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Abstract—  In this paper, we present a new fast specific 
complex-valued neural network, the fast Kolmogorov’s Spline 
Complex Network (FKSCN), which might be advantageous 
especially in various tasks of pattern recognition.  The 
proposed FKSCN uses cross correlation in the frequency 
domain between the input data and the input weights of 
neural networks. It is proved mathematically and 
practically that the number of computation steps required 
for the FKSCN is less than that needed by conventional 
Kolmogorov’s Spline Complex Network (CKSCN). 
Simulation results using MATLAB confirm the 
theoretical computations. 
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I.  Introduction 

The technological and scientific developments in many 
areas of human activity had reached a level, requiring 
adequate changes in traditional methods of data 
modeling. Consider just two examples. One is related to 
coal-operating power stations. Coal might provide a fuel 
for world power industry for hundreds of years, making 
a good alternative to rapidly decreasing oil. But coal 
combustion produces harmful pollutions. Mitigation of 
this problem by controlling combustion requires 
modeling of power data, which are time-variant, highly 
multidimensional, nonlinear, non-stationary, and 
influenced by complicated, interacting chemical, electro-
magnetic, and mechanical processes [36-46]. There is no 
way to do such modeling by traditional methods of 
control theory [7,55]. The second example is related to 
defense, in particular to problems of detection, 
identification, and tracking targets in the clutter 
environment, utilizing sensors, such as radar, sonar, 
infrared [34,68], and so on. A possibility of multiple 
moving and interacting targets, clutters, and sensors 
makes these problems extremely difficult for solution in 
real applications. The methods for solution of these 
problems, basically Bayesian ones [5,19,74 ], are 
founded on the theory developed 30-50 years ago, and 

inadequate to currently existing reality. There is a long 
history of signal and noise representation, utilizing 
complex numbers in signal processing [28,64,67]. 
Relatively recently was recognized that complex 
representation of inputs and adaptively adjusted weights 
may be helpful in neural network modeling, especially 
for pattern recognition [3,6,24,32,33,39,49,53,62,63]. 

There are several approaches for modeling. Such 
approches are divided into two intersecting groups of 
methods, Artificial Intelligence (AI) [47,61] and 
Computational Intelligence (CI) [11,65,77] groups. It is 
believed that the AI group is more appropriate for 
symbol processing, while the CI group fits more data 
processing. The CI group contains different methods: 
neural networks [13,29,30,57], statistical pattern 
recognition [23], fuzzy sets methods [12], wavelets [26], 
genetic [59] and evolutionary algorithms [8], support 
vector machines [20], classification and regression trees 
[15] and so on.  

This paper considers only neural networks methods. 
Several reasons stand behind the preference given to 
neural networks. These are: 1) one-hidden layer feed-
forward neural networks have a firm theoretical basis 
provided by the Kolmogorov’s Superposition Theorem 
(KST) [52]; 2) q-hidden layer nonlinear perceptron can 
learn a nonlinear mapping more efficiently than any 
linear network [9,10]; 3) applied in combination with 
clustering [19,21], neural networks can efficiently learn 
time-variant, highly multidimensional, nonlinear, and 
non-stationary data [44,45]; 4) in spite of common 
opinion, that neural networks require utilization of large 
leaning sets and large size of networks [1,2], there exist 
several practical ways to significantly mitigate these 
problems; 5) neural networks allow for solving 
efficiently such important tasks related to modeling (and 
data mining), as feature selection and visualization. 
Here, a fast specific neural network architecture with 
complex weights [41,44] and potentially complex inputs 
in context of adaptive dynamic modeling of time-variant 
multidimensional data [45] is descirbed. Basic 
principles, ideas, and algorithms of adaptive neural 
network modeling of time-varying, highly 
multidimensional data are introduced. 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2777 1310 Issue 11, Volume 7, November 2008

