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Abstract: - We describe an optimal path design for a GMPLS network that employs the Lagrangian 
relaxation method, which can be used to estimate the lower bounds of a solution to a problem.  This 
feature assists the designer of the problem to consider the accuracy of the solution obtained by the 
calculation when deciding whether to assign the solution to a real network in critical situations.  A 
formulation of the problem and how to solve it using the Lagrangian relaxation method is described, and 
the results obtained by a prototype and considerations are shown in this paper. 
 
Key Words: - Optimal path design, GMPLS, Lagrangian relaxation, Heuristic algorithm, Simulation, 

Lower bound, Practical approximate solution, Emergencies 
 
1   Introduction 
Remarkable progress has been made on the 
Internet.  Both the bandwidth and the scale of 
networks have been increased greatly.  The core 
network of the Internet is evolving.  The physical 
network architecture employs wavelength-routing 
switches at routing nodes, which enable the 
establishment of circuit-switched, all-optical, 
wavelength-division multiplexed (WDM) 
channels, which are referred to as paths.  The 
virtual topology consists of a set of such paths, and 
they may be used to transport packet-switched 
traffic through the network.  Generalized 
multiprotocol label switching (GMPLS) is a 
technology that enhances multiprotocol label 
switching (MPLS), enabling it to support network 
switching for time, wavelength, and space 
switching, as well as for packet switching [1-2].  

GMPLS is extended from MPLS technology 
that determines path routing by adding packets.  
This extended technology determines path routing 
by considering optical network signals having 
wavelength labels ëi [3-4], as shown in Fig. 1.  The 
large-capacity, high-speed optical network shown 
in Fig. 2 has almost been turned into reality by 
using WDM technology, GMPLS technology, and 
optical cross-connect switches that switch optical 
signals as they are.  

A prototype of a policy-based management 
system for MPLS Traffic Engineering is operating 
on MPLS network elements [5]. One study has 
presented a technique that enables guarantee of 
service (GoS) to privileged information flows [6]. 
In the network for GMPLS, the paths, which have 
to be set beforehand, are essentially static.  Finding 
effective techniques for designing the virtual 
topology of the paths is a significant problem for 
successful networking [7-10].  

If a new path-setting request is generated, 
GMPLS technology calculates paths using the 
Constrained Shortest Path First (CSPF) algorithm 
from the link information of a band collected by 
the optical cross-connect switches and the path 
congestion status and determines paths that 
minimize the congestion [11-12]. This technology 
thus enables optimal paths to be set by adding new 
paths to existing ones at path calculation by CSPF, 
but it cannot be used to optimize an entire GMPLS 
network.  Therefore, GMPLS cannot make 
optimal use of network resources and the 
utilization efficiency can still be further improved. 
 This problem of increasing the utilization 
efficiency of network resources has been 
formulated as an optimization problem with the 
constraints of conservation of flow and capacity  
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Fig. 1   Network switching by MPLS technology 
 

restriction to disperse the line load. Attempts have 
been made to solve this problem. 

The key objectives in designing the paths for 
GMPLS are to achieve the requested 
specifications that link one source node to the 
other terminal mode of the network and to achieve 
a sufficient rest margin for the network capacity to 
enable alternative paths to be found in the case of 
an emergency.  Therefore, the problem of path 
design for GMPLS can be formulated as an 
optimization problem that aims to achieve the 
most efficient use of network resources [13-15].  
However, this type of optimization problem is 
generally known to be an NP-hard problem 
[16-17], and probabilistic search algorithms or 
heuristic algorithms are often applied to the 
problem to obtain practical approximate solutions 
[18-20], which are not guaranteed to be optimal.  
Furthermore, there are no means to measure how 
far the solutions obtained by these algorithms are 
from the optimal one.  This is not a serious 
problem for typical network management 
problems, since in those cases there is sufficient 
time to search for such practical approximate 
solutions.  In emergencies, however, it is 
important to evaluate the gap between such 
practical approximate solutions and the optimal 
solution because of the penalty cost that network  

 
 

 
 
 
 
 
 
 

 

carriers have to pay, which depends on the degree 
of actual damage sustained by customers. 

