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Abstract: - Using Generalized Modus Ponens reasoning, we examine the values of the inferred conclusion by 
using Fodor's implication in order to interpret a fuzzy if-then rule with a single input single output and the t-
norm ( ) ( )( )( xyyxmaxy,xt )λλ −−++= 11 , 1−≥λ , for composition operation. This t-norm is important to use 
because for 1−=λ  and 0=λ  it gives the commonly used t-norms ( ) xyy,xt =1  and 

, respectively. ( ) ( )10 −+= yx,maxy2 ,xt
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1 Introduction 
In our daily life we often make inferences based on 
rules that contain imprecision. This makes it 
difficult to describe by means of natural language 
statements [1] the conditions and conclusions of the 
deduction rules. Another issue is the employment of 
these rules when the observed facts do not match the 
condition expressed in the premise of the rule, but 
are not too different. 

 These problems led Zadeh to outline the theory of 
approximate reasoning [2], which exemplifies the 
deduction of imprecise conclusions from a set of 
imprecise premises and is based on fuzzy logic. The 
development of fuzzy logic was motivated to a large 
degree by the need for a conceptual framework 
which can address the issue of uncertainty and 
lexical imprecision. Some essential characteristics 
of fuzzy logic are [3]: 

• exact reasoning is viewed as a limiting case of 
approximate reasoning 

• everything is a matter of degree 

• knowledge is interpreted as a collection of elastic 
or fuzzy constraints on a collection of variables 

• inference is viewed as a process of propagation of 
elastic constraints 

• any logical system can be fuzzified. 

There are two main characteristics of fuzzy systems 
that give them better performance for specific 
applications: 

 

• fuzzy systems are suitable for uncertain or 
approximate reasoning, especially for the systems 
with a mathematical model that is difficult to derive 

• fuzzy logic allows decision making with estimated 
values under incomplete or uncertain information. 

In 1979 Zadeh introduced the theory of approximate 
reasoning [4]. This theory provides a powerful 
framework for reasoning in the face of imprecise 
and uncertain information. Central to this theory is 
the representation of propositions as statements 
assigning fuzzy sets as values to variables.  
 Zadeh extends the traditional modus ponens rule in 
order to deduce an imprecise conclusion from 
imprecise premises, obtaining the Generalized 
Modus Ponens rule.  An investigation of inference 
processes in the fuzzy if-then rules is a subject of 
many papers in literature: [1-2, 5-22]. Fuzzy sets 
theory and its applications in different domains 
(control, classification, etc.) is, also, a common 
subject for several papers from WSEAS journals 
and conferences [23 - 27]. 

 An elementary piece of information can be 
represented by a triple (attribute, object, value) 
which can be reduced to the canonical form  

AisX , 

where X  is a variable representing the attribute of 
the entity and  is its value. The proposition A
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AisX  

can be understood as 

the quantity X  satisfies the predicate  A
or 

the variable X  takes its values in the set . A
 
As pointed out Zadeh [1-4, 22] the semantic content 
of the proposition  

AisX  

 can be represented by 

AX μπ = , 

where Xπ  is the possibility distribution restricting 
the possible value of  X  and Aμ  is the membership 
function of the set . The membership function A

Aμ  can be expressed using parametric 
representation, which is achieved by the 5-tuple 
( )θ,r,R,l,L AAAA  [28, 29]: 

( ) ( )
( )⎪

⎪
⎩

⎪
⎪
⎨

⎧

+≤≤
≤≤−

≤≤
+≥−≤

=

AAA

AAA

AA

AAAA

A

rRxRforx
LxlLforx

RxLfor
rRxorlLxfor

x

2

1

1

ψ
ψ

θ

μ  

where [ 10,∈ ]θ  describes the uncertainty that 
accompanies the piece of information, 1ψ  is a non-
decreasing function and 2ψ  is a non-increasing 
function (Fig. 1). Besides, the continuity conditions 
are necessary: 

                   ( ) ( ) 121 == AA RL ψψ   
  and     

              ( ) ( ) .rRlL AAAA θψψ =+=− 21  
 

For 0=θ  the piece of information is certain.  