mailto:helbakry20@yahoo.com


Consider the advantages of neural networks more in 
detail. There is an old problem of approximation of a 
continuous real-valued function f of d variables (input 
dimension) defined on the closed bounded set E 
(assumed here as a unit hypercube) with a given error ε  
based on information about P values of the function. For 
the class of continuous functions the lower bound for P 
grows exponentially with growth of d. This fact (known 
under name “curse of dimension”) makes reliable 
approximation of an arbitrary continuous 
multidimensional function practically impossible for 
relatively high dimensions. But there exist examples of 
reliable approximation of functions with high values of 
d. How it may occur? Modeling a function, one discerns 
a function from a noise. Actually all methods of 
modeling explicitly or implicitly assume, that a function 
has a bounded rate of variability, while the noise may 
have variability rate higher than that bound. Designers 
of complex systems often make preliminary statistical 
system modeling, imitating noise as a statistical 
distribution with some probability density function (pdf). 
Realizations of a noise with some pdf are obtained as 
continuous functions of a noise with some elementary 
pdf, so-called uniform distribution in the unit interval [0, 
1] [22]. The realizations of the uniform distribution are 
implemented as subsequent values of a continuous 
piece-wise linear function with very high absolute 
values of the derivative. Thus, actually a noise is a 
continuous function with very high rate of variability. In 
order to discern a function and a noise one has to 
consider functions from a subclass of the class of 
continuous functions. Additionally, distribution of a 
noise is unknown in applications, forcing a designer to 
choose among several known distributions, such as 
Gaussian, Weibull [54], and so on, verifying type of 
distribution using statistical criteria. 

Any approximation of a continuous real-valued 
multidimensional function f can be derived from the 
Kolmogorov’s representation of such a function given 
by the KST. The KST states that any continuous 
function of d variables can be represented exactly as a 
finite sum of superpositions of univariate functions, 
where number of terms in the sum depends only on value 
of d and does not depend on a function to be 
approximated. But that representation looks almost like 
a neural network approximation of a continuous 
function. One but extremely important difference is that 
number of terms N in the sum (number of basis 
functions) for a neural network depends on the function f 
to be approximated and on required approximation error 

. Generally N tends to infinity, if  tends to zero. 
Thus, it seems, that the KST gives an ideal neural 
network representation of a continuous 
multidimensional function with error  and with 
seemingly finite complexity N, if the number of basis 
functions measures complexity. The KST considered 

neither the complexity of univariate functions, 
implementing Kolmogorov’s representation, nor 
inevitable influence of noise on measured values of a 
function f, as was pointed out in [25]. That only says 
[50], that only approximate models make sense for real 
applications. The KST still can serve as an ideal model, 
showing ways of improving currently existing models in 
terms of efficiency. Indeed, traditional currently used 
adaptive models (for example, nonlinear perceptrons or 
RBF networks) are implemented as weighted sums of 
fixed shape basis functions with adaptively adjusted on 
the data internal parameters. The proof of KST utilizes 
basis functions with a shape adjustable on the data. 
Therefore, the necessary condition for improving 
efficiency is increasing degree of basis functions 
adaptivity.  

ε ε

ε 0=

Barron [9,10] has introduced a broad subclass of the 
functions with limited variability of the class of 
multidimensional continuous functions and two 
measures for efficiency of the class of the models, 
approximating functions from this subclass. One of 
these measures is mean squared approximating error 
(approximating MSE), which measures maximal 
approximating MSE for a function in subclass, obtained 
by a best model from the class of models. Another 
measure, closer to the reality, measures maximal 
estimating MSE for a function in subclass, obtained by a 
model trained on the dataset with a finite size P. Since 
these measures are impossible to derive, Barron 
concentrated on the lower asymptotic bounds for 
approximating and estimating MSE for the subclass of 
continuous functions, and compared these bounds for 
two classes of models, linear one and nonlinear 
perceptron, when both N and P tend to infinity. Because 
of noise for each class of models there exists least 

achievable approximation error . Let ,  are the 
numbers of basis functions needed to achieve  for 
linear models and for nonlinear perceptrons respectively. 
Then the bounds in [9] imply, that 

 for some 

. Obviously inequality  holds for 

sufficiently small ε . Therefore, the class of linear 
models need much more complexity than the class of 
nonlinear perceptrons, and less efficient. Similar results 
were obtained for some other classes of neural networks, 
for example, RBF networks [58] and hinging 
hyperplanes [16]. 

ε lN

2
p ε

l

pN

)
pN

ε
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Thus, the general scheme for estimating a new class of 
neural network architectures should include the 
following steps: 1) define a subclass of a class of 
continuous multidimensional functions, broad enough to 
include current applications and having a well defined 
measure of variability; 2) derive a bound on (at least) 
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approximation error  as a function of class complexity 
N; 3) derive the estimate of required class complexity 

; 4) compare  with the best known 

estimate of complexity , when ; 5) if 

 for sufficiently small values of ε , then 

suggested class of neural network architectures 
outperforms existing classes of neural network 
architectures (on the suggested subclass of continuous 
functions) and deserves to be included in the set of 
recognized neural network architectures. The 
Kolmogorov’s Spline Network (KSN) [41] has 
complexity (measured as the total number of adjustable 

on the data parameters) , which 

is obviously less than  for sufficiently 

small values of ε , proving an advantage in efficiency of 
modeling of the KSN over nonlinear perceptron in the 
subclass of multidimensional continuous functions with 
bounded absolute value of the gradient [41]. It is worth 
note, that formulated above criterion measures average 
in the subclass efficiency of modeling, is based on 
asymptotic bounds, does not take into account 
distribution of data, and so on. That means, that classes 
of neural networks, which already have proved their 
efficiency in many applications (at least such as RBF 
networks and nonlinear perceptron), have to be included 
in a good modeling tool. In any particular application 
their representatives may outperform (or may not) a 
representative of the class with better average modeling 
efficiency. Therefore, several classes of neural networks 
should be tested off-line. 