This paper assumes the three operational phases 
depicted in Fig. 3. In the first phase (the initial 
phase), the initial path design is created. In the 
second phase (the incremental phase), individual 
paths based on the shortest path of the CSPF 
algorithm are set to satisfy the daily incremental 
path setting requests. In the third phase (the 
repacking phase), in which the utilization of 
network resources has begun to decline, the path 
design optimization problem, which addresses all 
path-setting requests by network operators, is 
solved.  Path design by the conventional CSPF 
algorithm belongs to the second phase.  This paper 
describes optimal paths design in the third phase 
(the repacking phase). 

We present a formulation of such an 
optimization problem for the paths design of a 
GMPLS network and an algorithm that solves it 
and evaluates the gap between the practical 
approximate solution and the optimal solution 
using the Lagrangian relaxation method [21-22].  
The Lagrangian relaxation method determines the 
lower bound of feasible solutions for the 
optimization problem using a heuristic search.   We 
can therefore determine the gap between them even  

 
 
 
 
 
 
 
 
 
 

RouterRouter

A2
IP Packet

OXCOXC

Switch

λ1

λ2

λ3

λ4

OXCOXC
λ1

λ2

λ3

λ4

OXCOXC

Switch

λ1

λ2

λ3

λ4

λ1

λ2

λ3

λ4

A2 A2

RouterRouter

A2

F1

F2

λ1 F2 λ4

Input Wavelength Output Wavelength

OXC : Optical Cross-Connect

RouterRouter

A2
IP Packet

OXCOXC

Switch

λ1

λ2

λ3

λ4

OXCOXC
λ1

λ2

λ3

λ4

OXCOXC
λ1

λ2

λ3

λ4

OXCOXC

Switch

λ1

λ2

λ3

λ4

λ1

λ2

λ3

λ4

OXCOXC

Switch

λ1

λ2

λ3

λ4

λ1

λ2

λ3

λ4

A2 A2

RouterRouter

A2

F1

F2

λ1 F2 λ4

Input Wavelength Output Wavelength

OXC : Optical Cross-Connect

Requests
for paths

Operation System

OXC
OXC

OXC

Requests
for paths

Operation System

OXC
OXC

OXC

Fig. 2   Structure of optical network

WSEAS TRANSACTIONS on SYSTEMS Teruji Sekozawa, Takashi Fukumoto

ISSN: 1109-2777 1340 Issue 11, Volume 7, November 2008



 
 
 
 
 
 
 
 
 

Fig. 3   Three operational phases for  
optimal path design method 

 
if we break the calculation of the optimization 
problem at any time before the optimal solution is 
found. 

  We can hereby evaluate the gap to determine if 
it is still possible to improve the solution, and we 
can judge whether or not to assign the paths 
obtained by the calculation to the actual network. 

In the next section, we describe the formulation 
of the optimization problem, which is the optimal 
path design for the GMPLS network, and in 
Section 3 we present a way to solve the problem 
using the Lagrangian relaxation method.  We then 
present our results for sample cases and mention 
some considerations. 
 
 

2   Formulation of the Problem  
The optical signals of the traffic are switched by 

optical routers for the GMPLS network according 
to the wavelength of the light, and all of the paths 
from the source nodes to the terminal nodes have to 
be set correspondingly.  However, if you assign the 
shortest paths from the source nodes to the 
termination nodes without careful consideration, 
the network resources will be under utilized, and 
the addition of new paths or the provision of 
alternative paths might be difficult in the event of 
network trouble.  Therefore, you should assign the 
most appropriate paths rather than the shortest 
paths. 
 As an example, Fig. 4 depicts the optimal path 
problem when there are seven path setting requests 
for an optical network that consists of four optical 
lines linking five optical cross-connect switches 
that act as nodes.  On the left side of Fig. 4, the 
shortest path is simply assigned for each 
path-setting request.  In this case, only six 

path-setting requests can be accommodated and 
the remaining one cannot.  On the right side of Fig. 
4, however, the shortest path is not assigned for 
two of the requests. Instead, a detour circuit that is 
one hop longer is assigned; this enables all seven 
requests to be accommodated. 

In this section, we describe the formulation for 
this as an optimization problem, using principles 
from multicommodity flow for the physical 
routing of paths. 

We adopt the following notation. i denotes a 
node (i.e., a network router) and N denotes a set of 
nodes.  j denotes a branch between two  nodes (i.e., 
an optical line in the network), and E denotes a set 
of branches.  r denotes a request to link a source 
node to a termination node, and R denotes a set of 
requests.  s(r) and t(r) denote the source and 
termination nodes of request r , respectively.  xj

r, 
which is a variable to be determined, is 1 if the 
request r uses branch j, and is 0 if the request r 
does not use branch j.  uj denotes the capacity of 
branch j.  A-(i) denotes a set of branches, the start 
node of which is i, and A+(i) denotes a set of 
branches, the destination node of which is i. 