Because the majority of practical applications work 
with trapezoidal distributions ( 0=θ , 1ψ  and 2ψ  
are linear functions) or triangular distributions (in 
addition, AA ) and these representations are still 
a subject of various recent papers ([30], for 
instance) we will analyze the trapezoidal 
representation of fuzzy sets (Fig. 2).  

RL =

 

1

θ

AA lL − AL AR AA rR +

1ψ 2ψ

Fig. 1 Parametric representation of a fuzzy set 
 

1

θ

AA lL −
AL AR AA rR +

1ψ 2ψ

   Fig. 2 Trapezoidal representation of a fuzzy set 
 

Let X  and  be two variables whose domains are 
 and V , respectively. A causal link from 

Y
U X  to  
is represented as a conditional possibility 
distribution [2, 22] which restricts the possible 
values of Y  for a given value of

Y

X . For the rule 

             BisYthenAisXif

we have 

  ( ) ( ) ( )vuu,v,Vv,Uu BAXY μμπ →=∈∀∈∀  

where  is an implication operator and → Aμ  and 

Bμ  are the possibility distributions of the 
propositions  

AisX  

and  

BisY , 

 respectively. For simplicity we note  

( ) ( ) ( v,uIvu BA =→ )μμ . 
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 symmetry: If  'Aμ  is the possibility distribution of the 
proposition 

'AisX  

 then from the rule 

                      BisYthenAisXif

and the fact 

                                'AisX

the Generalized Modus Ponens rule computes the 
possibility distribution 'Bμ  of the conclusion  

                                'BisY
as 
               ( ) ( ) ( )( )u,v,utsupv XY'AUu'B πμμ ∈=  

where  is a t-norm. t
 
Taking into account the following reasons, we shall 
work with rules having a single input single output: 

a) a rule with multiple consequent can be treated as 
a set of rules with a single conclusion; for instance, 
the rule 

     n21 C ....andC and C then antecedent if

is equivalent to the rules 

               C then antecedent if 1

              2C  then antecedent if
           ............................................... 
              nC  then antecedent if
 
b) a rule with multiple premise can be broken up 
into simple rules [31] when the rules are represented 
with any -implication or any S R -implication and 
the observations are normalized fuzzy sets. 
 
2 Basic Concepts 
We recall the definitions of basic concepts used in 
Generalized Modus Ponens reasoning. 

Definition 1 A function  

[ ] [ ]1010 2 ,,:T →  
is a triangular norm (t-norm for short) iff it is 
commutative, associative, non-decreasing in each 
argument and  

( ) [ ]101 ,x,x,xT ∈∀= . 

 In other words, any t-norm T  satisfies the 
properties:  

( ) ( )x,yTy,xT =  [ ]10,y,x ∈∀  

associativity: 
( )( ) ( )( )z,y,xTTz,yT,xT = [ ]10,z,y,x ∈∀  

monotonicity: 
( ) ( )'y,'xTy,xT ≤  if  and 'xx ≤ 'yy ≤  

[ ]10,'y ∈,'x,y,x∀  

one identity: 
( ) [ ]101 ,x,x,xT ∈∀= . 

 
Definition 2 A function  

[ ] [ ]1010 ,,:S →  2

is a t-conorm iff it satisfies the properties:  

 symmetry: 
( ) ( )x,ySy,xS =  [ ]10,y,x ∈∀  

associativity: 
( )( ) ( )( )z,y,xSSz,yS,xS =  [ ]10,z,y,x ∈∀  

monotonicity: 
( ) ( )'y,'xSy,xS ≤  if  and 'xx ≤ 'yy ≤  

[ ]10,'y ∈,'x,y,x∀  

zero identity: 
( ) [ ]100 ,x,x,xS ∈∀= . 

 
Definition 3 A function 

[ ] [ ]1010 ,,:N →  

 is a stro  sng negation iff  it atisfies the properties:  

N1)      ( ) 10 =N , ( ) 01 =N  

N2)  is an involutive function 
            ( )( ) [0,xxxNN ∈ ]1∀=   

 decreasing ion  N3)  is a funct
             ( ) ( )yNxN ≤  if   x ≥ [ ]10,y,xy ∈∀    

4) is a continuous function. 

