
A Novel Fast Kolmogorov's Spline Complex Network for Pattern
Detection

HAZEM M. EL-BAKRY

Faculty of Computer Science & Information Systems,
Mansoura University, EGYPT

E-mail: helbakry20@yahoo.com

NIKOS MASTORAKIS

Department of Computer Science,
Military Institutions of University Education (MIUE) -

Hellenic Naval Academy, Greece

Abstract— In this paper, we present a new fast specific
complex-valued neural network, the fast Kolmogorov’s Spline
Complex Network (FKSCN), which might be advantageous
especially in various tasks of pattern recognition. The
proposed FKSCN uses cross correlation in the frequency
domain between the input data and the input weights of
neural networks. It is proved mathematically and
practically that the number of computation steps required
for the FKSCN is less than that needed by conventional
Kolmogorov’s Spline Complex Network (CKSCN).
Simulation results using MATLAB confirm the
theoretical computations.

Keywords— Fast Kolmogorov’s Spline Complex Network,
Cross Correlation, Frequency Domian, Pattern
Detection, Neural Networks, Modeling of Time-Variant
Multidimensional Data.

I. Introduction

The technological and scientific developments in many
areas of human activity had reached a level, requiring
adequate changes in traditional methods of data
modeling. Consider just two examples. One is related to
coal-operating power stations. Coal might provide a fuel
for world power industry for hundreds of years, making
a good alternative to rapidly decreasing oil. But coal
combustion produces harmful pollutions. Mitigation of
this problem by controlling combustion requires
modeling of power data, which are time-variant, highly
multidimensional, nonlinear, non-stationary, and
influenced by complicated, interacting chemical, electro-
magnetic, and mechanical processes [36-46]. There is no
way to do such modeling by traditional methods of
control theory [7,55]. The second example is related to
defense, in particular to problems of detection,
identification, and tracking targets in the clutter
environment, utilizing sensors, such as radar, sonar,
infrared [34,68], and so on. A possibility of multiple
moving and interacting targets, clutters, and sensors
makes these problems extremely difficult for solution in
real applications. The methods for solution of these
problems, basically Bayesian ones [5,19,74], are
founded on the theory developed 30-50 years ago, and

inadequate to currently existing reality. There is a long
history of signal and noise representation, utilizing
complex numbers in signal processing [28,64,67].
Relatively recently was recognized that complex
representation of inputs and adaptively adjusted weights
may be helpful in neural network modeling, especially
for pattern recognition [3,6,24,32,33,39,49,53,62,63].

There are several approaches for modeling. Such
approches are divided into two intersecting groups of
methods, Artificial Intelligence (AI) [47,61] and
Computational Intelligence (CI) [11,65,77] groups. It is
believed that the AI group is more appropriate for
symbol processing, while the CI group fits more data
processing. The CI group contains different methods:
neural networks [13,29,30,57], statistical pattern
recognition [23], fuzzy sets methods [12], wavelets [26],
genetic [59] and evolutionary algorithms [8], support
vector machines [20], classification and regression trees
[15] and so on.

This paper considers only neural networks methods.
Several reasons stand behind the preference given to
neural networks. These are: 1) one-hidden layer feed-
forward neural networks have a firm theoretical basis
provided by the Kolmogorov’s Superposition Theorem
(KST) [52]; 2) q-hidden layer nonlinear perceptron can
learn a nonlinear mapping more efficiently than any
linear network [9,10]; 3) applied in combination with
clustering [19,21], neural networks can efficiently learn
time-variant, highly multidimensional, nonlinear, and
non-stationary data [44,45]; 4) in spite of common
opinion, that neural networks require utilization of large
leaning sets and large size of networks [1,2], there exist
several practical ways to significantly mitigate these
problems; 5) neural networks allow for solving
efficiently such important tasks related to modeling (and
data mining), as feature selection and visualization.
Here, a fast specific neural network architecture with
complex weights [41,44] and potentially complex inputs
in context of adaptive dynamic modeling of time-variant
multidimensional data [45] is descirbed. Basic
principles, ideas, and algorithms of adaptive neural
network modeling of time-varying, highly
multidimensional data are introduced.

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1310 Issue 11, Volume 7, November 2008

mailto:helbakry20@yahoo.com

Consider the advantages of neural networks more in
detail. There is an old problem of approximation of a
continuous real-valued function f of d variables (input
dimension) defined on the closed bounded set E
(assumed here as a unit hypercube) with a given error ε
based on information about P values of the function. For
the class of continuous functions the lower bound for P
grows exponentially with growth of d. This fact (known
under name “curse of dimension”) makes reliable
approximation of an arbitrary continuous
multidimensional function practically impossible for
relatively high dimensions. But there exist examples of
reliable approximation of functions with high values of
d. How it may occur? Modeling a function, one discerns
a function from a noise. Actually all methods of
modeling explicitly or implicitly assume, that a function
has a bounded rate of variability, while the noise may
have variability rate higher than that bound. Designers
of complex systems often make preliminary statistical
system modeling, imitating noise as a statistical
distribution with some probability density function (pdf).
Realizations of a noise with some pdf are obtained as
continuous functions of a noise with some elementary
pdf, so-called uniform distribution in the unit interval [0,
1] [22]. The realizations of the uniform distribution are
implemented as subsequent values of a continuous
piece-wise linear function with very high absolute
values of the derivative. Thus, actually a noise is a
continuous function with very high rate of variability. In
order to discern a function and a noise one has to
consider functions from a subclass of the class of
continuous functions. Additionally, distribution of a
noise is unknown in applications, forcing a designer to
choose among several known distributions, such as
Gaussian, Weibull [54], and so on, verifying type of
distribution using statistical criteria.

Any approximation of a continuous real-valued
multidimensional function f can be derived from the
Kolmogorov’s representation of such a function given
by the KST. The KST states that any continuous
function of d variables can be represented exactly as a
finite sum of superpositions of univariate functions,
where number of terms in the sum depends only on value
of d and does not depend on a function to be
approximated. But that representation looks almost like
a neural network approximation of a continuous
function. One but extremely important difference is that
number of terms N in the sum (number of basis
functions) for a neural network depends on the function f
to be approximated and on required approximation error

. Generally N tends to infinity, if tends to zero.
Thus, it seems, that the KST gives an ideal neural
network representation of a continuous
multidimensional function with error and with
seemingly finite complexity N, if the number of basis
functions measures complexity. The KST considered

neither the complexity of univariate functions,
implementing Kolmogorov’s representation, nor
inevitable influence of noise on measured values of a
function f, as was pointed out in [25]. That only says
[50], that only approximate models make sense for real
applications. The KST still can serve as an ideal model,
showing ways of improving currently existing models in
terms of efficiency. Indeed, traditional currently used
adaptive models (for example, nonlinear perceptrons or
RBF networks) are implemented as weighted sums of
fixed shape basis functions with adaptively adjusted on
the data internal parameters. The proof of KST utilizes
basis functions with a shape adjustable on the data.
Therefore, the necessary condition for improving
efficiency is increasing degree of basis functions
adaptivity.

