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Abstract: - This paper focuses on the decision-making behavior based on the complex adaptive system. Firstly, 
the paper reviewed the related work of the complex adaptive system and the edge of chaos in complex systems 
in different fields. Secondly, a general decision model of an agent is established and the condition that an agent 
is just at the edge of chaos is defined. Thirdly, making use of Langton’s coefficient widely used in the research 
on cellular automata, the paper defines the edge of chaos that describes the decision behavior of agent. Finally, 
the paper conducts an evolutionary artificial life experiment. Then the connection between the behavior at the 
edge of chaos and the individual adaptability is illustrated. 
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1 Introduction 
The theory of complex adaptive system has received 
more and more attention in the past few years. As a 
theory on change, adaptation and self-organization, 
it has made some achievements in the way it deals 
with decision-making problems, i.e. in the point of 
view of dynamic evolution and emergence [1-3]. 

The concept of the edge of chaos was proposed 
by Langton when he studied a special kind of 
complex system [4]. It refers to the state that the 
system stays at the edge between the rigid orders 
and the chaos without any rules. In this situation the 
system will evolve into a more complex one 
gradually. Moreover, there must emerge some new 
orders and modes step by step. 

The concept of the edge of chaos emphasizes the 
condition on which the self-organization of a system 
happens and is applicable to the natural, social and 
artificial systems. Therefore, it has been applied to 
various fields during the past few years. Arntzen 
discusses the adaptive software development 
approach based on the edge of chaos [5]. Daryl and 
Feng explore how the leaders go on with their 
administration at the edge of chaos when an 
enterprise is in a changing environment [6][7]. 
Richard examines the way the successful managers 

make their decisions on business at the edge of 
chaos [8]. Cohen examines the behaviors at the edge 
of chaos in financial market [9]. All the literatures 
above show that the concept of the edge of chaos is 
very important and is applicable in a great many 
fields. However, most of the existing researches 
make use of qualitative methods to describe the 
concept of the edge of chaos in an economic or 
management system. Therefore, the quantitative 
models are necessary and required to describe the 
concept more exactly than before. 

In the aspect of modeling, Stuart et al. presents 
the random network model and defines the concept 
of the edge of chaos [10]. Nils studies the problem 
of the edge of chaos in the neural network model 
[11]. Mikhail examines the phenomenon that the 
Multi-agent system of football robot evolved 
towards the edge of chaos [12]. On the basis of the 
above research, this paper establishes the decision-
making model based on agent and focuses on the 
decision-making behaviors of the agents. Although 
Mikhail gives the condition of the information 
entropy when the agent evolves towards the edge of 
chaos, the condition strongly relies on the specific 
behavior rules of the agent. In fact, people could 
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hardly be aware of the internal structure of the agent 
in analysis.  

The remaining parts of this paper are organized 
as follows. The second section adopts the decision-
making model of an agent, reviews the concept 
research literature on the edge of chaos, and 
explores the conditions for the decision-making 
behaviors of the agents at the edge of chaos. After 
that the decision-making behavior based on the edge 
of chaos is analyzed. Then an evolutionary artificial 
life experiment is conducted. Few literatures have 
analyzed the relationship between the behaviors at 
the edge of chaos and the individual adaptiveness. 
This research proposes that the decision-making 
agent is able to get adapted to the changing 
environment only when the individual or 
organizational decision-making is at the edge of 
chaos between the rigid orders and the chaos 
without any rules. 
 
 
2 The Basic Theory 
 
 
2.1 The Complex Adaptive Systems 
Complexity science has long been used to describe 
and explain behaviour in natural and biological 
systems, characterised by nonlinear dynamics and 
emergent properties based on diverse populations of 
individuals interacting with each other and capable 
of undergoing spontaneous self-organisation [13]. 
Recent research in organisational management, 
behavior and psychology indicate that human 
systems also behave in a complex fashion [14]. 

The operational model of complexity science is 
Complex Adaptive Systems (CAS). CAS theory 
provides a different way of thinking about decision 
science and systems. 

A CAS is “a collection of individual agents who 
have the freedom to act in ways that are not always 
totally predictable, and whose actions are 
interconnected such that one agent’s actions change 
the context for other agents” [15]. Thus CAS are 
defined in terms of their component parts, the 
behaviour of those parts, the relationships between 
the parts and the behaviours (or properties) of the 
whole [3] [16]. 

Agents are connected to and exchange 
information with others in the system through a 
complex web of relationships. These interactions 
and the interconnections that facilitate them are the 
most important aspect of a CAS [17][18]. CAS 
relationships have been described as massively 
entangled [19] because the component parts of the 
system and the variables describing those parts are 

large in number and interrelated in complex ways. 
The diversity, extent, intricacy and strength of the 
relationships influence the system’s ability to adapt. 
There can be too much connectivity, as well as too 
little. 

Agents respond to their environment using 
internalized ‘short lists of simple rules’ that drive 
action and generate behaviour. The rules need not 
be shared, explicit, or even logical when viewed by 
others, but they nonetheless contribute to patterns 
and bring coherence to behaviours in complex 
systems. Deliberately exposing and changing 
underlying simple rules leads directly to innovative 
ideas. In addition, short lists can be used proactively. 
When a new system is being instituted, a short list 
of simple rules (or minimum specifications) may be 
the most effective way to bring about change. They 
set the parameters and provide both focus and 
freedom for system activities. Over-prescription is 
counter-productive because it stifles creativity and 
innovation. 