Definition 4 A fuzzy implication is a function  

N

 

[ ] [ ]1010 2 ,,:I →  

satisfying the following conditions: 

I1: If  zx ≤  then )  for all ( ) ( y,zIy,xI ≥
[ ]1,0z,y,x ∈  
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I2: If   then  zy ≤ ( ) ( z,xIy,xI ≤ )

))

 for all 
 [ ]10,z,y,x ∈

I3:  (falsity implies anything) for all 
 

( ) 10 =y,I
[ ]10,y∈

I4:  (anything implies tautology) for all 
 

( ) 11 =,xI
[ ]10,x∈

I5:  (Booleanity). ( ) 001 =,I
 
The following properties could be important in 
some applications: 

I6:  (tautology cannot justify anything) for 
all  

( ) 11 =x,I
[ ]10,x∈

I7: (exchange principle) 
for all  

( )( ) (( z,xI,yIz,yI,xI =
[ ]10,z,y,x ∈

I8: yx ≤  if and only if ( ) 1=y,xI
[ ]10,y

 (implication 
defines ordering) for all ,x ∈  

I9:  for all  is a strong 
negation 

( ) (xN,xI =0 ) ][ 10,x∈

I10:  for all ( ) yy,xI ≥ [ ]10,y,x ∈  

I11:  (identity principle) for all ( ) 1=x,xI [ ]10,x∈  

I12:  for all  and 
a strong negation  

( ) ( ) ( )( )xN,yNIy,xI =
N

[ 10,y,x ∈ ]

I13: I  is a continuous function 
 
The most important families of implications are 
given [32] by 
 
Definition 5 A -implication associated with a t-
conorm  and a strong negation  is defined by  

S
S N

       ( ) ( )( ) [ ]10,y,xy,xNSy,xI N,S ∈∀= . 

A  R -implication  associated  with   a t-norm  T  is 
defined by  

( ) [ ] ( ){ } [ ]1010 ,y,xyz,xT/,zsupy,xIT ∈∀≤∈=  

A QL-implication is defined by 
( ) ( ) ( )( ) [ ]10,y,xy,xT,xNSy,xI N,S,T ∈∀=  

 
We shall work with Fodor's implication 

( ) ( )⎩
⎨
⎧

−
≤

=
otherwisey,xmax

yxif
y,xI F 1

1
 

which is [32] a  R -implication for  , a S - 0minT =

implication for 0maxS =  and a QL -implication for 
minT = and 0maxS = , where 

( ) ( )⎩
⎨
⎧

>+
≤+

=
1
10

0 yxify,xmin
yxif

y,xmin  

( ) ( )⎩
⎨
⎧

<+
≥+

=
1
11

0 yxify,xmax
yxif

y,xmax  

 
and ( ) xxN −=1 . Besides, the Fodor's implication 
verifies the properties I1-I12. 
 
3 Previous Results 
In our paper [13] we analyzed the Generalized 
Modus Ponens reasoning with t-norm 

( ) ( )( )( )xyyxmaxy,xt λλ −−++= 11 , 1−≥λ , 

and the following implication operators:  
Reichenbach implication 

        ( ) ( ) ( ) (vuuv,uI BAAR )μμμ +−=1  

Willmott implication      
     ( ) ( ) ( ) ( )( )( )v,umin,umaxv,uI BAAW μμμ−= 1  

Mamdani implication 
        ( ) ( ) ( )( )v,uminv,uI BAM μμ=  

Rescher-Gaines implication 

         ( ) ( ) ( )
⎩
⎨
⎧ ≤

=
otherwise

vuif
v,uI BA

RG 0
1 μμ

Kleene-Dienes implication 
        ( ) ( ) ( )( )v,umaxv,uI BAKD μμ−= 1  

Brouwer-Gödel implication 

        ( ) ( ) ( )
( )⎩

⎨
⎧ ≤

=
otherwisev

vuif          
v,uI

B

BA
BG μ

μμ1
 

Goguen implication 

        ( )
( )
( ) ( )