ε ε

ε 0=

Barron [9,10] has introduced a broad subclass of the
functions with limited variability of the class of
multidimensional continuous functions and two
measures for efficiency of the class of the models,
approximating functions from this subclass. One of
these measures is mean squared approximating error
(approximating MSE), which measures maximal
approximating MSE for a function in subclass, obtained
by a best model from the class of models. Another
measure, closer to the reality, measures maximal
estimating MSE for a function in subclass, obtained by a
model trained on the dataset with a finite size P. Since
these measures are impossible to derive, Barron
concentrated on the lower asymptotic bounds for
approximating and estimating MSE for the subclass of
continuous functions, and compared these bounds for
two classes of models, linear one and nonlinear
perceptron, when both N and P tend to infinity. Because
of noise for each class of models there exists least

achievable approximation error . Let , are the
numbers of basis functions needed to achieve for
linear models and for nonlinear perceptrons respectively.
Then the bounds in [9] imply, that

 for some

. Obviously inequality holds for

sufficiently small ε . Therefore, the class of linear
models need much more complexity than the class of
nonlinear perceptrons, and less efficient. Similar results
were obtained for some other classes of neural networks,
for example, RBF networks [58] and hinging
hyperplanes [16].

ε lN

2
p ε

l

pN

)
pN

ε

()() (exp , 1/lN O N Oαε= − =

0α> N

Thus, the general scheme for estimating a new class of
neural network architectures should include the
following steps: 1) define a subclass of a class of
continuous multidimensional functions, broad enough to
include current applications and having a well defined
measure of variability; 2) derive a bound on (at least)

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1311 Issue 11, Volume 7, November 2008

approximation error as a function of class complexity
N; 3) derive the estimate of required class complexity

; 4) compare with the best known

estimate of complexity , when ; 5) if

 for sufficiently small values of ε , then

suggested class of neural network architectures
outperforms existing classes of neural network
architectures (on the suggested subclass of continuous
functions) and deserves to be included in the set of
recognized neural network architectures. The
Kolmogorov’s Spline Network (KSN) [41] has
complexity (measured as the total number of adjustable

on the data parameters) , which

is obviously less than for sufficiently

small values of ε , proving an advantage in efficiency of
modeling of the KSN over nonlinear perceptron in the
subclass of multidimensional continuous functions with
bounded absolute value of the gradient [41]. It is worth
note, that formulated above criterion measures average
in the subclass efficiency of modeling, is based on
asymptotic bounds, does not take into account
distribution of data, and so on. That means, that classes
of neural networks, which already have proved their
efficiency in many applications (at least such as RBF
networks and nonlinear perceptron), have to be included
in a good modeling tool. In any particular application
their representatives may outperform (or may not) a
representative of the class with better average modeling
efficiency. Therefore, several classes of neural networks
should be tested off-line.

ε

()eN F ε=

e bN N<

eN

bN

()ks

N O=

0ε→

(3/ 21/ ε

)
)N Oε =

(21/p ε

Approach to modeling, accepted in this paper is
significantly based on the modern understanding of the
nature of human intellect. According to [27], the cortex
is the primary area in the humans responsible for the
intellect. The intellectual activity in the cortex is a
combination of memory and prediction, used for
updating the memory. This paper considers only the
specific implementation of the prediction module,
because work on neural network implementation of
memory is still in progress, and available only in some
pending proposals. It is suggested implementation of the
prediction module through the Clustering Ensemble
Approach (CEA), described in [35-45]. The CEA is a
combination of clustering and neural network modeling,
featuring many steps for mitigating the problems of
“curse of dimension”, large size of the network, large
size of the data set for learning, stability of training and
testing, and allowing for dynamic modeling of time-
varying data, feature selection and visualizations. These
unique steps of CEA are described in detail in next
section.

There exist a number of important problems for
discriminating two very similar patterns, for example,
discriminating target in clutter from the clutter or law-
abiding from criminal patterns of making bank
transactions. In these cases a problem reduces to the
problem of efficient construction of decision boundaries
between regions for acceptance of two mutually
exclusive hypotheses. Use of complex inputs and
weights may significantly mitigate a problem in these
cases [39,63,67]. Suggested in this paper the KSCN
might be the most efficient complex-valued model for
pattern recognition. Currently this is an assumption. The
proof of this assumption is in progress.

The CEA method starts by dividing the whole data set
available for learning in two sets, for learning and for
validation, leaving 97% of the whole data for learning
and 3% for validation. The training set uses 75% of
learning data, while the testing set utilizes remaining
25%. The features of the objects of the data set are
divided in the inputs and the outputs. The training set is
used for optimization of the training mean squared error
(MSE), while the testing set is used for optimizing the
testing (generalization) MSE. Both optimizations are
used to select the final learned model, which is validated
on the validation set. The whole procedure of training
consists of the following steps: 1) clustering; 2) building
a set of local neural networks, using the CEA on each
cluster; 3) building one global network from the set of
local networks; 4) utilizing the global network for
predictions; 5) short-term and long-term updating of
relevant local and the global networks and the learning
data. Short-term updating includes updating of one local
network and updating of the global network and some
cluster parameters. It is performed after each new
pattern arrival. Long-term updating includes additionally
updating of all local networks and complete re-
clustering.

The CEA currently includes the following neural
network architectures: nonlinear perceptron, RBF
network, Complex Weights Network (CWN), and the
KSN. It is planned to include the KSCN in the CEA in
the near future. Availability of such variety of modeling
architectures, including currently the most efficient
ones, favorably distinguishes the CEA from other
existing modeling tools in itself. But the CEA has
several other distinguished features related to: (1)
mitigating “curse of dimension”, large size of the
network, large size of learning set; (2) neural network
training and testing stability; (3) dealing with time-
varying data; and (4) treating data with different sets of
inputs (data fusion).

