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Abstract: - K-means and k-median clustering algorithms can help in the selection of centres for the Radial 
Basis Functional Link Nets. Radial Basis Functional Link Nets is used to classify the data. In this paper, we 
will show the importance of knowing the skewness of the data in deciding to choose between k-means or k-
median clustering algorithm in finding the centre of Radial Basis Functional Link Nets and we will also show 
that this initial selection criterion will result in the improvement of efficiency in terms of speed and accuracy in 
data classification. Two sets of real data are used to demonstrate our results. 
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1 Introduction 
This paper shows the importance of calculating the 
skewness of data and in making a choice between k-
means and k-median clustering method in the centre 
selection of the Radial Basis Functional Link Nets 
(RBFLN). We use the Mardia’s skewness to obtain 
the information about the nature of the data [1]. If 
the data is skewed, it is better to select k-median as 
our clustering algorithm in centre selection for 
Radial Basis Functional Link Nets. However, if the 
data is almost symmetrical, then k-means will be a 
better choice. There are many clustering methods to 
find the centre of a Radial Basis Functional Link 
Nets like DBSCAN [2], Dynamic Clustering [3] and 
many other methods. However, among these 
clustering methods, k-means and k-median 
algorithms usually give the solution in the quickest 
and more efficient way. K-means algorithm is 
linked to the Radial Basis Function centre selection 
to enhance the performance [4]. 

The k-means algorithm self organizes to create 
partitions, which act as the clusters [5]. The data 
which fall into any cluster will be averaged and 
finally we will obtain the centre of the cluster. The 
k-median will do the same process but instead of 
averaging, we will use the median in finding the 
centre of every cluster [6]. 

By using these clustering methods, we can 
reduce the distances between input data and the 
centre of the Gaussian function. This will enable the 
sum of squared error to converge faster so that the 
optimum solution can be obtained once the sum of 

squared error exceeds the stopping criteria [7]. K-
means and k-median algorithms also help in cutting 
down the number of input data that are out of the 
coverage of the feature space region by clustering 
them into suitable partitions.  

Radial Basis Functional Link Nets used by 
Looney [8] was originated by Pao [9]. It had been 
proven to be more efficient than Radial Basis 
Function Network [10] and [11]. The core function 
in Radial Basis Functional Link Nets is the Gaussian 
function that had been proven as universal robust 
approximators [12]. By applying Radial Basis 
Function, we can use the network in function 
approximation, interpolation, classification and 
pattern recognition [13]. However, in this study, we 
use two real data sets in classification to determine 
the accuracy and speed in the performance results. 
 

 
2 Methodology 

In this study, we apply K-means and K-median 
clustering algorithms to obtain the centres of the 
hidden nodes according to the Mardia’s multivariate 
skewness calculation. The most important property 
of Mardia’s multivariate skewness calculation is that 
it can indicate the nature of the input data as to 
whether the input data are skewed or nearly 
symmetrical [14]. Thus, Mardia’s multivariate 
skewness can be considered as one of the statistical 
methods that analyzes the distribution of the given 
multidimensional data. Under this circumstance, 
Mardia’s multivariate skewness calculation is useful 
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in getting the preprocess information on the input 
data.  

Since our input data are mostly in 
multidimensional form, Mardia’s multivariate 
skewness is used in determining the nature of 
distribution for the input data so that choice of the 
selection of centres between K-means or K-median 
clustering algorithm can be done objectively. Here, 
the measurement of Mardia’s multivariate skewness 
gives the information about the spread of the input 
data based on the multivariate normality so we can 
select the clustering algorithm for finding the centre 
of radial basis functional link nets according to the 
results obtained. 

In other words, the input data will be tested for 
normality to check whether the input data is skewed 
or symmetrical. If the data sets are highly skewed, 
K-median is sufficient to be chosen for computing 
the centres from the input data while if the data sets 
are symmetrical, K-means becomes the better 
choice. 
The Mardia’s multivariate skewness is defined as 
 
 skewness = 1 - probchi ( kappa1, dfchi )              (1) 
 
where probchi is the probability of chi square [15].  
 
The first parameter, kappa1 is defined as 
 

 kappa1 = n * Beta1hat / 6                                    (2) 
 
where n is the number of dataset while Beta1hat is 
Mardia’s sample skewness. 
 