⎪
⎩

⎪
⎨

⎧
≠⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

otherwise                          

uif,
u
v

min
v,uI A

A

B

G

1

01 μ
μ
μ

 

Lukasiewicz implication 
         ( ) ( ) ( )( )11 ,vuminv,uI BAL μμ +−=   

 
We obtained the results given by the following three 
theorems.  
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Theorem 1 If the premise contains the observation 
( ) ( )( )Uuuu.e.i A'A ∈∀≤ μμ  then 

  1) ( ) ( )vv B'B μμ =   for every of  the cases 

               and  RII. =11 λ ≥ 0 

             021 <= λ,II. R  and  ( )
1−

≥
λ
λμ vB  

              and WII. =31 0≥λ  

             041 <= λ,II. W   and  ( )
4
λμ −≥vB  

              MII. =51

               and  { }LKD I,II. ∈61 0≥λ  

             071 <= λ,II. KD  and  ( )
4
λμ −

≥vB  

              { }GBG I,II. ∈81

  2)  ( ) ( )vv B'B μμ ≤   for   RGII =

  3)  ( )
4
λμ −<v'B   for every of  the cases 

              ( )
4

013 λμλ −<<= v and  ,II  . BW   

              023 <= λ,II  . KD   and  ( )
4
λμ −<vB  

  4)  ( ) ( )( )( )
( )( )v

v
v

B

B
'B μλ

λλμ
μ

−
−+

−≤
14
1 2

   

         for  0<= λ,II R  and  ( )
1−

≤
λ
λμ vB  

  5)  ( ) ( )( ) ( ) ( )
4

141 2 vv
v BB

'B
μλμλ

μ
+++−

<    

                     .andIIfor L 0<= λ  
 
Theorem 2 If the premise and the observation are 
identical then: 
1) for 0≥λ  we have     

        ( ) ( )vv B'B μμ =    

        { }LGBGKDRGMWR I,I,I,I,I,I,I,II ∈∀

 2) for  0<λ  we have 

     a) ( ) ( )vv B'B μμ =   for  

                   { }GBGRGM I,I,I,II)a ∈1

                   and RII)a =2 ( ) 1
1

≤≤
−

vBμλ
λ  

     b) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛−= v,maxv B'B μλμ

4
 

                         for { }KDW I,II ∈  

     ( ) ( ) ( )[ ]
( )( )

2

14
1

v
v

v)c
B

B
'B μλ

λμλ
μ

−
−+

−=    

                    for  RII =  and ( )
1−

≤
λ
λμ vB  

      d) ( ) ( ) ( )( )
4

222 λλμλμ
μ

−++−
=

vv
v BB

'B    

                       for  LII =  
 

Theorem 3 If  the observation contains the premise 
(i. e. ( ) ( ) Uuuu A'A ∈∀≤ μμ ) then 

  a) ( ) ( )vv B'B μμ =  if      MII =

  b) ( ) ( )vv B'B μμ ≥  if      

                { }LGBGKDRGWR I,I,I,I,I,I,II ∈  
 
4 Main Result 
Taking into account the properties verified by 
Fodor's implication, it results that it is one of the 
most important implication operators. Consequently, 
we shall continue the research in [13] by using the 
same t-norm, but Fodor's implication. We shall 
analyze five cases, depending on the relation 
between Aμ  and 'Aμ . 
 
4.1 The Premise  Contains  the Observation: 

( ) ( )uu A'A μμ ≤  
 
Theorem 4 If the premise contains the observation 
then 

( ) ( )
4
λμ −<vi 'B       if  0<λ   and  ( )

4
λμ −<vB  

(ii)  ( ) ( ) otherwisevv B'B μμ = . 

Proof. This case is illustrated in the following figure 
 

'Aμ
Aμ

                

 Fig. 3 The premise contains  the  observation 
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i1) value on the set ( ) ( ){ }vu/UuU BA μμ ≤∈=1  

Because  

                 ( ) ( )( ) 1=v,uI BAF μμ , 

 we have      

       ( ) ( )( )0
1

,umaxsup 'AUu'B v μμ ∈=       
           ( )        ( )( ) v,umaxsup BAUu μμ ≤≤ ∈ 0

1
. 

i2) value on the set  

}         { /UuU ∈= ( ) ( ) 502 .vu BA ≥> μμ  

We have  

               ( ) ( ) ( )vvu BBA μμμ ≤−<− 11  

 

( )
and therefore

              ( ( ) ( )) vv,uI BBAF μμμ = . 