Clustering can significantly reduce the size of the search
space. Another advantage of the clustering is that the
training, testing and validation of a number of short

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1312 Issue 11, Volume 7, November 2008

local networks, trained separately on the each cluster,
could be made significantly faster than the training of
one big network, built on the total set. Thus, the
clustering is helpful both in coping with the “course of
dimension” and increasing the speed of the algorithm by
using shorter networks trained on smaller sets. The
clustering algorithm makes patterns inside one cluster
more similar to each other than the patterns, belonging
to different clusters, and additionally equalizes
(approximately) the cluster sizes. The algorithm was
developed and tested in [43], and is based on dynamical
version of the K-means clustering [21], with an
advanced initialization step [14], mitigating the
deficiencies of the K-means algorithm.

The main objective of this research is to reduce the
response time of KSCN. The purpose is to perform the
testing process in the frequency domain instead of the
time domain. Our approach was successfully applied for
sub-image detection using fast neural networks (FNNs)
as proposed in [81,82,83,87,88]. Furthermore, it was
used for fast face detection [84,86], and fast iris
detection [85]. Another idea to further increase the speed
of FNNs through image decomposition was suggested in
[84].

II. Realization of Neural Networks by using
KOLMOGOROV’s Superposition Theorm

Kolmogorov’s Superposition Theorem (KST) gives the
general and very parsimonious representation of a
multivariate continuous function through superposition
and addition of univariate functions. According to [56],
the KST states that any function, f, continuous in
standard unit hypercube of dimension d, has the
following representation:

() ()
2 1

1 1

d d

i n i
n i

f x g xλψ
+

= =

⎡ ⎤= ⎢⎣ ⎦
∑ ∑ ⎥ (1)

with some continuous univariate function g depending

on f, while univariate functions, nψ , and constants, iλ ,

are independent of f.

In [31], Hecht-Nielsen recognized that the KST could be
utilized in neural network computing. He proved that the
Kolmogorov’s superpositions could be interpreted as a
four-layer feed-forward neural network, using
Sprecher’s enhancement of the KST [70]. Girosi [25]
pointed out, that the KST is irrelevant to neural network
computing, because of very high complexity of

computation of the functions and ng ψ from the finite

set of data. However, Kurkova [50] noticed, that in the
Kolmogorov’s proof of the KST the fixed number of

basis functions, 2d 1+ , can be replaced by a variable
N, and, the task of function representation by the task of
function approximation. She also demonstrated [51],
how to approximate Hecht-Nielsen’s network by the
traditional neural network. Numerical implementation of
the Kolmogorov’s superpositions was analyzed in
[71,72]. All these works were the attempts to preserve
the efficiency of the Kolmogorov’s theorem in
representation of a multivariate continuous function in
its practical implementation. If implemented with
reasonable complexity this feature can make a
breakthrough in building efficient approximations.
However, since the estimations of the complexity of the
suggested algorithms of the KST implementation are not
available so far, the arguments against those efforts in
[25] were not yet refuted until 2003.

The approach adopted in [41] is different. The starting
point is a function approximation, from the finite set of
data, by a neural network of the type given by equation
(1). The function, f, to be approximated belongs to the
class, Φ , of continuously differentiable functions with
bounded gradient, which is wide enough for
applications. A qualitative improvement of the

approximation ,f f and N Nf f≈ ∈Φ , using some

of ideas of the KST proof, was sought. The KST proof
was utilized to derive, that it is important to vary,
dependant on data, the shape of external univariate
function, g, in contrast to traditional neural networks
with fixed-shape basis functions.
Here the Kolmogorov’s Spline Network, (KSN) is
introduced. The distinctive features of this architecture
are: it is obtained from (3) by replacing the fixed
number of basis functions, , by the variable N,
and by replacing both external function, g, and the
internal functions,

2d +1

nψ , functions by the cubic spline

functions [66], () ()int and .,ni nis w

and N

int.,n ns w

int
niw

respectively. Use of cubic splines allows for varying the
shape of basis functions in the KSN by adjusting the

spline parameters . Thus, the KSN, intwn f ,

is defined as follows:

() ()int int

1 1

, ,
N d

ext
N n n i ni i

n i
f x W w s s x w wλ

= =

⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑0
extw= + ,n ni

, (2)

where 1,... dλ λ , like in KST, are rationally independent

numbers (Shidlovskii, 1989, 69-74), satisfying the

conditions . These

numbers are not adjustable on the data and can be

1 0,...λ λ
1

0, 1
d

d i
λ

=
> > ∑ i ≤

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1313 Issue 11, Volume 7, November 2008

chosen independent of an application. The following
theorem formulates the main result in [41], that the rate
of convergence of approximation error to zero with

 is significantly higher for KSN than the
corresponding rate for existing currently neural
networks. Define the complexity of the approximation
of the function f by a network (4) as the number of
adjustable parameters needed to achieve given
approximation error. Then the theorem states

N →∞

Theorem (Estimate of the Rate of Convergence of the
KSN to the Target Function):
For any function and any natural N there exists

a KSN defined by equation (4) with the cubic spline

univariate functions

f ∈Φ

,s s
nis

1λ

ns

1
,

d
d i=∑

, defined on [0,1], and

rationally independent numbers

, such that 1 0,... 0λ λ> > i ≤

1

Nf f O
N

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. (3)

The complexity of a network parameters P satisfies the
equation

()3/2P O N= . (4)

This statement favorably compares the KSN with the
networks currently in use. Most of the existing neural

networks, Wf , provide the estimate of approximation

error by the following equation:

()1/Nf f O N− = .

Suppose N is the number of basis functions for KSN
needed to have the error of approximation equal 0ε >

*N

.
Comparison of the last equation and (5) shows that the

number of basis functions for existing networks, , is

. Therefore, the number of their

parameters, , is . It is obvious, that

 for large values of N.