ε

( )eN F ε=

e bN N<

eN

bN

( )ks

N O=

0ε→

( 3/ 21/ ε

)
)N Oε =

( 21/p ε

Approach to modeling, accepted in this paper is 
significantly based on the modern understanding of the 
nature of human intellect. According to [27], the cortex 
is the primary area in the humans responsible for the 
intellect. The intellectual activity in the cortex is a 
combination of memory and prediction, used for 
updating the memory. This paper considers only the 
specific implementation of the prediction module, 
because work on neural network implementation of 
memory is still in progress, and available only in some 
pending proposals. It is suggested implementation of the 
prediction module through the Clustering Ensemble 
Approach (CEA), described in [35-45]. The CEA is a 
combination of clustering and neural network modeling, 
featuring many steps for mitigating the problems of  
“curse of dimension”, large size of the network, large 
size of the data set for learning, stability of training and 
testing, and allowing for dynamic modeling of time-
varying data, feature selection and visualizations. These 
unique steps of CEA are described in detail in next 
section. 

There exist a number of important problems for 
discriminating two very similar patterns, for example, 
discriminating target in clutter from the clutter or law-
abiding from criminal patterns of making bank 
transactions. In these cases a problem reduces to the 
problem of efficient construction of decision boundaries 
between regions for acceptance of two mutually 
exclusive hypotheses. Use of complex inputs and 
weights may significantly mitigate a problem in these 
cases [39,63,67]. Suggested in this paper the KSCN 
might be the most efficient complex-valued model for 
pattern recognition. Currently this is an assumption. The 
proof of this assumption is in progress. 

The CEA method starts by dividing the whole data set 
available for learning in two sets, for learning and for 
validation, leaving 97% of the whole data for learning 
and 3% for validation. The training set uses 75% of 
learning data, while the testing set utilizes remaining 
25%. The features of the objects of the data set are 
divided in the inputs and the outputs. The training set is 
used for optimization of the training mean squared error 
(MSE), while the testing set is used for optimizing the 
testing (generalization) MSE. Both optimizations are 
used to select the final learned model, which is validated 
on the validation set. The whole procedure of training 
consists of the following steps: 1) clustering; 2) building 
a set of local neural networks, using the CEA on each 
cluster; 3) building one global network from the set of 
local networks; 4) utilizing the global network for 
predictions; 5) short-term and long-term updating of 
relevant local and the global networks and the learning 
data. Short-term updating includes updating of one local 
network and updating of the global network and some 
cluster parameters. It is performed after each new 
pattern arrival. Long-term updating includes additionally 
updating of all local networks and complete re-
clustering.  

The CEA currently includes the following neural 
network architectures: nonlinear perceptron, RBF 
network, Complex Weights Network (CWN), and the 
KSN. It is planned to include the KSCN in the CEA in 
the near future. Availability of such variety of modeling 
architectures, including currently the most efficient 
ones, favorably distinguishes the CEA from other 
existing modeling tools in itself. But the CEA has 
several other distinguished features related to: (1) 
mitigating “curse of dimension”, large size of the 
network, large size of learning set; (2) neural network 
training and testing stability; (3) dealing with time-
varying data; and (4) treating data with different sets of 
inputs (data fusion).  

Clustering can significantly reduce the size of the search 
space. Another advantage of the clustering is that the 
training, testing and validation of a number of short 
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local networks, trained separately on the each cluster, 
could be made significantly faster than the training of 
one big network, built on the total set. Thus, the 
clustering is helpful both in coping with the “course of 
dimension” and increasing the speed of the algorithm by 
using shorter networks trained on smaller sets. The 
clustering algorithm makes patterns inside one cluster 
more similar to each other than the patterns, belonging 
to different clusters, and additionally equalizes 
(approximately) the cluster sizes. The algorithm was 
developed and tested in [43], and is based on dynamical 
version of the K-means clustering [21], with an 
advanced initialization step [14], mitigating the 
deficiencies of the K-means algorithm. 