Further on we obtain 

( ) maxsupv Uu'B 2∈=μ ( ( ) ( ) ( )( )11 −++ vu B'A μμλ  

                                     ( ) ( ) 0,vu B'A μλμ− ) 
          maxsup= Uu 2∈ ( ( ) (( vu B'A ))λμλμ −+1  

                              ( ) ( )( ) 011 ,vBμλ −+− ) 
              ( )vBμ=  

and this value is obtained for 

Uu ∈  with0 ( ) 10 =u'Aμ . 

i3) value on the set  

}    ({ ) ( ) 5013 .vu/UuU BA >−>∈= μμ  

We have 

( )              ( ) ( )( ) vv,uI BBAF μμμ =  

and, as in the previous case, we obtain 

( ) ( )vv B'B μμ = . 

i4) value on the set 

}( ) ( ) ( )vuv/UuU BAB{ μμμ −≤<∈= 14  

In this case  

( )( ) ( )( ) uv,uI ABAF μμμ −=1  

and therefore 

( ) maxsupv Uu'B 4∈=μ ( ( ) ( )( )uu A'A λμμ +1  
                                      ( ) ( ) 01 ,uAμλ+− ) 

              ( ) ( )( )02
4

,uumaxsup AAUu λμλμ −≤ ∈ . 

 

 results It

( ) 0=v'Bμ  for 0≥λ  

and 

( )
4
λμ −<v'B  for 0<λ . 

 
Remark 1 If the observ on is more precise than ati
the premise of the rule then it gives more 
information than the premise. However, it does not 
seem reasonable to think that the generalized modus 
ponens allows obtaining a conclusion more precise 
than that of the rule. The result of the inference is 
valid if   

( ) ( ) Vvvv ∈∀B'B = μμ . 

Sometimes, the deduction operation allows the 

ato is red then the tomato is ripe. 

creases with 

pe. 

sweet 

 is very sweet 

e rotten. 

t must 

reinforcement of the conclusion, as in the following 
example [17]. 
 

ule: If the tomR
Observation: This tomato is very red. 
 
f we know that the maturity degree inI

respect to color, we can infer  

                 this tomato is very ri

 On the other hand, in the example 

Rule:  If the melon is ripe then it is 
Observation: The melon is very ripe 

we do not infer that  

                    the melon

because it can be so ripe that it can b
 

emark 2 This examples show that the experR
choose the deduction operation depending on the 
knowledge base. If he/she has no supplementary 
information about the connection between the 
variation of the premise and the conclusion, he/she 
must be satisfied with the conclusion  

( ) ( ) Vv,vv B'B ∈∀= μμ . 

Theorem 4 says that for this we can choose 0≥λ . 
 
.2 Identity Between Premise and 4

Observation:  ( ) ( ) Uuuu A'A ∈∀= μμ  
 

heorem 5 If the premise and the observation T
coincide then 
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( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛−= v,maxvi B'B μλμ

4
  

                          if  0<λ  and  ( ) 50.vB <μ  

(ii)  ( ) ( ) otherwisevv B'B μμ = . 

Proof: In this case all inequalities (generated by 
inequality ( ) ( )uu A'A μμ ≤  from the proof of the 
Theorem 4 become equalities. Thus we obtain the 
relations proposed by Theorem 5.  
 
 
Remark 3 When the observation and the premise of 
the rule coincide then the natural behavior of the 
fuzzy deduction is to obtain an identical conclusion. 
However, Theorem 5, in the case of 0<λ , can give 
a different conclusion. This indicates the appearance 
of an uncertainty in the conclusion, which is 
completely unreasonable. In order to avoid this 
possibility we suggest using a value 0≥λ . 
 