(2N

P∗
P

)
)

*N = Ο

P∗ >>
(2P N∗ = Ο

The motivation for work on Kolmogorov’s Spline
Complex Network (KSCN) came as a result of
analyzing work described in [39,41]. The CWN network
was obtained by generalization of the RBF network,
using complex weight parameters. It was shown, that the
CWN outperforms the RBF network in a number of
difficult classification tasks, while in regression
problems performance of the both networks has not
shown significant difference. The universal
approximation capability of the CWN network was

proved, although no results on the rate of convergence
of the training MSE to zero were received. From the
other hand the KSN has estimates of the rate of
convergence of the training MSE to zero, and its
advantage over existing neural networks in performance
was demonstrated in the previous subsection. There was
natural to combine ideas of the CWN and KSN in a
network with complex weights, and to explore if this
combination can be advantageous in case of
classification tasks. This argument led to the following
definition of the Kolmogorov’s Spline Complex
Network given by:

() ()int int
0

1 1

, ,
N d

ext ext
N n n i ni i

n i
f x W w w s s x w wλ

= =

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑ ∑ ,ni n

int intext ext =

, (5)

where

is the set of all adjustable network parameters, are

complex weights (parameters). We will show that the
KSCN is at least as good in classification and regression
tasks as the CWN, and it is likely that this advantage is
significant. It should be noticed in advance that the
estimate of the rate of convergence of training MSE to
zero is evaluated for the best possible network in the

class. Indeed, the splines can be chosen so, that they

will approximate any activation function used for the
CWN (for example, Gaussians) with any desired

accuracy. From the other hand, splines can be

chosen so that that they will be represented by the
piecewise linear functions on the almost all interval
[0,1], with cubic spline connections, occupying arbitrary
small part of this interval. In particular this
representation can be chosen even linear for almost all
interval [0,1]. Thus, the KSCN will be reduced to the
arbitrary CWN network in this last case. Therefore, the
best KSCN is at least as best as the best CWN. It looks
quite plausible, that the advantage of the best KSCN
over the best CWN will be significant because 1)
piecewise linear functions has much better
approximation capability than linear ones; 2) more than
that, piecewise qubic polynomials has much better
approximation capability than piecewise linear
functions.

{ }0 , , , , 1,... , 1,...n n niW w w w w n N i d= =
int
niw

ns

nis

The CEA allows for treating basis functions with
adjustable shape (such as KSN and KSCN) exactly in
the same manner as basis functions with fixed shape.
The main scheme of the CEA consists of generating
ensemble of internal parameters inside basis functions,

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1314 Issue 11, Volume 7, November 2008

and then determining the external parameters of a
network by the RLR for each member of the ensemble.
The only additional module for the KSN and the KSCN
is the module for construction the splines, described in
[41].

III. FKSCN Based on Cross Correlation in
the Frequency Domain

Finding a certain pattern in the input one dimensional
matrix is a searching problem. Each position in the input
matrix is tested for the presence or absence of the
required pattern. At each position in the input matrix,
each sub-matrix is multiplied by a window of weights,
which has the same size as the sub-matrix. The outputs
of neurons in the hidden layer are multiplied by the
weights of the output layer. When the final output is
high, this means that the sub-matrix under test contains
the required pattern and vice versa. Thus, we may
conclude that this searching problem is a cross
correlation between the matrix under test and the
weights of the hidden neurons.

The convolution theorem in mathematical analysis says
that a convolution of f with h is identical to the result of
the following steps: let F and H be the results of the
Fourier Transformation of f and h in the frequency
domain. Multiply F and H in the frequency domain point
by point and then transform this product into the spatial
domain via the inverse Fourier Transform. As a result,
these cross correlations can be represented by a product
in the frequency domain. Thus, by using cross
correlation in the frequency domain, speed up in an
order of magnitude can be achieved during the detection
process [79]. In pattern detection phase, a sub matrix I
of size 1xn (sliding window) is extracted from the tested
matrix, which has a size 1xN, and fed to the neural
network. Let Wi be the matrix of weights between the
input sub-matrix and the hidden layer. This vector has a
size of 1xn and can be represented as 1xn matrix. The
output of hidden neurons hi can be calculated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih (6)

where g is the activation function and b(i) is the bias of
each hidden neuron (i). Eq. 6 represents the output of
each hidden neuron for a particular sub-matrix I. It can
be obtained to the whole input matrix Z as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iWg(u)ih (7)

Eq.7 represents a cross correlation operation. Given any
two functions f and d, their cross correlation can be
obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

y
y)d(y)f(xd(x)f(x) (8)

Therefore, Eq. 7 may be written as follows [79]:

()ibiWZgih +⊗= (9)

where hi is the output of the hidden neuron (i) and hi (u)
is the activity of the hidden unit (i) when the sliding
window is located at position (u) and (u) ∈ [N-n+1].

Now, the above cross correlation can be expressed in
terms of one dimensional Fast Fourier Transform as
follows [79]:

() ()()iW*FZF1FiWZ •−=⊗ (10)

F: is the Fast Fourier Transform.
F*: is the conjugate Fast Fourier Transform.
F-1: is the Inverse Fast Fourier Transform.
⊗: is the cross correlation operator.
•: is the dot product (element by elementy) operator.

Hence, by evaluating this cross correlation, a speed up
ratio can be obtained comparable to CKSCN. Also, the
final output of the neural network can be evaluated as
follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u) (11)

where q is the number of neurons in the hidden layer.
O(u) is the output of the neural network when the sliding
window located at the position (u) in the input matrix Z.
Wo is the weight matrix between hidden and output
layer.

The complexity of cross correlation in the frequency
domain can be analyzed as follows:

1- For a tested matrix of 1xN elements, the 1D-FFT
requires a number equal to Nlog2N

 of complex
computation steps [78]. Also, the same number of
complex computation steps is required for computing
the 1D-FFT of the weight matrix at each neuron in the
hidden layer.

2- At each neuron in the hidden layer, the inverse 1D-
FFT is computed. Therefore, q backward and (1+q)
forward transforms have to be computed. Therefore, for
a given matrix under test, the total number of operations
required to compute the 1D-FFT is (2q+1)Nlog2N.

3- The number of computation steps required by
FKSCN is complex and must be converted into a real

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1315 Issue 11, Volume 7, November 2008

version. It is known that, the one dimensional Fast
Fourier Transform requires (N/2)log2N

 complex
multiplications and Nlog2N complex additions [78].
Every complex multiplication is realized by six real
floating point operations and every complex addition is
implemented by two real floating point operations.
Therefore, the total number of computation steps
required to obtain the 1D-FFT of a 1xN matrix is:

ρ=6(N/2)log2N + 2Nlog2N (12)

which may be simplified to:

ρ=5Nlog2N (13)

4- Both the input and the weight matrices should be dot
multiplied in the frequency domain. Thus, a number of
complex computation steps equal to qN should be
considered. This means 6qN real operations will be
added to the number of computation steps required by
FKSCN.