The optimization problem of this paper can be 
described by using the flow conservation law and 
the constraint conditions for the optical lines. 
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Here, bi

r, which is a constant, is 1 when i is 
equal to s(r), -1 when i is equal to t(r), and 0 
otherwise.  f(x) is an appropriate cost function of 
the problem that avoids an over concentration of 
paths to particular branches.  We use the function 
defined in equation (5) to equalize the 
consumption ratios of each branch. 
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Fig. 4   Example of the optimal paths design for GMPLS network 

 

3 Solution using the Lagrangian 
Relaxation Method  
We apply the Lagrangian relaxation method to the 
optimal paths design problem described in Section 
2.  It determines the lower bound of the problem. 

 The Lagrangian relaxation method performs a 
heuristic search to determine a feasible solution, 
but it is also able to simultaneously obtain a lower 
bound (for a minimization problem).  Even when 
the optimization problem is aborted, it is still 
possible to know the deviation between the lower 
bound and the accuracy of solution [23]. 

The Lagrangian relaxation method uses 
Lagrange multipliers to reduce part of the 
constraint conditions by including the conditions 
in the cost function.  This divides the original 
problem (i.e., the primary problem) into 
subproblems that are independent of the 
respective of the variables. The optimal solution is 
obtained by solving its dual problem.  To divide 
the problem (P1), we introduce artificial variables, 
vj, which indicate the number of remaining 
wavelengths that can be assigned in the line, and 
we transform problem (P1) into problem (P2).  

 
(P2) 

∑
∈

−
=

Ej j

jj

v u
vu

xg
2

)(min              (6) 

r
i

iAj

r
j

iAj

r
j bxx =− ∑∑

+− ∈∈ )()(

s.t.             (7) 

j
Rr

j
r

j uvx ≤+∑
∈

                          (8) 

{ }1,0      ∈r
jx                         (9) 

jj uv ≤≤0                               (10) 

 

We then use Lagrange multipliers, 
),...1(0 mjj =>λ , to relax the equation (8), and 

obtain the Lagrangian relaxation problem (P3). 
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where function h is as follows. 
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In this way, we can divide this Lagrangian 

relaxation problem (P3) into two subproblems, 
which are independent of vj (subproblem P4) and 
xj (subproblem P5).  
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Subproblem (P4) is just a simple problem to 
calculate the minimum value of the quadratic 
function, and subproblem (P5) is a problem to 
search for the minimum cost flow of a single 
commodity flow when the cost of branches is 
λ j ; this is just a shortest path problem.  Thus 

we can easily solve subproblem (P5) by using 
Dijkstra’s algorithm. 

We can then obtain the solution to the primary 
problem (P2) by solving the Lagrangian dual 
problem (P6), which is a maximization  problem 
for the Lagrange multipliers. 
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By using subgradient optimization to improve the 
Lagrange multipliers for equation (27), we can 
find a good solution to the Lagrangian dual 
problem (P6). 
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Here, T is a parameter for adjusting the widths in 
order to improve the Lagrange multipliers.  The 
improvement in the multipliers is repeated until 
the value of the cost function for the Lagrangian 
dual problem (P6), which is a lower bound of the 
primary problem, is equal to the value of the cost 

function for problem (P2), or until the difference 
between the two cost functions is sufficiently 
small. 

We list the algorithm to solve the problem of the 
optimal path design for the GMPLS network 
below. 
 

Algorithm 
 for the optimal path design problem 

 
INPUT:  
Set of nodes and branches (N, E) 
Set of requests, R 
Capacity of branches, u 
 
OUTPUT: 
Paths for requests 
 
ALGORITHM: 
Step 1: Initialize the Lagrange multipliers, 

λ j . 
Step 2: For a given λ j , calculate the solution to 

the Lagrangian relaxation problem (P4) and 
(P5), which is (v, x)L. 

Step 3: Transform (v, x)L to a feasible solution for 
the primary problem (P2) using the heuristic 
algorithm described below. 

Step 4: Calculate the value of the cost function 
for g(v) in equation (6) and h( λ , v, x) in 
equation (11).  If the difference between g 
and h is sufficiently small, or if the number of 
repetitions is sufficiently large, then finish 
this process. 