The second parameter  dfchi is the degree of 
freedom for the chi square approximation of 
multivariate skewness. 
 

 dfchi = p * (  p+1 ) * (  p + 2 ) / 6                        (3) 
 
where  p is the dimension of the dataset. 
In k-means algorithm, we must decide the value of k 
to be used first. Since the k is priori knowledge, we 
will set it to be the same as the number of centres in 
the hidden nodes of Radial Basis Functional Link 
Nets. In order to get the best solution for k-means, it 
is better to run the k-means algorithm many times. 
This will increase the probability that the data will 
be classified to the nearest cluster and yield the 
optimum solution. In this study, the k-means 
algorithm is applied to run for 100 times and we will 
use the result as our centre of hidden nodes in 
Radial Basis Functional Link Nets. 
 

Generally, the k-means function is defined as 

 
( )                                                    

1 1

K N jJ x c
i jj i

= −∑ ∑
= =

         (4) 

 
where  ║xi

( j ) - cj ║ is the distance between one of 
the data  ix  and  a centre  of a cluster, cj.  
 
K-median  uses the same formula as in Equation (4) 
but the difference is that instead of using averaging, 
it will take the median of the data to be the centre 
for each cluster. Radial Basis Functional Link Nets 
is a hybrid or extension of the Radial Basis Function 
Network. The basic idea for Radial Basis Function 
is that the feature space [0, 1] is covered with M 
overlapping circular hyper ball regions. In every 
region there exists a continuous Radial Basis 
Function that assumes its maximum value at the 
centre of the region but reduces in value to zero 
when away from it. In this study, we use Radial 
Basis Functional Link Nets to classify 
multidimensional data into their respective classes.  

The structure of the Radial Basis Function 
Network consists of three layers. The first layer is 
the input layer. The second layer will be the hidden 
layer where the hidden neurons are located. The last 
layer will be the output layer. In this layer, the 
output is compared with the target values to form 
the value for the sum of squared error. We apply 
Radial Basis Function Network with Gaussian 
function because it can perform exact interpolation 
of a set of data points which is in a high dimensional 
space [16]. Exact interpolation is the process to map 
every input vector exactly to its corresponding 
target vector [17]. If the data sets which we feed 
into the neural networks are non-linear, it is better if 
the neural networks are able to perform a non-linear 
mapping which can transform a non-linear separable 
classification problem into a linear separable 
problem [18]. The linear separable problem is easier 
to be solved than the non-linear problem [18]. The 
Radial Basis Function Network which has the 
Gaussian function as the kernel function possesses 
the ability to perform the task.  

Generally, Radial Basis Function is mapping 
functions, s, as shown below: 
 
                             :                                              (5) ns R R→
 
where n is the number of the dimension in the input. 
 

From Equation (5), we observe that the multi-
dimensional input nR  are transformed into single 
dimensional output, R .  
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When a set of data which consists of Q number of 
input vectors x(n) where n=1,…, N with the 
corresponding outputs, t, we aim to find a function 
g(x) in such a way that 
 

( )( ) =                          1,...,                       (6) n ng x t n N=
 

Radial Basis Function has the form of  
 

( ) = (  )             1,...,                      (7) n n

n

n

g x w x x n Nφ − =∑
 
where each data point xn belongs to a basis function 
and the basis function takes the form ( )n

x xφ −  

where ( )φ i  is the non-linear function such as the 

Gaussian function. n
x x−  is the distance between 

the input vectors, xn from the centres of Gaussian 
function, x. wn is the weight in the Radial Basis 
Function [16]. 

By having the similar form as the generalized 
linear discriminant function, we can write the 
interpolation condition of Equation (6) and Equation 
(7) in matrix form as  

                                                    Φw=t                                            (8) 

where t≡ (t(n)),  w≡ (wn), and the square matrix Φ 
has element Φnn' = ( )n

x xφ − [17]. If the inverse 

matrix for Φ-1
 exists, the solution to Equation (8) is 

given by  

                         w=Φ
-1
t                                           (9) 

If the data points are different for a large class of 
function ( )φ • , the matrix Φ is non singular which 
also means the matrix has an inverse. By setting the 
weights in Equation (7) to the values given in 
Equation (9), the function g(x) represents a 
continuous differentiable surface that passes exactly 
through each data point [19].  