5- In order to perform cross correlation in the frequency
domain, the weight matrix must be extended to have the
same size as the input matrix. So, a number of zeros =
(N-n) must be added to the weight matrix. This requires
a total real number of computation steps = q(N-n) for all
neurons. Moreover, after computing the FFT for the
weight matrix, the conjugate of this matrix must be
obtained. As a result, a real number of computation steps
= qN should be added in order to obtain the conjugate of
the weight matrix for all neurons. Also, a number of
real computation steps equal to (N) is required to create
butterflies complex numbers (e-jk(2Πn/N)), where 0<K<N.
These (N/2) complex numbers are multiplied by the
elements of the input matrix or by previous complex
numbers during the computation of FFT. To create a
complex number requires two real floating point
operations. Thus, the total number of computation steps
required for FKSCN becomes:

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N (14)

which can be reformulated as:

 σ=(2q+1)(5Nlog2N)+q(8N-n)+N (15)

6- Using sliding window of size 1xn for the same matrix
of 1xN pixels, q(2n-1)(N-n+1) computation steps are
required when using CKSCN for certain pattern
detection or processing (n) input data. The theoretical
speed up factor η can be evaluated as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-q(2n

2 +++
+

=η (16)

IV. Experimental Results for FKSCN

FKSCN accepts serial input data with fixed size (n).
Therefore, the number of input neurons equals to (n).

Instead of treating (n) inputs, our new approach is to
collect all the input data together in a long vector (for
example 100xn). Then the input data is tested by
FKSCN as a single pattern with length L (L=100xn).
Such a test is performed in the frequency domain.
Complex-valued neural networks have many
applications in fields dealing with complex numbers
such as telecommunications, speech recognition and
image processing with the Fourier Transform [32].
Complex-valued neural networks mean that the inputs,
weights, thresholds and the activation function have
complex values. In this section, formulas for the speed
up ratio with different types of inputs will be presented.
The special case of only real input values (i.e. imaginary
part=0) will be considered. Also, the speed up ratio in
the case of a one and two dimensional input matrix will
be concluded. The operation of FKSCN depends on
computing the Fast Fourier Transform for both the input
and weight matrices and obtaining the resulting two
matrices. After performing dot multiplication for the
resulting two matrices in the frequency domain, the
Inverse Fast Fourier Transform is calculated for the final
matrix. Here, there is an excellent advantage with
FKSCN that should be mentioned. The Fast Fourier
Transform is already dealing with complex numbers, so
there is no change in the number of computation steps
required for FKSCN. Therefore, the speed up ratio in the
case of FKSCN can be evaluated as follows:

1) In case of real inputs

A) For a one dimensional input matrix

Multiplication of (n) complex-valued weights by (n) real
inputs requires (2n) real operations. This produces (n)
real numbers and (n) imaginary numbers. The addition
of these numbers requires (2n-2) real operations.
Therefore, the number of computation steps required by
CKSCN can be calculated as:

θ=q(2n-1)(N-n+1) (17)

The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η (18)

The theoretical speed up ratio for searching short
successive (n) data in a long input vector (L) using
FKSCN is shown in Figures 1, 2, and 3. Also, the
practical speed up ratio for manipulating matrices of
different sizes (L) and different sized weight matrices
(n) using a 700 MHz processor and MATLAB is shown
in Figure 4.

B) For a two dimensional input matrix

Multiplication of (n2) complex-valued weights by (n2)
real inputs requires (2n2) real operations. This produces

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1316 Issue 11, Volume 7, November 2008

(n2) real numbers and (n2) imaginary numbers. The
addition of these numbers requires (2n2-2) real
operations. Therefore, the number of computation steps
required by CKSCN can be calculated as:

θ=2q(2n2-1)(N-n+1) 2 (19)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η (20)

The theoretical speed up ratio for detecting (nxn) real
valued submatrix in a large real valued matrix (NxN)
using FKSCN is shown in Figures 5, 6, 7. Also, the
practical speed up ratio for manipulating matrices of
different sizes (NxN) and different sized weight matrices
(n) using a 700 MHz processor and MATLAB is shown
in Figure 8.

2) In case of complex inputs

A) For a one dimensional input matrix

Multiplication of (n) complex-valued weights by (n)
complex inputs requires (6n) real operations. This
produces (n) real numbers and (n) imaginary numbers.
The addition of these numbers requires (2n-2) real
operations. Therefore, the number of computation steps
required by CKSCN can be calculated as:

θ=2q(4n-1)(N-n+1) (21)

The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η (22)

The theoretical speed up ratio for searching short
complex successive (n) data in a long complex-valued
input vector (L) using FKSCN is shown in Figures 9, 10,
and 11. Also, the practical speed up ratio for
manipulating matrices of different sizes (L) and different
sized weight matrices (n) using a 700 MHz processor
and MATLAB is shown in Figure 12.

B) For a two dimensional input matrix

Multiplication of (n2) complex-valued weights by (n2)
real inputs requires (6n2) real operations. This produces
(n2) real numbers and (n2) imaginary numbers. The
addition of these numbers requires (2n2-2) real
operations. Therefore, the number of computation steps
required by CKSCN can be calculated as:

θ=2q(4n2-1)(N-n+1)2 (23)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(4n
222

2
2

22

+++
+

=η (24)

The theoretical speed up ratio for detecting (nxn)
complex-valued submatrix in a large complex-valued
matrix (NxN) using FKSCN is shown in Figures 13, 14,
and 15. Also, the practical speed up ratio for
manipulating matrices of different sizes (NxN) and
different sized weight matrices (n) using a 700 MHz
processor and MATLAB is shown in Figure 16.

In practical implementation, the multiplication process
consumes more time than the addition one. The effect of
the number of multiplications required for CKSCN in
the speed up ratio is more than the number of of
multiplication steps required by the FKSCN. Also, the
vaiations in Pc clock have an effect on practical
computations.

