (Input Parameter 2)  
Theoretically, ideal fractal could confirm to 
statistical similarity for all scales. In other words, 
fractal dimensions are independent of scales. 
However, it has been observed that fractal dimension 
alone is insufficient for purposes of discrimination, 
since two differently appearing surfaces could have 
the same value of D. To overcome this, Mandelbrot 
introduced the term called lacunarity Λ, which 
quantifies the denseness of an image surface. Many 
definitions of this term have been proposed and the 
basic idea in all these is to quantify the ‘gaps or 
lacunae’ present in a given surface. One of the useful 
definitions of this term as suggested by Mandelbrot 
[l2] is 

∑
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where N is the numbers of point in the data set of size 
L, the lacunarity becomes 
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[ ]2

22

)(
)()()(

LM
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=Λ  (19) 

Fig.3 shows a sample plot of the variation of 
lacunarity with respect to box size L(3, 5, 7 ,9 and 11). 
Fig.4 shows the overall procedure for extracting 
fractal features. In fractal dimension computation, 
the first step is to transfer PD pattern to a 512512×  
gray scale image matrix. Using different box size L, 
we can obtain N(L). Finally, fitting the data 
{ }))(log(,log LNL −  can obtain the fractal dimension. 

In lacunarity computation, the first step is also to 
transfer PD pattern to a 512512×  binary image 
matrix. Then different box size L is chosen. L=3 is the 

best box size for the computation of the )(LM  and 
)(2 LM . Finally we can obtain lacunarity using 

equation (18). 
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Fig.3  The sample plot of the variation of lacunarity 
with respect to box size L 
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Fig.4  Procedure for computing fractal dimension and 
lacunarity 

 
3.3 Mean Values of Discharges (Input 

Parameter 3~12) 
The mean discharge is calculated in every phase 
window which is set to °36 . We will get 10 mean 
discharge parameters in °360 . If each phase window 
is devided into mn×  matrix, the mean value of each 
phase can be calculated by 
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4   PD Recognition System Design 
The block diagram of the designed PD recognition 
system is shown in Fig.5. It consists of three main 
parts: the well-designed defect models, the 
measurement system, and the PD extension 
recognition method. We will introduce the details of 
the three main parts in subsequent paragraphs. 
 

 

Fig.5 The block diagram of the designed PD 
recognition system 
 
4.1 Defect Models 
According to the fact that gap discharge and surface 
discharge are more likely to occure in high-voltage 
power equipments, five types of relevent models are 
well-designed on the base of investigation of many 
power equipment failures to outline the features of 
PD. 

T1: Plane to plane model. A 9 mm-in-thickness 
epoxy with a 3 mm-in-diameter cylindrical 
cavity is inserted. 

T2: Plane to plane model. A 3 mm-in-thickness 
epoxy is inserted. 

T3: Needle  to plane model. A 10 mm-in-diameter 
copper stick is lathed at one end to a °30 0.5 
mm-in-diameter cone needle which is 6 cm 
away from the plane. 

T4:  Needle  to plane model. A 10 mm-in-diameter 
copper stick is lathed at one end to a °30 1 
mm-in-diameter cone needle which is 6 cm 
away from the plane. 

T5: Needle  to plane model. A 10 mm-in-diameter 
copper stick is lathed at one end to a °30 2 
mm-in-diameter cone needle which is 6 cm 
away from the plane. 

Both the plane and the needle are made of copper. 
The practical specimens of the defect models are 
shown in Fig.6. 
 

 
Fig.6  The practical specimens of the defect models 

 
4.2 Measurement System 
The structure of the measuring system is shown in 
Fig.7. The autotransformer is used to slowly rise the 
output voltage of the transformer to 5.4kV as the 
testing voltage on defect model. The detector LDP-5 
with a capacitive sensor measures the PD electrical 
signal generated by the defect model. The PD signal 
is converted into a computer by NI DAQ card 
(PCI-6110) for further analysis. For each type of 
defect model, 40 times measurement are conducted. 
The sampling rate of the PCI-6110 DAQ card is set 
to sM /2  and data acquisition duration per 
measurement is 24 cycles (60Hz). The acquired PD 
signal is transferred into a 3D pattern. The features of 
the 3D pattern are extracted and used as the input 
parameters of the recognition system base on 
extension recognition method. 

A man-machine interface for PD measurement is 
designed using LabVIEW. Analyzing the signal 
through LabVIEW can not only obtain the instant 
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values of PD signal, but also compare to the testing 
voltage (60Hz) in real time. The designed 
measurement man-machine interface is shown in 
Fig.8. The red and green curves indicate the PD 
signal and the testing voltage waveform, 
respectively. 
 