The main objective of this research is to reduce the 
response time of KSCN. The purpose is to perform the 
testing process in the frequency domain instead of the 
time domain. Our approach was successfully applied for 
sub-image detection using fast neural networks (FNNs) 
as proposed in [81,82,83,87,88]. Furthermore, it was 
used for fast face detection [84,86], and fast iris 
detection [85]. Another idea to further increase the speed 
of FNNs through image decomposition was suggested in 
[84].  

II.  Realization of Neural Networks by using  
KOLMOGOROV’s Superposition Theorm 

Kolmogorov’s Superposition Theorem (KST) gives the 
general and very parsimonious representation of a 
multivariate continuous function through superposition 
and addition of univariate functions. According to [56], 
the KST states that any function, f, continuous in 
standard unit hypercube of dimension d, has the 
following representation: 
  

                                                

( ) ( )
2 1

1 1

d d

i n i
n i

f x g xλψ
+

= =

⎡ ⎤= ⎢⎣ ⎦
∑ ∑ ⎥                           (1) 

with some continuous univariate function g depending 

on f, while univariate functions, nψ , and constants, iλ , 

are independent of  f. 
 
In [31], Hecht-Nielsen recognized that the KST could be 
utilized in neural network computing. He proved that the 
Kolmogorov’s superpositions could be interpreted as a 
four-layer feed-forward neural network, using 
Sprecher’s enhancement of the KST [70]. Girosi [25] 
pointed out, that the KST is irrelevant to neural network 
computing, because of very high complexity of 

computation of the functions  and ng ψ  from the finite 

set of data. However, Kurkova [50] noticed, that in the 
Kolmogorov’s proof of the KST the fixed number of 

basis functions, 2d 1+ , can be replaced by a variable 
N, and, the task of function representation by the task of 
function approximation. She also demonstrated [51], 
how to approximate Hecht-Nielsen’s network by the 
traditional neural network. Numerical implementation of 
the Kolmogorov’s superpositions was analyzed in 
[71,72]. All these works were the attempts to preserve 
the efficiency of the Kolmogorov’s theorem in 
representation of a multivariate continuous function in 
its practical implementation. If implemented with 
reasonable complexity this feature can make a 
breakthrough in building efficient approximations. 
However, since the estimations of the complexity of the 
suggested algorithms of the KST implementation are not 
available so far, the arguments against those efforts in 
[25] were not yet refuted until 2003. 
 
The approach adopted in [41] is different. The starting 
point is a function approximation, from the finite set of 
data, by a neural network of the type given by equation 
(1). The function,  f, to be approximated belongs to the 
class, Φ , of continuously differentiable functions with 
bounded gradient, which is wide enough for 
applications. A qualitative improvement of the 

approximation ,f f  and N Nf f≈ ∈Φ , using some 

of ideas of the KST proof, was sought. The KST proof 
was utilized to derive, that it is important to vary, 
dependant on data, the shape of external univariate 
function, g, in contrast to traditional neural networks 
with fixed-shape basis functions.  
Here the Kolmogorov’s Spline Network, (KSN) is 
introduced. The distinctive features of this architecture 
are: it is obtained from (3) by replacing the fixed 
number of basis functions, , by the variable N, 
and by replacing both external function, g, and the 
internal functions, 

2d +1

nψ , functions by the cubic spline 

functions [66], ( ) ( )int and .,ni nis w

and N

int.,n ns w

int
niw

 

respectively. Use of cubic splines allows for varying the 
shape of basis functions in the KSN by adjusting the 

spline parameters . Thus, the KSN, intwn f , 

is defined as follows: 

( ) ( )int int

1 1

, ,
N d

ext
N n n i ni i

n i
f x W w s s x w wλ

= =

⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑0
extw= + ,n ni

,                                   (2) 

where 1,... dλ λ , like in KST, are rationally independent 

numbers (Shidlovskii, 1989, 69-74), satisfying the 

conditions . These 

numbers are not adjustable on the data and can be 

1 0,...λ λ
1

0, 1
d

d i
λ

=
> > ∑ i ≤
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chosen independent of an application. The following 
theorem formulates the main result in [41], that the rate 
of convergence of approximation error to zero with 

 is significantly higher for KSN than the 
corresponding rate for existing currently neural 
networks. Define the complexity of the approximation 
of the function f by a network (4) as the number of 
adjustable parameters needed to achieve given 
approximation error. Then the theorem states 

N →∞

Theorem (Estimate of the Rate of Convergence of the 
KSN to the Target Function): 
For any function  and any natural N there exists 

a KSN defined by equation (4) with the cubic spline 

univariate functions 

f ∈Φ

,s s
nis

1λ

ns

1
,

d
d i=∑

, defined on [0,1], and 

rationally independent numbers 

, such that 1 0,... 0λ λ> > i ≤

                         
1

Nf f O
N

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

.                   (3) 

The complexity of a network parameters P satisfies the 
equation 

                                                                         

( )3/2P O N= .                            (4) 

This statement favorably compares the KSN with the 
networks currently in use. Most of the existing neural 

networks, Wf , provide the estimate of approximation 

error by the following equation: 
 

( )1/Nf f O N− = . 