4.3 The Observation Contains the Premise: 

( ) ( ) Uuuu 'AA ∈∀≤ μμ  

Theorem 6 If the observation contains the premise 
then ( ) ( ) Vvvv B'B ∈∀≥ μμ . 

Proof:  
This case is presented in the next figure 
 

'Aμ

Aμ

 
                               
Fig. 4 The observation contains the premise 
 
i) value on the set  

( ) ({ vu/UuU BA )}μμ ≤∈=1  

We have  

( ) ( )( ) 1=v,uI BAF μμ  

and therefore 

( ) ( )( )0
1

,umaxsupv 'AUu'B μμ ∈= . 

On the set 

( ) ({ vu/UuU B'A μμ ≤∈= 1
1
1

we obtain 

( ) ( )vv B'B μμ =  

and on the set 

( ) ( ){ }vu/UuU B'A μμ >∈= 1
2
1  

we obtain 

( ) ( )vv B'B μμ > . 

i2)-i3) value on the sets 

( ) ( ){ }502 .vu/UuU BA ≥>∈= μμ  

and 

( ) ( ){ }5013 .vu/UuU BA >−>∈= μμ . 

As in the cases i2) and i3) from the Theorem 4 it 
results  

( ) (vv B'B )μμ = . 

i4) value on the set  

( ) ( ) ( ){ }vuv/UuU BAB μμμ −≤<∈= 14  

We have 

( ) ( )( ) (uv,uI ABAF )μμμ −=1  

and therefore 

( ) maxsupv Uu'B 4∈=μ ( ( ) ( )( )uu A'A λμμ +1  
                                     ( ) ( ) 01 ,uAμλ+− ) 

            ( ) ( )( )02
4

,uumaxsup AAUu λμλμ −≥ ∈ . 

But, 

   a) for 0≥λ , 

( ) ( )( ) 002 =− ,uumax AA λμλμ  

and 

   b) for 0<λ , 

( ) ( )( ) ( ) ( )vv,uumax BBAA λμλμλμλμ −≥− 22 0 ; 

in addition, 

( ) ( ) vvv BBB μλμλμ <−2 ( ) . 
The final conclusion is  

( ) ( )vv B'B μμ ≥ . 
 

)} 

Remark 4 The result obtained by Theorem 6 is very 
general and it does not offer enough information 
about the inferred conclusion. The inference result 
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depends on compatibility between observation and 
the premise of the rule. 
To express this compatibility, the following 
quantities [7, 14, 19] are frequently used: 

(a) ( ){ } ( )usupI.D 'Au/Uu A
μμ 0=∈= ,  

named uniform degree of non-determination; it 
appears when the support of the premise does not 
contain the support of the observation;   

(b) ( ) ( ){ } ( ) ( )( )uusupI A'Auu/Uu A'A
μμμμ −= ≥∈ . 

 The uncertainty propagated is expressed with the 
help of  and I.D I  and it corresponds to the value 

'Bμ  on the set ( ){ }0=∈V v/v Bμ . 
 
Theorem 7 If ( ) ( ) Uuuu A'A ∈∀≥ μμ  then the 
uncertainty propagated during the inference is 

( ) Iv'B <μ   if  0>λ  
( ) Iv'B =μ   if    0=λ
( ) Iv'B >μ  if  0<λ . 

Proof: The result is obtained from the expression of 
( )v'Bμ  for ( ) 0=vBμ :      

         ( ) maxsupv Uu'B ∈=μ ( ( ) ( )uu A'A μμ −    
                                   ( ) ( )( ) 01 ,uu 'AA μλμ −− ). 
 
Remark 5 This theorem says that the value 0>λ  is 
indicated to be used. 
 
4.4 There is a Partial Overlapping Between 
Premise and Observation 
 
Theorem 8 If there is a partial overlapping between 
the sets A  and 'A  then 

( ) 1=v'Bμ  if  ( ) ( )vB
A'Acore μ⊄  

and 

( ) ( )vv B'B μμ ≥  otherwise, 

where  denotes the α -cut of  αA A . 