Step 5: Improve the Lagrange multipliers λ  by 
subgradient optimization and return to step 
2. 

 
 
The heuristic algorithm used in Step 3 is as 
follows. 

Paths pr
L, which correspond to request r and 

are obtained as a solution to the Lagrangian 
relaxation problem, are transformed so as to be 
accepted in order of their lengths according to the 
following rules. 
 
(1)  If there are remaining wavelengths to be 

assigned in all the branches for path pr
L, let 
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path pr
L be accepted without transformation as 

path pr
E, which is a feasible path for the 

primary problem, and let the number of the 
remaining wavelengths of those branches be 
reduced.  

(2)  In cases except for (1), search for the shortest 
path, whose source and termination nodes are 
the same as pr

L  for the network.  If the shortest 
path can be found, it is accepted as the feasible 
path pr

L. 
(3)  In cases except for (2), the network is divided 

into parts by the branches that have no 
remaining wavelength to be stored.  First, 
select a path that has already been accepted 
and find its alternative path, which gives these 
branches remaining wavelength.  Then, search 
for the shortest path, whose source and 
termination nodes are the same as those of path 
pr

L. 
 

Practically, in this search of the shortest path, 
we assign a weighted cost to branches that is 
proportional to the remaining wavelength to be 
stored. This is done to avoid concentrating 
assignment of paths to particular branches. 
 
 

4 Simulation Results and Some 
Considerations 
We made a prototype for the algorithm described 
in Section 3.  In this section, we give the results 
of our simulation for some sample data, and 
mention some considerations for them. 

Figure 5 is the sample network used in our 
simulation.  It has 14 nodes and 21 branches.  The 
capacities of all the branches are 5.   

In this GMPLS network, optimal path design 
was conducted for each of the eight cases shown 
in Table 1.  Out of all these cases, only in Case 1 
was the design of 12 paths requested, with node 
A in Fig. 5 as the source node and node B as the 
termination node.  For Cases 2 to 8, the designs of 
respectively 30, 50, 100, 500, 1000, 3000, and 
10000 paths with two randomly selected nodes as 
the source node and termination nodes were 
requested.  The line capacities were varied 
according to the number of paths requested in 
Cases 2 to 8. 

 
 
 
 
 
 
 
 
 

Fig.5   Sample network 
 
 
Table 1   Setting of eight cases in simulation 
 
 
 
 
 
 
 
 
 
 
Table 2 gives the calculation results for the 

eight cases for the optimal path design method 
that is proposed in this paper.  By performing a 
simulation, 10 different path-setting requests 
were created and tried for all the cases except for 
Case 1.  Table 2 gives the average values of the 
10 calculations for each case.  The deviation of 
the solution in Table 2 is calculated by scaling the 
difference between the calculated value of the 
solution obtained using the optimal path design 
method proposed in this paper and the lower 
bound (i.e., (evaluated value of solution) - (lower 
bound)).  The calculated value of the solution is 
determined using equation (6) in the primary 
problem (P2) that is used in the optimal path 
design method, while the evaluated value of the 
Lagrange solution is calculated using equation 
(11) in the Lagrangian relaxation problem (P3). 

In the current simulation, the evaluated value 
of the solution agreed with the lower bound in the 
1 trial for Case 1 and all of the 10 trials for Case 2, 
and it was confirmed that an optical solution was 
successfully outputted.  In Cases 3, 4 and 5, an 
optimal solution was output successfully 6, 3, and 
1 times out of 10 times, respectively.  For the 
unsuccessful trials in Cases 3 to 5 and all the  

The number of 
requests for paths

The capacity 
of branches

Case1 12 5
Case2 30 15
Case3 50 25
Case4 100 50
Case5 500 250
Case6 1000 500
Case7 3000 1500
Case8 10000 5000
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Table 2   Result of eight cases  
 
 
 
 
 
 
 
 
 
 
 
 

 
trials for Cases 6 to 8, the calculation was 
discontinued after attaining the preset number of 
iterations, even though there was still a difference 
between the evaluated value of the solution and 
the lower bound.  In the current simulation, an 
update frequency of Lagrange multipliers in 
equation (27) of 5,000 was set as the condition 
for discontinuing the calculation.  Since 5,000 
times is insufficient to confirm a solution as 
being optimal, the entries in Table 2 say 
“Undetermined” . 