Suppose N is the number of basis functions for KSN 
needed to have the error of approximation equal 0ε >

*N

. 
Comparison of the last equation and (5) shows that the 

number of basis functions for existing networks, , is 

. Therefore, the number of their 

parameters, , is . It is obvious, that 

 for large values of N. 

( 2N

P∗
P

)
)

*N = Ο

P∗ >>
( 2P N∗ = Ο

 
The motivation for work on Kolmogorov’s Spline 
Complex Network (KSCN) came as a result of 
analyzing work described in [39,41]. The CWN network 
was obtained by generalization of the RBF network, 
using complex weight parameters. It was shown, that the 
CWN outperforms the RBF network in a number of 
difficult classification tasks, while in regression 
problems performance of the both networks has not 
shown significant difference. The universal 
approximation capability of the CWN network was 

proved, although no results on the rate of convergence 
of the training MSE to zero were received. From the 
other hand the KSN has estimates of the rate of 
convergence of the training MSE to zero, and its 
advantage over existing neural networks in performance 
was demonstrated in the previous subsection. There was 
natural to combine ideas of the CWN and KSN in a 
network with complex weights, and to explore if this 
combination can be advantageous in case of 
classification tasks. This argument led to the following 
definition of the Kolmogorov’s Spline Complex 
Network given by: 
 

                            

( ) ( )int int
0

1 1

, ,
N d

ext ext
N n n i ni i

n i
f x W w w s s x w wλ

= =

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑ ∑ ,ni n

int intext ext =

,                                  (5) 

where 

 

is the set of all adjustable network parameters,  are 

complex weights (parameters). We will show that the 
KSCN is at least as good in classification and regression 
tasks as the CWN, and it is likely that this advantage is 
significant. It should be noticed in advance that the 
estimate of the rate of convergence of training MSE to 
zero is evaluated for the best possible network in the 

class. Indeed, the splines  can be chosen so, that they 

will approximate any activation function used for the 
CWN (for example, Gaussians) with any desired 

accuracy. From the other hand, splines  can be 

chosen so that that they will be represented by the 
piecewise linear functions on the almost all interval 
[0,1], with cubic spline connections, occupying arbitrary 
small part of this interval. In particular this 
representation can be chosen even linear for almost all 
interval [0,1]. Thus, the KSCN will be reduced to the 
arbitrary CWN network in this last case. Therefore, the 
best KSCN is at least as best as the best CWN. It looks 
quite plausible, that the advantage of the best KSCN 
over the best CWN will be significant because 1) 
piecewise linear functions has much better 
approximation capability than linear ones; 2) more than 
that, piecewise qubic polynomials has much better 
approximation capability than piecewise linear 
functions. 

{ }0 , , , , 1,... , 1,...n n niW w w w w n N i d= =
int
niw

ns

nis

 
The CEA allows for treating basis functions with 
adjustable shape (such as KSN and KSCN) exactly in 
the same manner as basis functions with fixed shape. 
The main scheme of the CEA consists of generating 
ensemble of internal parameters inside basis functions, 
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and then determining the external parameters of a 
network by the RLR for each member of the ensemble. 
The only additional module for the KSN and the KSCN 
is the module for construction the splines, described in 
[41]. 
 

III. FKSCN Based on Cross Correlation in 
the Frequency Domain 

Finding a certain pattern in the input one dimensional 
matrix is a searching problem. Each position in the input 
matrix is tested for the presence or absence of the 
required pattern. At each position in the input matrix, 
each sub-matrix is multiplied by a window of weights, 
which has the same size as the sub-matrix. The outputs 
of neurons in the hidden layer are multiplied by the 
weights of the output layer. When the final output is 
high, this means that the sub-matrix under test contains 
the required pattern and vice versa. Thus, we may 
conclude that this searching problem is a cross 
correlation between the matrix under test and the 
weights of the hidden neurons.   