In our study case, the numbers of hidden nodes 
M, will be determined heuristically depending on 
the results. If we use less M than the number of 
training sets, we will get an under training situation. 
If M is too large, the computation on-line of 
unknown vectors will be slower and will build up 
extraneous error. Therefore we need to choose the 
M with a larger set than the input data, and try to 
reduce or increase the M until the data are well 
classified.  

An RBF defined on N-dimensional feature 
vectors x is 

 

( )2( ) ( ) 2
( )exp / 2           1,...,    q m

m m
y x v m Mδ= − − = 

 
  (10) 

 
where q is the dataset  number, x is an input vector, 
v
( m)  is the centre of mth  hidden nodes while the 

spread of the receptive field is δ. y( m)  will be 
maximum if the distances between x and v( m)   
equals to zero. The δ will determine how far the 
spread of the circular disk that covers the interest 
bounded region in the feature space [10].  

The activation function used in Radial Basis 
Functional Link Nets is the Gaussian function. Once 
the input vector gets near to the centre, it will start 
to activate the Gaussian function, y = f(x). In Radial 
Basis Functional Link Nets, there are weights in 
between the input layer with hidden layer and also 
the hidden layer with the output layer. Both weights 
are adjusted in a steepest descent way. The input 
weights will influence the input vector to get closer 
to the centre while the output weights will move the 
output, z towards the target value, t.  

The input weights, wn( j) are updated as  
 

( ) ( )( ) ( ) ( )

nj nj ( 1, ) ( 1, )

1
12 / q q q

j j nq Q j J

k k
w w M t z xη

= =

+ = + −  ∑ ∑   (11)                    

 
where n is the input number, 1η  is the learning rate, 
Q is the numbers of dataset, zj( q ) is the output, and k 
is the iteration number                                                                                
 

The output weights, um( j ) are updated as  
 

( ) ( )( ) ( ) ( )

mj mj ( 1, ) ( 1, )

1
22 /  q q q

j j mq Q j J

k k
u u M t z yη

= =

+ = + −  ∑ ∑   (12)    

                                       
where 2η  is the learning rate.                                                  
 

The differences between the observed value, z 
and the target value, t will be calculated as the sum 
of squared error. Our aim is to obtain the minimum 
total sum squared of error. The output z and the total 
sum squared of error E are defined as 
 

( ) ( )( 1, ) ( 1, )
1/ 1/     

m M n N
M N

= =
   = +   ∑ ∑(q) (q) (q)

j mj m nj n
z u y w x  (13) 

 
( ){((q=1,Q) (j=1,J) ( 1, )

E= ( 1/  
m M

M
=

− +∑ ∑ ∑(q) (q)

j mj mt u y      

  ( ) })
2

( 1, )
1/

n N
N

=
= ∑ (q)

nj n
w x                                    (14) 

 
In the Radial Basis Functional Link Nets used, 

the spread parameter will be fixed as it will be easier 
to compare the results using k-means and k-median 
in finding the centres for the hidden nodes in the 
hidden layer. On the other hand, the centres 
obtained from different clustering methods are used 
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as the centre of each hidden neuron to run when 
training the data.  
 
 

3 Results 

In this section, we show the criterion in selecting the 
clustering algorithm in Radial Basis Functional Link 
Nets based on two data sets. The nature of the data 
sets is identified and numbers of attribute are stated. 
We explain the classes for each data set.  

Once we identified the multivariate skewness of 
each data set, then we decide which clustering 
algorithm to be the better choice for selection of 
centres in Radial Basis Functional Link Nets. Then, 
we feed the data sets in Radial Basis Functional 
Link Nets to show the performance of data training 
in term of accuracy and speed. 

Basically, we separate the data sets into two 
subgroups which are the testing data set and the 
training data set. The training data sets are used to 
train the Radial Basis Functional Link Nets while 
the test sets are used to show the accuracy of the 
type of method being applied for the selection of 
centres. 

To determine whether the data sets are correctly 
classified or wrongly classified, a rule is set. The 
strict rule is that any output values which fall 
between 0.4 and 0.6 is considered wrongly 
classified [8]. This rule gives a tolerance space for 
the output to be grouped into its class and the rule 
also filters out those output which do not belong to 
any class. By applying the rule, we can calculate the 
number of training misses in the Radial Basis 
Functional Link Nets when applying the different 
methods in selecting the centres. 