First, we will confirm that the optimal path 
design method proposed in this paper functions 
effectively from the simulation results for the 
small-scale condition of Case 1.  In Case 1, 
requests were specified for 12 paths from node A 
on the left side of the GMPLS network shown in 
Fig. 5 to node B on the right side.  We solved the 
optimal path design problem under these 
assumptions and obtained the outputs shown in 
Fig. 6. The capacity of the five paths may be 
filled only when line a extends horizontally from 
node A to the right.  However, by redirecting 
some of the paths, it was possible to free lines for 
the other branches.  To meet the design request 
for 12 paths, the shortest distance of three hops 
was assigned to four paths, a distance of four 
hops was assigned to six paths, and a distance of 
five hops was assigned to two paths.  If the 
shortest path to a line having a free capacity 
should be set for all path-setting requests, the 
shortest distance of three hops will be assigned to 
five paths and the distance of four hops will be 
assigned to seven paths in Case 1.  In this case, 
however, three or more lines will be filled to their  

 
capacities.  This confirms that the algorithm of 
the optimal path design method proposed in this 
paper is effective. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6   Simulation results of with sample data 
 

Figure 7 shows the results of the simulation for 
different assumptions, namely that branch “d” is 
unusable in situations such as when the line is 
broken. In this simulation, four requests take the 
shortest paths from node A to node B, four 
requests take four hops, two requests take five 
hops, and two requests take eight hops.  Three 
branches, labeled “a”, “b”, and “c” in Fig. 7, have 
no spare capacity to be stored, but the other 18 
branches have some spare capacity.  

Next, we discuss the accuracy of the solution 
from the optimal path design method that 
indicates it differs from the optimal solution.  As 
the third column in Table 2 shows, the deviation 
of the solution deteriorates as the number of path 
setting requests increases.  However, in all cases 
the average deviation of the solutions is less than 

 

Optimal solution
(Achievement level)

Inaccuracy 
between output 
solution and 
lower bound

Average 
calculation 
time

Calculation time when 
the deviation become 
lower than 1%
(Update frequency)

Case1 1/1 Achievement 0%

Case2 10/10 Achievement 0% 0.66 sec 0.02 sec  ( 145 times)

Case3 6/10 Achievement 0.0326% 1.13 sec 0.05 sec  ( 193 times)

Case4 3/10 Achievement 0.1860% 3.13 sec 0.32 sec  ( 480 times)

Case5 1/10  Achievement 0.4313% 32.73 sec 5.63 sec  ( 841 times)

Case6 Undetermined 0.6008% 126.64 sec 30.05 sec (1315 times)

Case7 0.6830% 1130.10 sec 341.41 sec (1600 times)

Case8 0.7688% 11195.42 sec 3366.80 sec (1578 times)

Undetermined
Undetermined

Optimal solution
(Achievement level)

Inaccuracy 
between output 
solution and 
lower bound

Average 
calculation 
time

Calculation time when 
the deviation become 
lower than 1%
(Update frequency)

Case1 1/1 Achievement 0%

Case2 10/10 Achievement 0% 0.66 sec 0.02 sec  ( 145 times)

Case3 6/10 Achievement 0.0326% 1.13 sec 0.05 sec  ( 193 times)

Case4 3/10 Achievement 0.1860% 3.13 sec 0.32 sec  ( 480 times)

Case5 1/10  Achievement 0.4313% 32.73 sec 5.63 sec  ( 841 times)

Case6 Undetermined 0.6008% 126.64 sec 30.05 sec (1315 times)

Case7 0.6830% 1130.10 sec 341.41 sec (1600 times)

Case8 0.7688% 11195.42 sec 3366.80 sec (1578 times)

Undetermined
Undetermined
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1%.  In particular, the deviation of all the 
solutions is below 1% in the trials of Case 1 and 
all of the 10 trials in Cases 2 to 7. In other words, 
although the proposed optimal path design only 
gives approximate solutions, these solutions are 
extremely close to the optimal solutions. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7   Simulation results when branch “d” is 
removed 