The convolution theorem in mathematical analysis says 
that a convolution of f with h is identical to the result of 
the following steps: let F and H be the results of the 
Fourier Transformation of f and h in the frequency 
domain. Multiply F and H in the frequency domain point 
by point and then transform this product into the spatial 
domain via the inverse Fourier Transform. As a result, 
these cross correlations can be represented by a product 
in the frequency domain. Thus, by using cross 
correlation in the frequency domain, speed up in an 
order of magnitude can be achieved during the detection 
process [79]. In pattern detection phase, a sub matrix I 
of size 1xn (sliding window) is extracted from the tested 
matrix, which has a size 1xN, and fed to the neural 
network. Let Wi be the matrix of weights between the 
input sub-matrix and the hidden layer. This vector has a 
size of 1xn and can be represented as 1xn matrix. The 
output of hidden neurons hi can be calculated as follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih                   (6) 

where g is the activation function and b(i) is the bias of 
each hidden neuron (i). Eq. 6 represents the output of 
each hidden neuron for a particular sub-matrix I. It can 
be obtained to the whole input matrix Z as follows: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk)   Z(uk)(iWg(u)ih           (7) 

Eq.7 represents a cross correlation operation. Given any 
two functions f and d, their cross correlation can be 
obtained by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

y
y)d(y)f(xd(x)f(x)                  (8) 

Therefore, Eq. 7 may be written as follows [79]: 

( )ibiWZgih +⊗=                    (9) 

where hi is the output of the hidden neuron (i) and hi (u) 
is the activity of the hidden unit (i) when the sliding 
window is located at position (u) and (u) ∈ [N-n+1].  

Now, the above cross correlation can be expressed in 
terms of one dimensional Fast Fourier Transform as 
follows [79]: 

( ) ( )( )iW*FZF1FiWZ •−=⊗                 (10) 

F: is the Fast Fourier Transform. 
F*: is the conjugate Fast Fourier Transform. 
F-1: is the Inverse Fast Fourier Transform. 
⊗: is the cross correlation operator. 
•: is the dot product (element by elementy) operator. 

Hence, by evaluating this cross correlation, a speed up 
ratio can be obtained comparable to CKSCN. Also, the 
final output of the neural network can be evaluated as 
follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u)              (11) 

where q is the number of neurons in the hidden layer. 
O(u) is the output of the neural network when the sliding 
window located at the position (u) in the input matrix Z. 
Wo is the weight matrix between hidden and output 
layer. 

The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 

1-  For a tested matrix of 1xN elements, the 1D-FFT 
requires a number equal to Nlog2N

 of complex 
computation steps [78]. Also, the same number of 
complex computation steps is required for computing 
the 1D-FFT of the weight matrix at each neuron in the 
hidden layer.  

2-  At each neuron in the hidden layer, the inverse 1D-
FFT is computed. Therefore, q backward and (1+q) 
forward transforms have to be computed. Therefore, for 
a given matrix under test, the total number of operations 
required to compute the 1D-FFT is (2q+1)Nlog2N. 

3- The number of computation steps required by 
FKSCN is complex and must be converted into a real 
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version. It is known that, the one dimensional Fast 
Fourier Transform requires (N/2)log2N

 complex 
multiplications and Nlog2N complex additions [78]. 
Every complex multiplication is realized by six real 
floating point operations and every complex addition is 
implemented by two real floating point operations. 
Therefore, the total number of computation steps 
required to obtain the 1D-FFT of a 1xN matrix is: 

ρ=6(N/2)log2N + 2Nlog2N                  (12) 

which may be simplified to: 

ρ=5Nlog2N                             (13) 

4- Both the input and the weight matrices should be dot 
multiplied in the frequency domain. Thus, a number of 
complex computation steps equal to qN should be 
considered. This means 6qN real operations will be 
added to the number of computation steps required by 
FKSCN.  

5- In order to perform cross correlation in the frequency 
domain, the weight matrix must be extended to have the 
same size as the input matrix. So, a number of zeros = 
(N-n) must be added to the weight matrix. This requires 
a total real number of computation steps = q(N-n) for all 
neurons. Moreover, after computing the FFT for the 
weight matrix, the conjugate of this matrix must be 
obtained. As a result, a real number of computation steps 
= qN should be added in order to obtain the conjugate of 
the weight matrix for all neurons.  Also, a number of 
real computation steps equal to (N) is required to create 
butterflies complex numbers (e-jk(2Πn/N)), where 0<K<N. 
These (N/2) complex numbers are multiplied by the 
elements of the input matrix or by previous complex 
numbers during the computation of FFT. To create a 
complex number requires two real floating point 
operations. Thus, the total number of computation steps 
required for FKSCN becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N        (14) 

which can be reformulated as: 

           σ=(2q+1)(5Nlog2N)+q(8N-n)+N          (15) 

6- Using sliding window of size 1xn for the same matrix 
of 1xN pixels, q(2n-1)(N-n+1) computation steps are 
required when using CKSCN for certain pattern 
detection or processing (n) input data. The theoretical 
speed up factor η can be evaluated as follows: 

   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-q(2n

2 +++
+

=η         (16) 

IV. Experimental Results for FKSCN 

FKSCN accepts serial input data with fixed size (n). 
Therefore, the number of input neurons equals to (n). 