Results are organized in tables form for 
comparison purposes. We show the results in the 
type of method used, number of iterations for the 
method used, and the testing error and training 
misses in Table 2, Table 3, Table 5 and Table 6. 

Next, we then comment on the performances of 
the different types of method used in Radial Basis 
Function Network and based on the number of 
iterations using the sum of squared error and the 
number of training misses. The sum of squared error 
in each category for the number of iterations is 
discussed in terms of speed. The number of training 
misses is discussed to show the accuracy of the 
results obtained.  

We summarize the results and give the overall 
performances of the training by Radial Basis 
Functional Link Nets. We also state the importance 
of Mardia’s multivariate skewness measurement in 
determining the clustering method which is more 

suitable to be used in selection of centres for the 
Radial Basis Functional Link Nets.  

The first input data is the geological oil 
exploratory data set and this data set consists of 4 
dimensions [8]. Each dimension represents a feature 
and all the features analyzed will lead to the 
determination of which explorations to be made (for 
example, for oil or coal). There are 69 data points in 
the geological oil exploratory data set. The first ten 
data points will be used as the testing set. The rest 
we will put into the training set to see the results.  

The second data set is the fitting contact lenses 
and this data set consists of 24 data points with four 
attributes [20]. The data set is noise free, highly 
simplified problem, and each data point is complete 
and correct. The application of this data can be 
found in [21]. The first attribute in the data set is the 
age of the patient while the second attribute is the 
spectacle prescription. The third attribute indicates 
whether the patient is astigmatic or non-astigmatic 
whereas the fourth attribute is the tear production 
rate of the patient. The patients are categorized into 
three classes and these classes are fitted with hard 
contact lenses, fitted with soft contact lenses and not 
fitted with contact lenses. The patient should be 
classified into one of the classes according to their 
attributes.  
 
 
Table 1  The skewness measurement for datasets 
 

Dataset Skewness 

Testing 0.5602374 Geological Oil 
exploratory 

Training 1.7609 x 10-9 

Testing 0.9724819 Fitting contact 
lenses 

Training 1 
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Table 2  Results of training the data for testing 
based on the 10 data points in the Geological Oil 
Exploratory data set (skewed) 
 

Type of  

methods  

used 

No. of 

iterations 

Testing 

error 

Training 

misses 

 
RBFLN 
with 

random 
centre 

selection 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0.031670 

0.005951 

0.002375 

0.001426 

0.001399 

0.001382 

0.001370 

0.001358 

0.001348 

0.001338 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

RBFLN 
with 

k-means 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0.044892 

0.004031 

0.002347 

0.001736 

0.001277 

0.001184 

0.001170 

0.001160 

0.001151 

0.001145 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

RBFLN 
with 

k-median 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0.045567 

0.010315 

0.001278 

0.000885 

0.000804 

0.000738 

0.000686 

0.000645 

0.000631 

0.000619 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

Table 3  Results of training the data based on the 59 
data points in the Geological Oil 
Exploratory data set (skewed) 

 

Type of 

methods 
used 

No. of 

iterations 

Testing 

error 

Training 

misses 

 
RBFLN 
with 

random 
centre 

selection 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0.200779 

0.189443 

0.183701 

0.180944 

0.178725 

0.176626 

0.174618 

0.172728 

0.17089 

0.169079 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

RBFLN 
with 

k-means 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0.242131 

0.151816 

0.110615 

0.086841 

0.072506 

0.063342 

0.055932 

0.043138 

0.040156 

0.037558 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

RBFLN 
with 

k-median 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0.234793 

0.073606 

0.050089 

0.039521 

0.034819 

0.031956 

0.030061 

0.028757 

0.027824 

0.027132 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Fig. 1   Iteration versus total sum of squared error 
for geological oil exploratory testing data 
set (skewed) 

Iteration versus Total Sum of Squared Error for the Geological 

Oil Exploratory Testing Data Set (Skewed)
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Fig. 2   Iteration versus total sum of squared error 
for Geological Oil Exploratory training 
data set (skewed) 

Iteration versus Total Sum of Squared Error for the Geological 

Oil Exploratory Training Data Set (Skewed)
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Table 4  Results of training the data for testing 
based on the 8 data points in the Fitting  