 

Fig.7  The structure of the measurement system 
 

 
Fig.8  The designed man-machine interface for PD 
measurement 
 
The detector LDP-5 with a capacitive sensor is used 
to measure the PD signal of defect model. The typical 
PD impulse is shown in Fig.9. The rise time is much 
faster than fall time. The frequency of the impulse is 
about 20kHz~40kHz. 
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Fig.9  The typical PD impulse 

4.3 Extension Recognition Method 
The flow chart of the recognition method based on 
extension theory is shown in Fig.10. The proposed 
extension recognition method is described as 
follows: 

Step 1: Formulate the matter-element iR  for each 
defect type as 

 ),,( jjii VCTR =   

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

121212

222

111

,

,
,

ii

ii

iii

bac

bac
bacT

MM
 (21) 

where  
iT  : ith defect type of PD pattern )5,,2,1( L=i  

jC  : jth input feature )12,,2,1( L=j . 

ija  : low-bounds value of classical domains in the 
jth input feature for ith defect type. 

ijb  : up-bounds value of classical domains in the 
jth input feature for ith defect type. 

The ranges of classical domain baV ,=  of each 
value can directly obtained from the low-bounds 
and up-bounds of field-test records. Then the 
neighborhood domain gfV ,ˆ =  of classical 
domains, the possible range values of each 
characteristic can be determined. We are set 

 87.0 af ×= and  13.1 bg ×= . 

Step 2: Calculate the degree of correlation for each 
defect type using equation (12). 

Step 3: Set the weights 1221 ,,, WWW L  of each 
feature. We set the weights of both the fractal 
dimension and the lacunarity at 0.15, the others at 
0.07. 

Step 4: Calculate the index of correlation for each 
defect type 

5,,2,1       
12

1
L==∑

=

iKW ij
j

jiζ  (22) 

Step 5: Normalize the index of correlation between 
[-1,1] as equation (16). It will be benefic for fault 
diagnosis [13]. 

5,,2,1     2
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51max max
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Step 6: Find the maximum index of correlation. The 
defect recognition rule is shown as follows: 

IF )1( k =λ THEN )( kt TT =  (26) 

Equation (26) expresses that if 1 k =λ , then the 
defect type of this tested model is kth defect type. 
 

 
Fig.10  The flow chart of the extension recognition 
method 
 
5   Experiment Results and Discussions 
The proposed extension recognition method has 
beeen implemented according to the measured PD 
pattern on the defect models. There is a total of 200 
sets of measurement data associatd with the five 
types of defect models. Some experiment rsults are 
shown as follows: 
 
5.1  3D PD Patterns 
The typical 3D PD patterns transferrd from the 
measured PD signals for each defect model are 
shown in Fig.11. The main parameters of the 3D PD 
patterns are phase angleφ , discharge magnitude q , 
and the numbers of discharge n . We can observe that 
the number of discharge in type T1 is less then in type 
T2, but distribution is wider than type T2. It’s also 
very obvious that the numbers of discharge in types 
T3, T4, and T5 are greater than types T1 and T2. The 
discharges are happened more frequent when the 
needle-tip is thinner. The discharges of needle to 
plane model are almost happened in positive period. 
Sometimes types T3 and T4 have discharges 
happened in negative period, in which the number of 
discharge is few, but the discharge magnitude is large. 
According to the 3D PD pattern in each defect model 
we can find some different features between every 
defect model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Fig.11  Five typical defect type of 3D PD patterns. (a) 
type T1 (b) type T2 (c) type T3 (d) type T4 (e) type 
T5 
 
5.2  Feature Extraction 
The features of a total of 200 sets of 3D PD patterns 
are extracted and used as the input parameters of the 
recognition system base on extension recognition 
method. Two features, the fractal dimension and the 
lacunarity, are calculated based on the fractal theory. 
The distribution of the fractal dimension and the 
lacunarity of all 3D PD patterns is shown in Fig.12. It 
is obvious that patterns belonging to a particular 
defect type gather together. According to these two 
fractal features tyep T1 and type T2 can be easily 
classified. However, the distribution of type T3, T4, 
and T5 overlaps somewhere, which causes inaccurate 
classification. Therefore we take the mean values of 
discharge associated with phase windows as 
additional features. The mean discharges of all type 
of defect models associated with phase windows are 
shown in Fig.13. We can find out T1 mean discharge 
is distribution wider than each other. T4 in phase 
window six to nine is the max discharge than others. 
In Fig.13 we can notice some differences among all 
the five defect type models. 
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Fig.12  Distribution of fractal features of all models 