Proof: Some of  these possibilities are illustrated in 
the following figures:  

'Aμ
Aμ

 

'Aμ

Aμ

 
 

'Aμ

Aμ

 
 
 

'Aμ

Aμ

 
Fig. 5 Partial overlapping between premise and          
observation 
 

 i) the case ( ) ( )vB
A'Acore μ⊄  

For ( ) ( )vu BA μμ ≤  we have 

( ) ( )( ) 1=v,uI BAF μμ  

and therefore 

( ) ( ) ( ){ } ( )( )0,umaxsupv 'Avu/Uu'B BA
μμ μμ ≤∈= 1=  

ii) the case ( ) ( )vB
A'Acore μ⊂  

a) For ( ) 50.vB ≥μ , on the set  

( ) ( ){ }501 .vu/UuU BA ≥>∈= μμ  

we have 

( ) ( )( ) (vv,uI BBAF )μμμ =  

and 

( ) maxsupv Uu'B 1∈=μ ( ( ) ( )( )vu B'A λμλμ −+1  

                                    ( ) ( )( ) 011 ,vB −++ μλ ) 
            ( )vBμ=  

because there is 10 Uu ∈  such that ( ) 10 =u'Aμ . 
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b) For ( ) 50.vB <μ  we consider the sets 

( ) ( ){ }5012 .vu/UuU BA >−>∈= μμ , 

( ) ( ) ( ){ }vuv/UuU BAB μμμ −≤<∈= 13  

and 

32 UU'U ∪= .  

Because there is  such that'Uu ∈0 ( ) 10 =u'Aμ , we 
have 

      b1) on the set , likewise on the set  from 
the case a), we obtain

2U 1U
( ) ( )vv B'B μμ = .     

      b2) on the set  we obtain 3U

( ) ( )( ) uv,uI ABAF ( )μμμ −=1  

and therefore 

    ( ) maxsupv Uu'B 2∈=μ ( ( ) (( )uu A'A )λμμ +1     
                                          ( ) ( ) 01 ,uAμλ+− ). 

But, for  mentioned above we obtain 0u

( ) ( )( ) ( ) ( )( 011 000 ,uuumax AA'A )μλλμμ +−+  
( ) ( )vu BA μμ ≥−= 01 . 

Finally, it results that the value of ( )v'Bμ   is at 
least ( )vBμ . 
 
4.5 The  Premise  and  the  Observation   are  
Contradictory: ( ) ( )uu A'A μμ −=1 Uu∈∀  
 
Theorem 9 If the premise and the observation are 
contradictory then ( ) Vvv'B ∈∀=1μ . 
Proof: The following figure presents this case 

'Aμ
Aμ

                              
Fig. 6 The premise and the observation are   
           contradictory 

On the set  

( ) ({ }vu/UuU BA )μμ ≤∈=1  

we have  
( ) ( )( ) 1=v,uI BAF μμ  

and therefore 

          ( ) (( )0
1

,umaxsupv 'AUu'B )μμ ∈=  
                    ( )( ) 101

1
=−=

∈
,umaxsup AUu μ  

because there is 10 Uu ∈  with ( ) 00 =uAμ . 
 
Remark 6 This result represents an indeterminate 
conclusion: all values of  V  are possible. 
 
5 Conclusion 
The results presented in this paper show how the 
generalized modus ponens rule works with the 
parametric t-norm    

( ) ( )( )( )xyyxmaxy,xt λλ −−++= 11 , 1−≥λ , 
and Fodor's implication. Five cases, depending on 
the relation between observation and the premise of 
the rule, are analyzed. For 1−=λ  and 0=λ  we 
recover some results from [12]. 
The previous results are important because in the 
cases specified in Theorems 4, 5, 9 (and a part of 
Theorem 8) the inferred results are obtained 
directly, avoiding the typical calculus for 
Generalized Modus Ponens reasoning. Such a 
calculus is necessary only in the conditions of 
Theorems 6 and 8. Consequently, because in some 
cases the calculus required to obtain the conclusion 
is avoided, the usage of the previous results is 
recommended in practical applications based on 
fuzzy reasoning.  
One of our future preoccupations is the 
improvement of these results by using a genetic 
algorithms technique, like in [33], in order to 
determine the parameters which define trapezoidal 
fuzzy sets.   
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