               Contact Lenses data set (symmetrical) 
 

Types of   

method  

used 

No. of 

iterations 

Testing 

error 

Training 

misses 

 
RBFLN 
with 

random 
centre 

selection 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

7.997714 

6.526225 

5.612273 

4.914061 

4.034773 

2.889179 

1.702626 

0.862680 

0.420995 

0.364993 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 
 

RBFLN 
with 

k-means 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

8.115248 

6.257649 

4.317621 

2.512642 

1.137989 

0.295738 

0.038922 

0.008348 

0.001713 

0.001713 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 
 

RBFLN 
with 

k-median 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

8.008216 

6.344485 

4.614012 

3.007452 

1.874816 

1.192491 

0.682117 

0.236776 

0.093433 

0.093433 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Table 5  Results of training the data based on the 16 
data points in the Fitting Contact Lenses 
data set (symmetrical). 

 

Types of   

method  

used 

No. of 

iterations 

Testing 

error 

Training 

misses 

 
RBFLN 
with 

random 
centre 

selection 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0.777761 

0.473322 

0.35261 

0.275632 

0.218692 

0.174407 

0.139959 

0.112778 

0.091528 

0.074737 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

RBFLN 
with 
k-

means 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0.180488 

0.088691 

0.055737 

0.039372 

0.029473 

0.023000 

0.018468 

0.015229 

0.012779 

0.010871 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

RBFLN 
with 

k-median 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0.246964 

0.206018 

0.174594 

0.14853 

0.126414 

0.107656 

0.091783 

0.07824 

0.066707 

0.056843 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

Fig. 3  Iteration versus total sum of squared error for 
the Fitting Contact Lenses testing data set 
(symmetrical) 

Iteration versus Total Sum of Squared Error for Fitting Contact 

Lenses Testing Data Set (Symmetrical)
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Fig. 4  Iteration versus total sum of squared error for 
the Fitting Contact Lenses training data set 
(symmetrical) 

Iteration versus Total Sum of Squared Error for Fitting Contact 

Lenses Training Data Set (Symmetrical)
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4 Discussions 
Table 1 shows the value of skewness for both 

the data sets, namely the oil exploratory data and the 
fitting contact lenses data. The skewness values 
range from 0 to 1.  If the skewness value is near to 
1, the data is almost symmetrical but if the values 
turn out to be closer to 0, this means the data set is 
skewed. It is obvious that the the skewness of the 
datasets has its influence in deciding which 
clustering method is best used to find the centres.     

For the geological oil exploratory testing data 
set, the skewness is 0.5602374 which is almost in 
the middle of 0 and 1. Since the data set is only used 
for testing purpose, therefore we apply both 
clustering algorithms to verify which one is better to 
be used for selection of the Gaussian centres. For 
the training data set of the geological oil 
exploratory, the value of skewness is 1.7609 x 10-9 

and it is almost 0. Theoretically, the data set is 
highly skewed and K-median will be better in 
selecting the Gaussian centres. Besides, the fitting 
contact lenses testing data set takes 0.9724819 as 
the value of the skewness. That means the testing 
data set is more symmetrical. For the fitting contact 
lenses training data set, the skewness is 1 and the 
data set is symmetrical. When the data set is more 
symmetrical as in the case of the fitting contact 
lenses data set, k-means algorithm is the best choice 
for selecting the Gaussian centre.  

Table 2, Table 3, Table 4 and Table 5 show the 
effect of the preprocess calculation on skewness in 
selecting the clustering algorithm. For the 
observations in the testing data based on geological 
oil exploratory dataset and fitting contact lenses data 
set, the total sum of squared error reduces very 
quickly mostly because the data set to be trained is 
small. We set the stopping criterion to be 0.0001 to 
halt the training of each data set. The value of the 
stopping criterion is small which  also means that 
the sum of squared error reach a level where the 
output values are close to the target values and we 
stop the training process of data classification for 
result evaluation. If the sum of squared error is less 
than 0.0001, then the iteration will stop immediately 
and our aim is achieved. Overall, the sum of squared 
error of the training converges in speed. Accuracy 
of the training is not only based on total sum of 
squared error but also based on the number of 
training data missed. We set a strict tolerance to 
determine the output data that will be considered 
misclassified or training miss.  