 
Fig.13  Mean discharge magnitude in phase windows 

 
5.3 Recognition Accuracy of the Proposed 

Extension Rcognition Method 
The diagnosis man-machine interface based on 
extension theory is shown in Fig.14. It consists of 
three parts. Part 1 is data input. We can directly input 
the features c1~c12. Part 2 is the defect type output 
recognized by extension theory. If the output of T2 is 
1 then the defect type belongs type 2. Part 3 is the 
recognize rate with average of 10 random trials for all 
testing date which add noise to 30%. 
 

 
Fig.14  The diagnosis man-machine interface 
 

Table 1 shows partial results of the proposed PD 
recognition system based on extension theory. It very 
clearly recognizes the defect type of tested models. 
For example, in pattern No 35, the index of 
correlation with the defect type 1 is equal 1(the max 
value), which indicates recognition result is T2. In 
comparison, the indices of correlation with other 
defect type are all negatives. Moreover, the proposed 
method can not only detect the main defect of the test 
object but also provide useful information for future 
trend analysis by the index of correlation. For 
example, pattern No 196 was recognized to have a 
main defect type of T5 due to the maximum index of 
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correlation. On the other hand, the index of 
correlation 2λ , about 0.76 also shows the result 
possibility belong type 2. This information will be 
most useful to find the hidden defects of models. 

The input to a PD recognition system would 
unavoidably contain some noise. The sources of 
noise may be generated from the PD detector, 
environmental electromagnetic, or human mistakes, 
etc. To take into account the noise, 200 sets of testing 
data are created by adding the random uniformly 
distributed noise from %10±  to %30± . The 
recognition accuracy rates with different amounts of 
noise added are given in Table 2. The recognition 
accuracy without noise added is 100% and even has 
93% accuracy rate in the case of %30±  noise added. 
To demonstrate the effectiveness of the proposed 
method, comparative studies using a BPNN with 3 
hidden layer and 12-12-5 neurons are conducted on 
the same testing data. The accuracy of the BPNN is 
only 83.8% in the same condition. It shows that the 
proposed method has a pretty high recognition 
accuracy and good tolerance to added noise. 
Moreover, the proposed recognition method does not 
need a learning process, but only finding the 
upperbound and lowbound of the input features. It is 
very encouraged to implement the proposed method 
in a PD detector device for real-time PD recognition. 

 
Table 1  Partial recognition results 

Pattern 
No 

Correlation Index 
Defect 
Type1λ

* 
2λ

* 3λ
*

4λ
* 5λ

* 

35 1 -0.31 -0.33 -1 -0.82 T1 
38 1 -0.18 -0.67 -1 -0.76 T1 
62 -0.54 1 -0.35 -1 -0.68 T2 
74 0.3 1 -0.15 -1 -0.65 T2 
103 -1 -0.51 1 -0.99 -0.63 T3 
107 -1 -0.25 1 -0.79 -0.43 T3 
145 -0.63 -1 -0.26 1 -0.4 T4 
153 -1 0.32 -0.55 1 -0.14 T4 
196 0.12 0.76 -1 0.25 1 T5 

200 -0.25 0.52 -1 0.54 1 T5 

* 1λ : Correlation index of defect 1. 
* 2λ : Correlation index of defect 2. 
* 3λ : Correlation index of defect 3. 
* 4λ : Correlation index of defect 4. 
* 5λ : Correlation index of defect 5. 

 

Table 2  The accuracy rate of PD recognition 

% of 
noise 

The average recognition rate* (%) 
Extension 

method MNN 

0% 100% 100% 

± 10% 99.6% 98.5% 

± 20% 96.8% 89.9% 

± 30% 93% 83.8% 

*: Average of 10 random trials. 
 
6   Conclusion 
This paper proposes a new PD recognition method 
based on the extension theory. The fractal features 
and the mean discharges are used to highlight the 
more detailed characteristics of the raw 3D PD 
patterns. The recognition rates of the proposed 
method are quite high with 93% in extreme noise of 
30%. The experimental results indicate that this 
method is able to implement an efficient 
classification with a very high recognition rate. 
Compared with MNN method, the proposed method 
does not require particular learning processes and 
artificial parameters. In addition, the calculation of 
the proposed recognition algorithm is fast and very 
simple. This new method merits more attention to be 
a useful tool in PD recognition problems. 
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