For a one dimensional matrix, from Figures
1,2,3,4,9,10,11, and 12, we can conclude that the
response time for vectors with short lengths are faster
than those which have longer lengths. For example, the
speed up ratio for the vector of length 10000 is faster
that of length 1000000. The number of computation
steps required for a vector of length 10000 is much less
than that required for a vector of length 40000. So, if the
vector of length 40000 is divided into 4 shorter vectors
of length 10000, the number of computation steps will
be less than that required for the vector of length 40000.
Therefore, for each application, it is useful at the first to
calculate the optimum length of the input vector. The
same conclusion can be drawn in case of processing the
two dimensional input matrix as shown in Figures
5,6,7,8,13,14,15, and 16. From these Figures, it is clear
that the maximum speed up ratio is achieved at image
size (N=200) when n=20, then at image size (N=300)
when n=25, and at image size (N=400) when n=30. This
confirms our previous results presented in [84] on fast
subimage detection based on neural networks and image
decomposition. Using this technique, it was proved that
the speed up ratio of neural networks becomes faster
when the input image is divided into many subimages
and each subimage is processed in the frequency domain
separately using a single fast neural processor. Another
point of interest should be noted. In CKSCN, if the
whole input data (N) is available, then there is a waiting
time for each group of (n) input data so that CKSCN can
release their output for the previous group of (n) data. In
contrast, FKSCN can process the total N data directly
with zero waiting time. For example, if the total (N)
input data is appeared at the input neurons, then:
1- CKSCN can process only data of size (n) as the
number of input neurons = (n).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1317 Issue 11, Volume 7, November 2008

2- The first group of (n) data is processed by CKSCN.
3- The second group of (n) data must wait for a waiting
time = τ, where τ is the response time consumed by
CKSCN for treating each group of (n) input data.
4- The third group of (n) data must wait for a waiting
time = 2τ corresponding to the total waiting time
required by CKSCN for treating the previous two
groups.
5- The fourth (n) data must wait for a waiting time = 3τ.
6- The last group of (n) data must wait for a waiting
time = (N-n)τ.
As a result, the wasted waiting time in the case of
CKSCN is (N-n)τ. In the case of FKSCN, there is no
waiting time as the whole input data (Z) of length (N)
will be processed directly and the time consumed is the
only time required by FKSCN themselves to produce
their output.

V. Conclusion
A new approach to speed up the operation of
Kolmogorov’s Spline Complex Network has been
presented. Theoretical computations have shown that
FKSCN require fewer computation steps than
conventional one. This has been achieved by applying
cross correlation in the frequency domain between the
input data and the input weights of neural networks.
Simulation results have confirmed this proof by using
MATLAB. Furthermore, neural network architecture
with complex weights and potentially complex inputs, in
context of adaptive dynamic modeling of time-variant
multidimensional data has been discussed.

References
[1] H. Adeli, S-L. Hung, Machine learning. Neural networks,

genetic algorithms, and fuzzy systems, New York, NY: John
Wiley & Sons, 1995.

[2] H. Adeli, A. Samant, Wavelets to enhance computational
intelligence, In P. Sincak, J. Vascak (Eds). Quo vadis
computational intelligence? New trends and approaches in
computational intelligence (pp. 399-407). Heidelberg; New
York: Physica-Verlag 2000.

[3] I. N. Aizenberg, N. N. Aizenberg, , and V. Joos, Multi-
valued and universal binary neurons- Theory, learning, and
applications, Boston, MA: Kluwer Academic Publishers,
2000.

[4] A. Albert, Regression and the Moore-Penrose
pseudoinverse. New York, NY: Academic Press, 1972.

[5] R. T. Antony, Principles of data fusion automation,
Norwood, MA: Artech House, 1995.

[6] P. Arena, L. Fortuna, G. Muscato, and M. G. Xibilia,
Neural networks in multidimensional domains,
Fundamentals and new trends in modeling and control. New
York: Springer, 1998.

[7] K. Astrom, B. Wittenmark, Adaptive control, Reading,
MA: Addison-Wesley, 1995.

[8] T. Bäck, Evolutionary algorithms in theory and practice,
New York, NY: Oxford University Press, 1996.

[9] A. R. Barron, Universal approximation bounds for
superpositions of a sigmoidal function, IEEE Transactions
on Information Theory, 39(4), 930-945, 1993.

[10] A. R. Barron, Approximation and estimation bounds for
artificial neural networks, Machine Learning, 14(1), 115-
133, 1994.

[11] J. Bezdek, On the relationship between neural networks,
pattern recognition and intelligence, International Journal
on Approximating Reasoning, 6(2), 85-107, 1992.

[12] J. C. Bezdek, J. Keller, Krishnapuram, R., and Pal, N. R.,
Fuzzy models and algorithms for pattern recognition and
image processing. Norwell, MA: Kluwer Academic
Publishers, 1999.

[13] C. M. Bishop, Neural networks for pattern recognition,
New York, NY: Oxford University Press, 1995.

[14] P. S. Bradley, U. M. Fayyad, Refining initial points for K-
means clustering, In 15th International Conference on
Machine Learning (pp. 91-99). Los Altos, CA: Morgan
Kaufmann, 1998.

[15] Breiman, L., Friedman, J. H., Olshen, R. A, and Stone, C.
J., Classification and regression trees, Boca Raton, FL:
Chapman & Hall/CRC, 1984.

[16] L. Breiman, Hinging hyperplanes for regression,
classification, and function approximation, IEEE
Transactions on Information Theory, 39(4), 999-1013, 1993.

[17] L. Breiman, Bagging predictors, Machine Learning,
24(1), 123-140, 1996.

[18] L. Breiman, Combining predictors, In A. Sharkey (Ed.).
Combining artificial neural nets: Ensemble and modular
multi-net systems (pp. 31-50). London: Springer, 1999.

[19] P. Congdon, Bayesian statistical modeling. Chichester,
West Sussex: John Wiley & Sons, Ltd 2006.

[20] N. Cristianini, J. Shawe-Taylor, An introduction to
support vector machines, Cambridge, UK: Cambridge
University Press, 2000.

[21] R. O. Duda, P. E. Hart, D. G. Stork, Pattern
classification, New York, NY: JohnWiley & Sons, Inc.,
2001.

[22] G. S. Fishman, Monte Carlo. Concepts, algorithms, and
applications, New York, NY: Springer, 1995.

[23] K. Fukunaga, Introduction to statistical pattern
recognition, New York, NY: Academic Press, 1990.

[24] G. Georgiou, C. Koutsougeras, Complex domain back-
propagation, IEEE Transactions on Circuits and Systems-II:
Analog and Digital Signal Processing, 39(5), 330-334,
1992.

[25] F. Girosi, T. Poggio, Representation properties of
networks: Kolmogorov’s theorem is irrelevant, Neural
Computation, 1(4), 465-469, 1989.

[26] J. C. Goswami, A. K. Chan, Fundamentals of wavelets.
Theory, algorithms, and applications. New York, NY: John
Wiley & Sons, Inc, 1999.