Instead of treating (n) inputs, our new approach is to 
collect all the input data together in a long vector (for 
example 100xn). Then the input data is tested by 
FKSCN as a single pattern with length L (L=100xn). 
Such a test is performed in the frequency domain. 
Complex-valued neural networks have many 
applications in fields dealing with complex numbers 
such as telecommunications, speech recognition and 
image processing with the Fourier Transform [32]. 
Complex-valued neural networks mean that the inputs, 
weights, thresholds and the activation function have 
complex values. In this section, formulas for the speed 
up ratio with different types of inputs will be presented. 
The special case of only real input values (i.e. imaginary 
part=0) will be considered. Also, the speed up ratio in 
the case of a one and two dimensional input matrix will 
be concluded. The operation of FKSCN depends on 
computing the Fast Fourier Transform for both the input 
and weight matrices and obtaining the resulting two 
matrices. After performing dot multiplication for the 
resulting two matrices in the frequency domain, the 
Inverse Fast Fourier Transform is calculated for the final 
matrix. Here, there is an excellent advantage with 
FKSCN that should be mentioned. The Fast Fourier 
Transform is already dealing with complex numbers, so 
there is no change in the number of computation steps 
required for FKSCN. Therefore, the speed up ratio in the 
case of FKSCN can be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 

Multiplication of (n) complex-valued weights by (n) real 
inputs requires (2n) real operations. This produces (n) 
real numbers and (n) imaginary numbers. The addition 
of these numbers requires (2n-2) real operations. 
Therefore, the number of computation steps required by 
CKSCN can be calculated as: 

θ=q(2n-1)(N-n+1)                  (17) 

The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η          (18) 

The theoretical speed up ratio for searching short 
successive (n) data in a long input vector (L) using 
FKSCN is shown in Figures 1, 2, and 3. Also, the 
practical speed up ratio for manipulating matrices of 
different sizes (L) and different sized weight matrices 
(n) using a 700 MHz processor and MATLAB is shown 
in Figure 4.  

B) For a two dimensional input matrix 

Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (2n2) real operations. This produces 
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(n2) real numbers and (n2) imaginary numbers. The 
addition of these numbers requires (2n2-2) real 
operations. Therefore, the number of computation steps 
required by CKSCN can be calculated as: 

θ=2q(2n2-1)(N-n+1) 2                (19)  

The speed up ratio in this case can be computed as 
follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η      (20) 

The theoretical speed up ratio for detecting (nxn) real 
valued submatrix in a large real valued matrix (NxN) 
using FKSCN is shown in Figures 5, 6, 7. Also, the 
practical speed up ratio for manipulating matrices of 
different sizes (NxN) and different sized weight matrices 
(n) using a 700 MHz processor and MATLAB is shown 
in Figure 8.  

 

2) In case of complex inputs  

A) For a one dimensional input matrix 

Multiplication of (n) complex-valued weights by (n) 
complex inputs requires (6n) real operations. This 
produces (n) real numbers and (n) imaginary numbers. 
The addition of these numbers requires (2n-2) real 
operations. Therefore, the number of computation steps 
required by CKSCN can be calculated as: 

θ=2q(4n-1)(N-n+1)                    (21)  

The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (22) 

The theoretical speed up ratio for searching short 
complex successive (n) data in a long complex-valued 
input vector (L) using FKSCN is shown in Figures 9, 10, 
and 11. Also, the practical speed up ratio for 
manipulating matrices of different sizes (L) and different 
sized weight matrices (n) using a 700 MHz processor 
and MATLAB is shown in Figure 12.  

B) For a two dimensional input matrix 

Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (6n2) real operations. This produces 
(n2) real numbers and (n2) imaginary numbers. The 
addition of these numbers requires (2n2-2) real 
operations. Therefore, the number of computation steps 
required by CKSCN can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (23)  

The speed up ratio in this case can be computed as 
follows: 

   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(4n
222

2
2

22

+++
+

=η       (24) 

The theoretical speed up ratio for detecting (nxn) 
complex-valued submatrix in a large complex-valued 
matrix (NxN) using FKSCN is shown in Figures 13, 14, 
and 15. Also, the practical speed up ratio for 
manipulating matrices of different sizes (NxN) and 
different sized weight matrices (n) using a 700 MHz 
processor and MATLAB is shown in Figure 16.  