Table 2 shows that k-median is the best among 
the three methods after 100 iterations. This is then 
followed by K-means and the random selection 
method. We can also see the comparative 

performance of these methods in Fig. 1. The sum of 
squared error of the test data set using three 
different methods converges in speed. Besides, we 
found that there is no training miss for the two data 
sets due to the efficiency of the powerful tool, 
Radial Basis Functional Link Nets, being used. 
Therefore, we will justify which clustering method 
to use based on the results that achieve the lowest 
sum of squared error. Applications of K-means and 
K-median clustering clearly improve the 
performance of the Radial Basis Functional Link 
Nets but the choice of whether to use K-means or K-
median depends on the skewness of the data.  

 By the way, we can see consistent result in the 
geological oil exploratory training for both testing 
and training data set. We observe that k-median 
converge fastest in Table 3 and this is shown in Fig. 
2. As the data is much skewed as in the case of the 
geological oil exploratory data in Table 3, K-median 
outperforms other methods such as K-means and 
random selection. Table 2 and 3 also show that for 
both testing and training data, K-means performs 
better than random selection of centres because K-
means reduces the number of outliers in our input 
data so that each output has a better chance to get 
closer to the centre of the Gaussian function.  

Table 4 shows that the k-means has the lowest 
sum of squared error after 10 iterations in the run for 
testing among the three methods. All the methods 
have no training miss and the trend of the total sum 
of squared error is shown in Fig. 3. Table 5 shows 
that k-means outperforms other methods for a more 
symmetrical data set. Therefore, if the data is more 
symmetrical with the skewness of Mardia near to 1 
as in the fitting contact lenses data set, k-means will 
perform better (Fig. 4).  

We have reduced the distances between input 
data from the centre of the Gaussian Function in 
both models by using these clustering methods so 
that the sum of squared error converges faster and 
the optimum solution can be obtained once the sum 
of squared error exceeds the stopping criteria. K-
means and K-median algorithms also help in 
reducing the number of input data that are out of the 
coverage feature space region by clustering them 
into suitable partitions. In other words, the outlier 
can be reduced and this will certainly increase the 
power of training speed and accuracy. If we use 
random centres for the input vectors, we might lose 
the best position for the centres which represent the 
distribution of input data. 
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5 Conclusion 
Application of k-means and k-median clustering 

clearly improve the performance of the Radial Basis 
Functional Link Nets in terms of speed and accuracy 
but the choice of whether to use k-means or k-
median depends on the skewness of the data. Since 
the preprocessing of the input data using Mardia’s 
multivariate skewness can show the details of the 
input data, we can choose the clustering algorithm 
according to the type of data. By using the 
clustering algorithm determined by Mardia’s 
multivariate skewness in selection of centres of the 
Gaussian function, we can see the difference in the 
performance.  K-means are better than K-median for 
symmetrical data while K-median outperforms the 
former when the given input data is skewed. Both 
algorithms are useful in helping the Radial Basis 
Functional Link Nets in shortening the training 
iteration and improving the accuracy of the 
outcomes. 

As the initial selection of centres have great 
impact on the performance of the neural networks, 
the choice of the different types of clustering 
algorithms become a very important issue. The 
measure of skewness is just one of the tools to 
determine the selection between K-means and K-
median but it may not be relevant if we use other 
clustering methods.  

Hence, our future research is to find out more 
relationships between the input data and properties 
of the clustering algorithms so that we are able to 
make a big step forward in improving the 
performance of Radial Basis Functional Link Nets.  
Besides, there is still room to improve the efficiency 
of Radial Basis Functional Link Nets. The 
determination of the optimum number of hidden 
nodes, M, in the Radial Basis Functional Link Nets 
remains a challenge. The type of activation 
functions in the radial functional link nets can also 
be investigated for the possibility to be replaced by 
a more stable and efficient function which is able to 
boost the performance of the neural network.  

Furthermore, several important parameters such 
as the spreads and the weights which lie in between 
the layers can be studied to create more advanced 
Radial Basis Functional Link Nets. The spreads 
which control the size of the circular disks covered 
on the feature space of interest are important to 
make sure all the input data are under their 
influence. The ranges of the initial weights are also 
important so that a set of efficient initial weights can 
be obtained to increase the speed of training. 
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