[27] J. Hawkins, S. Blakeslee, On intelligence, New York:
Henry Holt and Company, 2004.

[28] S. Haykin, Adaptive filter theory. Fourth edition, Upper
Saddle River, NJ: Prentice Hall, 2002.

[29] S. Haykin, Neural networks, a comprehensive foundation,
New York, NY: IEEE Press, 1994.

[30] S. Haykin, (Ed.), Kalman filtering and neural networks,
New York, NY: John Wiley & Sons, 2001.

[31] R. Hecht-Nielsen, Kolmogorov’s mapping neural network
existence theorem, In IEEE International Conference on

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1318 Issue 11, Volume 7, November 2008

Neural Networks, 3 (pp. 11-13). New York, NY: IEEE
Press, 1987.

[32] A. Hirose, (Ed.). Complex-valued neural networks,
Singapore: World Scientific Publishers, 2003.

[33] A. Hirose, Complex-valued neural networks, Berlin:
Springer, 2006.

[34] S. A. Hovanessian, Introduction to sensor systems,
Norwood, MA: Artech House, 1984.

[35] B. Igelnik, and Y. - H Pao, Stochastic choice of basis
functions in adaptive function approximation and the
functional-link net, IEEE Transactions on Neural Networks,
6(6), 1320-1329, 1995.

[36] B. Igelnik, Y- H Pao, and S. R. LeClair, An approach for
optimization of a continuous function with many local
minima, In 30th Annual Conference on Information Sciences
and Systems, 2 (pp. 912-917), Department of Electrical
Engineering, Princeton University, Princeton, NJ, 1996.

[37] B. Igelnik, , Y- H Pao., S. R. LeClair, & C. Y.Shen, The
ensemble approach to neural network learning and
generalization, IEEE Transactions on Neural Networks,
10(1), 19-30, 1999.

[38] B. Igelnik, Some new adaptive architectures for learning,
generalization, and visualization of multivariate data, In P.
Sincak and J. Vascak (Eds.). Quo Vadis Computational
Intelligence? New Trends and Approaches in Computational
Intelligence (pp. 63-78). Heidelberg; New York, NY:
Physica-Verlag, 2000.

[39] B. Igelnik, M. Tabib-Azar, & S. LeClair, A net with
complex weights, IEEE Transactions on Neural Networks,
12(2), 236-249, 2001a.

[40] B. Igelnik, Method for visualization of multivariate data
in a lower dimension, In SPIE Visual Data Exploration and
Analysis VIII, 4302, (pp. 168-179), San Jose, CA, 2001b.

[41] B. Igelnik, N. Parikh, Kolmogorov’s spline network,
IEEE Transactions on Neural Networks, 14(3), 725-733,
(2003a).

[42] B. Igelnik, Visualization of large multidimensional
datasets in a lower dimension, SBIR Phase I Final Report,
#0232775, NSF. 2003b.

[43] B. Igelnik, Visualization of large multidimensional
datasets in a lower dimension. SBIR Phase II Proposal,
#0349713, NSF, 2003c.

[44] B. Igelnik, N. Parikh, System for multidimensional data
modeling, optimization, analysis and visualization,
Submitted to US PTO, 2004.

[45] B. Igelnik, Neural network model with clustering
ensemble approach, Submitted to US PTO, 2005.

[46] B. Igelnik, Visual tools for large datasets with
applications, SBIR Phase I Proposal, #0637258, NSF, 2006.

[47] P. Jackson, Introduction to expert systems, Reading, MA:
Addison-Wesley, 1986.

[48] M. Kalos, P. A. Witlock, Monte Carlo methods, New
York, NY: John Wiley & Sons, 1986.

[49] M. S. Kim, C. C. Guest, Modification of back-
propagation for complex-valued signal processing in
frequency domain, In International Joint Conference on
Neural Networks 1990 San Diego (pp. 27-31). New York:
IEEE, 1990.

[50] V. Kurková, Kolmogorov's theorem is relevant, Neural
Computation, 3(4), 617-622, 1991.

[51] V. Kurková, Kolmogorov’s theorem and multilayer neural
networks, Neural Networks, 5(3), 501-506, 1992.

[52] A. N. Kolmogorov, On the representation of continuous
functions of many variables by superposition of continuous
functions of one variable and addition. Doklady Akademii
Nauk SSSR, 114(5), 953-956. (1963). Translations American
Mathematical Society, 2(28), 55-59, 1957.

[53] H. Leung, S. Haykin, The complex backpropagation
algorithm, IEEE Transactions on Signal Processing, 39(9),
2101-2104, 1991.

[54] G. Li, K. B. Yu, Modeling and simulation of coherent
Weibull clutter. IEE Proceedings, Part. F, 136(1), 1-9,
1988.

[55] L. Ljung, System identification theory for the user.
Englewood Cliffs, NJ: Prentice Hall, 2000.

[56] G. G. Lorentz, G. G. von Golitschek, M. Y. Makovoz,
Constructive approximation, Advanced problems. New
York: Springer, 1996.

[57] F-L. Luo, R. Unbehauen, Applied neural networks for
signal processing. NY: Cambridge University Press, 1997.

[58] H. Mhascar, C. Miccheli, Approximation by superposition
of sigmoidal and radial basis functions, Advances in Applied
Mathematics, 13(3), 350-373, 1992.

[59] M. Mitchell, An introduction to genetic algorithms,
Cambridge, MA: The MIT Press, 1996.

[60] H. Niederreiter, Quasi-Monte Carlo methods and
pseudorandom numbers. Bulletin of American Mathematical
Society, 84, 957-1041, 1978.

[61] N. J. Nilsson, Artificial intelligence, A new synthesis.
SanFrancisco, CA: Morgan Kaufmann Publishers, 1998.

[62] N. Nitta, An extension of the backpropagation algorithm
to complex numbers, Neural Networks, 10(8), 1391-1415,
1997.

[63] N. Nitta, On the inherent property of the decision
boundary in complex-valued neural networks,
Neurocomputing, 50(1), 291-303, 2003.

[64] A. V. Oppenheim, R. W. Schafer, Digital signal
processing, Englewood Cliffs, NJ: Prentice Hall, 1975.

[65] W. Pedricz Computational intelligence, An introduction.
Boca Raton, FL: CRC Press, 1998.

[66] P. M. Prenter, Splines and variational methods, New
York, NY: John Wiley & Sons, 1975.

[67] A. W. Rihaczek, S. J. Hershkowitz, Radar resolution and
complex-image analysis, Norwood, MA: Artech House,
1996.