In practical implementation, the multiplication process 
consumes more time than the addition one. The effect of 
the number of multiplications required for CKSCN in 
the speed up ratio  is more than the number of of 
multiplication steps required by the FKSCN. Also, the  
vaiations in Pc clock have an effect on practical 
computations. 

For a one dimensional matrix, from Figures 
1,2,3,4,9,10,11, and 12, we can conclude that the 
response time for vectors with short lengths are faster 
than those which have longer lengths. For example, the 
speed up ratio for the vector of length 10000 is faster 
that of length 1000000. The number of computation 
steps required for a vector of length 10000 is much less 
than that required for a vector of length 40000. So, if the 
vector of length 40000 is divided into 4 shorter vectors 
of length 10000, the number of computation steps will 
be less than that required for the vector of length 40000. 
Therefore, for each application, it is useful at the first to 
calculate the optimum length of the input vector. The 
same conclusion can be drawn in case of processing the 
two dimensional input matrix as shown in Figures 
5,6,7,8,13,14,15, and 16. From these Figures, it is clear 
that the maximum speed up ratio is achieved at image 
size (N=200) when n=20, then at image size (N=300) 
when n=25, and at image size (N=400) when n=30. This 
confirms our previous results presented in [84] on fast 
subimage detection based on neural networks and image 
decomposition. Using this technique, it was proved that 
the speed up ratio of neural networks becomes faster 
when the input image is divided into many subimages 
and each subimage is processed in the frequency domain 
separately using a single fast neural processor. Another 
point of interest should be noted. In CKSCN, if the 
whole input data (N) is available, then there is a waiting 
time for each group of (n) input data so that CKSCN can 
release their output for the previous group of (n) data. In 
contrast, FKSCN can process the total N data directly 
with zero waiting time. For example, if the total (N) 
input data is appeared at the input neurons, then: 
1- CKSCN can process only data of size (n) as the 
number of input neurons = (n). 
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2- The first group of (n) data is processed by CKSCN.   
3- The second group of (n) data must wait for a waiting 
time = τ, where τ is the response time consumed by 
CKSCN for treating each group of (n) input data. 
4- The third group of (n) data must wait for a waiting 
time = 2τ corresponding to the total waiting time 
required by CKSCN for treating the previous two 
groups. 
5- The fourth (n) data must wait for a waiting time = 3τ. 
6- The last group of (n) data must wait for a waiting 
time = (N-n)τ. 
As a result, the wasted waiting time in the case of 
CKSCN is (N-n)τ. In the case of FKSCN, there is no 
waiting time as the whole input data (Z) of length (N) 
will be processed directly and the time consumed is the 
only time required by FKSCN themselves to produce 
their output. 

V. Conclusion 
A new approach to speed up the operation of 
Kolmogorov’s Spline Complex Network has been 
presented. Theoretical computations have shown that 
FKSCN require fewer computation steps than 
conventional one. This has been achieved by applying 
cross correlation in the frequency domain between the 
input data and the input weights of neural networks. 
Simulation results have confirmed this proof by using 
MATLAB. Furthermore, neural network architecture 
with complex weights and potentially complex inputs, in 
context of adaptive dynamic modeling of time-variant 
multidimensional data has been discussed.  
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Fig. 1. A comparison between the number of computation steps required by FKSCN and CKSCN in case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=400). 
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Fig. 2. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=625). 
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Fig. 3. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=900). 
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Fig. 4.  Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of one dimensional real-valued input matrix 

and complex-valued weights. 
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Fig. 5. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=20). 
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Fig. 6. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=25). 
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Fig. 7. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=30). 
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Fig. 8. Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of two dimensional real-valued input matrix 

and complex-valued weights. 
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Fig. 9. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=400). 
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Fig. 10. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=625). 
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Fig. 11. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=900). 
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Fig. 12.  Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of one dimensional complex-valued input 

matrix and complex-valued weights. 
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Fig. 13. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=20). 
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Fig. 14. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=25). 
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Fig. 15. A comparison between the number of computation steps required by FKSCN and CKSCN in the case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=30). 
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Fig. 16. Practical speed up ratio for Kolmogorov’s Spline Complex Network in case of two dimensional complex-valued input 

matrix in and complex-valued weights. 
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