 
Figure 8 shows the time transition of the above 

deviations of the solution for Case 8.  In a 
large-scale path design problem with many path 
requests, solutions cannot be expected to be 
optimal.  In practice, the proposed optimal path 
design method by the Lagrangian relaxation 
method may not output optimal solutions because 
a heuristic algorithm is used to derive feasible 
solutions.  In fact, the solution for Case 8 shown 
in Fig. 8 is not optimal since the time transition 
graph of the deviation is not zero.  More 
accurately, the derived solution may be optimal 
but it cannot be guaranteed to be optimal since it 
exceeds the lower bound.  However, this 
indicates that the proposed optimal path design 
method is capable of evaluating a lower bound 
quantitatively by utilizing the characteristics of 
the Lagrangian relaxation method.  The accuracy 
of the solution from the optimal path design 
method can be presented quantitatively for a 
GMPLS network operator.  As Table 2 shows, for  
Case 8 of Fig. 8, the calculation time was almost 
three hours.  If the calculation should be 
discontinued after about one hour, the inaccuracy 
of solution will be about 1.5% relative to the 
lower bound.  This implies that a further 
improvement of up to 1.5%can be expected.  If 
the calculation of the optimal path design 

problem is continued in Case 8, the solution will 
improve about 90 minutes after the calculation 
has started calculation.  Consequently, the final 
inaccuracy of solution will reach about 0.67% 
and a better solution will be obtained.  In this 
example, the accuracy of the solution by the 
proposed optimal path design method could be 
improved by merely extending the calculation 
time.  If the required improvement in the solution 
is known, we may recalculate the solution after 
adjusting several calculation parameters or use a 
different method other than the optimal path 
design method to obtain a solution.  In Fig. 8, the 
deviation of the solution ceased improving once 
and then started to improve again when the 
update frequency of the Lagrange multipliers 
became about 2600.  This occurred because the 

Lagrange multipliers λ j  in subproblem (P5) 
were updated using the results of equation (27) 
and a Lagrange solution could be obtained by 
using an update frequency of about 2600 times 
since the feasible solution became closer to the 
optimal solution.  Therefore, this phenomenon 
depends on formulation by the proposed optimal 
path design method and the input data given in 
the case of Fig. 8, but it is independent of the 
characteristics of the Lagrangian relaxation 
method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8   Transition in between cost value for(P2) 

and low bound of (P6) in case 8 
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Finally, we discuss the calculation time of the 
optimal path design method.  The fourth column 
of Table 2 gives the average calculation time for 
10 trials for each case of the simulation.  The 
computer used for this processing had a 3.2-GHz 
Intel Pentium 4 CPU and a memory of 1.0 GB.  
The calculation time for Case 1 was very short 
and is not given in Table 2 since we considered 
that the time taken to read and write to the hard 
disk was longer than the time required for the 
optimal path design method.  In the current 
simulation, no optimal solution was output for 
almost all trials and thus the calculation 
processing was discontinued at the preset update 
frequency for the Lagrange multipliers (5000 
times).  Therefore, in order to discuss the 
calculation time of the optimal path design, the 
fifth column of Table 2 gives the calculation time 
and the update frequency of the Lagrange 
multipliers when the deviation of the solution 
became lower than 1%.  Figure 9 shows a graph 
for the calculation time when the deviation was 
less than 1%.  The vertical axis has a logarithmic 
scale for calculation time and the horizontal axis 
has a logarithmic scale for the number of path 
setting requests.  As can be seen from Fig. 9, the 
proposed optimal path design method requires 
approximately O(n2) iterations to obtain a 
solution whose deviation is guaranteed to be 
below 1%. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   Fig. 9   Calculation time when deviation of 
               the solution become lower than 1% 
 

5 Conclusion  
We presented a formulation of the path design 

for a GMPLS network and an algorithm that uses 
the Lagrangian relaxation method, which 
measures the deviation between a practical 
approximate solution and the optimal solution to 
enable us to evaluate the accuracy of the solution.  
We employ a heuristic algorithm to obtain a 
feasible solution, which is admittedly not the 
optimal solution.  We can also obtain a lower 
bound for the problem.  Therefore, we can 
evaluate the deviation by comparing the evaluated 
solution and the lower bound, even if the 
calculation stops before the optimal solution is 
obtained. 

This indicates that a network operator can 
judge the accuracy of solutions then and use this 
knowledge to determine whether to reflect them 
as network paths. 
 The quantitative evaluation in the current 
simulation merely indicates the difference of the 
evaluated value from equation (6) of the optimal 
path design method in the primary problem (P2) 
from the value obtained using equation (11) of 
the Lagrangian relaxation method (P3).  When 
presenting the evaluation result to a network 
operator, it is important to convert the evaluation 
value by the optimal paths design method to a 
cost value.  We intend to investigate this aspect in 
the future. 
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