[68] M. I. Scolnik, (Ed.), Radar handbook, Second edition.
New York, NY: McGraw-Hill, 1990.

[69] A. B. Shidlovskii, Transcendental numbers, Berlin:
Walter de Gruyter, 1989.

[70] D. A. Sprecher, On the structure of continuous functions
of several variables, Transactions of American
Mathematical Society, 115(3), 340-355, 1965.

[71] D. A. Sprecher, A numerical implementation of
Kolmogorov’s superpositions, Neural Networks, 9(5), 765-
772, 1996.

[72] D. A. Sprecher, A numerical implementation of
Kolmogorov’s superpositions II, Neural Networks, 10(3),
447-457, 1997.

[73] M. Stone, Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statistical
Society, B 36(1), 11-147, 1974.

[74] L. D. Stone, C. A. Barlow, and T. L. Corwin, Bayesian
multiple target tracking. Boston, MA: Artech House, 1999.

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1319 Issue 11, Volume 7, November 2008

[75] A. H. Stroud, Approximate calculation of multiple
integrals, Englewood Cliffs, NJ: Prentice-Hall, 1971.

[76] A. D. Zapranis, A. – P. Refenes, Principles of neural
model identification, selection and adequacy, London:
Springer, 1999.

[77] J. Zurada, R. Marks, and C. Robinson, (Eds.).
Introduction to computational intelligence: Imitating life.
Piscataway, NJ: IEEE Press, 1994.

[78] J. W. Cooley, and J. W. Tukey, An algorithm for the
machine calculation of complex Fourier series, Math.
Comput. 19, 297–301 1965.

[79] Hazem M. El-Bakry, New Faster Normalized Neural
Networks for Sub-Matrix Detection using Cross Correlation
in the Frequency Domain and Matrix Decomposition,
Applied Soft Computing journal, vol. 8, issue 2, 1131-1149,
March 2008.

[80] S. Jankowski, A. Lozowski, and M. Zurada, Complex-
valued Multistate Neural Associative Memory, IEEE
Trans. on Neural Networks, vol.7, 1491-1496, 1996.

[81] Hazem M. El-Bakry, Nikos Mastorakis, New Fast
Normalized Neural Networks for Pattern Detection, Image
and Vision Computing Journal, 25(11), 1767-1784, 2007.

[82] H. M. El-Bakry, Q. Zhao, Fast Object/Face Detection
Using Neural Networks and Fast Fourier Transform,
International Journal of Signal Processing, 1(3), 182-187,
2004.

[83] H. M. El-Bakry, Q. Zhao, Fast Pattern Detection Using
Normalized Neural Networks and Cross Correlation in the

Frequency Domain, EURASIP Journal on Applied
Signal Processing, Special Issue on Advances in
Intelligent Vision Systems: Methods and Applications—
Part I, vol. 2005, No. 13, 2054-2060, August 2005.

[84] H. M. El-Bakry, Face detection using fast neural networks
and image decomposition, Neurocomputing Journal, vol.
48, 1039-1046, 2002.

[85] H. M. El-Bakry, Human Iris Detection Using Fast
Cooperative Modular Neural Nets and Image
Decomposition, Machine Graphics & Vision Journal
(MG&V), 11(4), 498-512, 2002.

[86] H. M. El-Bakry, Automatic Human Face Recognition
Using Modular Neural Networks, Machine Graphics &
Vision Journal (MG&V), 10(1), 47-73, 2001.

[87] Hazem M. El-Bakry, New Fast Time Delay Neural
Networks Using Cross Correlation Performed in the
Frequency Domain, Neurocomputing Journal, vol. 69,
2360-2363, October 2006.

[88] Hazem M. El-Bakry and Mohamed Hamada, A New
Implementation for High Speed Neural Networks in
Frequency Space, Lecture Notes in Computer Science,
Springer, KES 2008, Part I, LNAI 5177, 33-40, 2008.

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 1. A comparison between the number of computation steps required by FKSCN and CKSCN in case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=400).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1320 Issue 11, Volume 7, November 2008

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 2. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=625).

0

1E+11

2E+11

3E+11

4E+11

5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 3. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=900).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1321 Issue 11, Volume 7, November 2008

0

5

10

15

20

25

30

35

40

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 4. Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of one dimensional real-valued input matrix

and complex-valued weights.

0

2E+10

4E+10

6E+10

8E+10

1E+11

1E+11

1E+11

2E+11

2E+11

2E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 5. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued two

dimensional input matrix and complex-valued weight matrix (n=20).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1322 Issue 11, Volume 7, November 2008

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 6. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued two

dimensional input matrix and complex-valued weight matrix (n=25).

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

4E+11

4.5E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 7. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued two

dimensional input matrix and complex-valued weight matrix (n=30).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1323 Issue 11, Volume 7, November 2008

0

5

10

15

20

25

30

35

40

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 8. Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of two dimensional real-valued input matrix

and complex-valued weights.

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

4E+11

4.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 9. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued

one dimensional input matrix and complex-valued weight matrix (n=400).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1324 Issue 11, Volume 7, November 2008

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 10. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued

one dimensional input matrix and complex-valued weight matrix (n=625).

0.00E+00
1.00E+11
2.00E+11
3.00E+11
4.00E+11
5.00E+11
6.00E+11
7.00E+11
8.00E+11
9.00E+11
1.00E+12

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 11. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued

one dimensional input matrix and complex-valued weight matrix (n=900).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1325 Issue 11, Volume 7, November 2008

0

10

20

30

40

50

60

70

80

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 12. Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of one dimensional complex-valued input

matrix and complex-valued weights.

0

5E+10

1E+11

2E+11

2E+11

3E+11

3E+11

4E+11

4E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r

of
 C

om
pu

ta
tio

n
St

ep
s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 13. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued

two dimensional input matrix and complex-valued weight matrix (n=20).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1326 Issue 11, Volume 7, November 2008

0

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 14. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued

two dimensional input matrix and complex-valued weight matrix (n=25).

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

8.00E+11

9.00E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by CKSCN

Number of Computation Steps Required
by FKSCN

Fig. 15. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued

two dimensional input matrix and complex-valued weight matrix (n=30).

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1327 Issue 11, Volume 7, November 2008

0

10

20

30

40

50

60

70

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 16. Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of two dimensional complex-valued input

matrix in and complex-valued weights.

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1328 Issue 11, Volume 7, November 2008