Together agents, their behaviours and their 
connections create a system that has a number of 
CAS defining properties. 

A CAS is dynamic, which refers to “the 
continual presence of multiple interactions and their 
accompanying surprises, challenges and responses 
both within the system and between the system and 
its environment” [20]. Change is influenced by the 
number of agents, their rules of behaviour and the 
strengths and diversity of the relationships between 
them. Change is also discontinuous, with periods of 
stability and periods of change - the latter occurring 
at different rates at different times. The state of the 
system at a given time is a nonlinear function of the 
state of the system at some previous time. At no 
time does the system come to a natural equilibrium 
or stopping point. 
 
 
2.2 The Decision-making Model 
The automotive agent model is adopted from Ronon 
to study the decision-making behaviors. A decision-
maker can be modeled as an agent [21] [22] [23]. 
The environment this agent stays in is a discrete 
state set E of which e is an element. Generally 
speaking, the environment an agent can sense is 
limited. Here the environment is noted as I. The 
possible sensible environment for an agent is noted 
as: 

{ }niiiI ,, 21=                              (1) 
All the possible internal states of an agent 

comprise the internal state set shown as 
{ }msssS ,,, 21=                            (2) 
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An agent may have the behaviors as its output to 
change its environment and put an influence on it 
meanwhile. In this paper, it is supposed that the 
possible output behavior set is 

{ }poooO ,,, 21=                           (3) 
Then, at the time t, the decision of an agent is 

made according to the sensed environment  
and the present internal state . The result of 
the decision is to choose one behavior output from 
the set O and change its internal state. Therefore, a 
decision is a function as 

Ii t ∈
Ss t ∈

( ) ( 11,,,,
:

++=Δ∈∈∀

×→×Δ
tttttt sosiSsIi

SOSI
)
             (4) 

in which, . Moreover, the decision 
of an agent affects the whole environment. That is, 
for the environment state, suppose that an agent 
stays at the state  at time t, and then it stays at 
state at time t+1. It is also shown as 

SsOo tt ∈∈ ++ 11 ,

te
1+te

( ) 111 ,,, +++ =Φ∈∈∀

→×Φ
ttttt eeoEeOo

EEO               (5) 

in which, . Each behavior of an agent can 
change its environment. The change of the 
environment affects the decision-making behavior 
of the agent because of its sensitivity. 

Eet ∈+1

Since it is not related to the complex internal 
structure of the agent, the decision model is simple. 
However, the model is universal as it is the same as 
a touring machine in its computing ability. The 
decision-making process of an agent is the 
computing process of a touring machine. Therefore, 
the decision-making of an agent is essentially 
computing through changing the decision-making 
rules [24] [25]. 
 
 
2.3 Related Research on the Edge of Chaos 
Cellular automata are dynamical systems in which 
space, time, and the states of the system are discrete. 
Each cell in a regular lattice changes its state with 
time according to a rule which is local and 
deterministic. All cells on the lattice obey the same 
rule. This class of dynamical systems has been 
extensively studied as a model of natural systems in 
which large numbers of simple individuals interact 
locally so as to give rise to globally complex 
dynamics.  

Study of cellular automata has given rise to the 
“edge of chaos” hypothesis. In its basic form, this is 
the hypothesis that in the space of dynamical 
systems of a given type, there will generically exist 
regions in which systems with simple behavior are 
likely to be found, and other regions in which 
systems with chaotic behavior are to be found. Near 

the boundaries of these regions more interesting 
behavior, neither simple nor chaotic, may be 
expected.  

Early evidence for the existence of an edge of 
chaos has been reported by Langton [26, 27] and 
Packard [28]. Langton based his conclusion on data 
gathered from a parameterized survey of cellular 
automaton behavior. Packard, on the other hand, 
used a genetic algorithm [29] to evolve a particular 
class of complex rules. He found that as evolution 
proceeded the population of rules tended to cluster 
near the critical region identified by Langton.  

The validity of some of these results have been 
called into question by Mitchell, Crutchfield, and 
coworkers [30][31]. These authors performed 
experiments in the spirit of Packard's. They found 
that while their genetic algorithm indeed produced 
increasingly complex rules, the cellular automata 
generated could not be considered to reside at a 
separatrix between simple and chaotic dynamical 
regimes.  

The edge of chaos is a stimulating idea in that it 
promises to provide a framework in which to relate 
methods and results originating in biology, physics, 
and computer science[32]. Yet the very generality 
and cross-disciplinary nature of the edge of chaos 
concept has lead to enormous difficulties of 
communication between workers from different 
background attempting to make these intuitions 
rigorous by the standards of their discipline. 

In this paper we clarify a subset of the issues 
surrounding the edge of chaos theme. We restrict 
ourselves to study of the edge of chaos in the 
context of cellular automata. A cellular automation 
is a discrete dynamic system. This research takes the 
One-dimensional Cellular Automata as an example. 
It supposes that there are a number of grids in a row. 
Each grid has a unique state. The state of each grid 
at the next moment depends on its own state and the 
states of its neighbors. Suppose that the values of all 
the possible states of the grids are from ∑ and that 
the state of the grid i at the moment t is . The state 
combination of its neighbors at the moment t is , 
then the state of grid i at the next moment is 

t
is

tN

( ) ∑∈∑∈=+ sNsNfS rtt
it

t
i ,,,1                 (6) 

in which, r is the number of the grids; different 
transfer function f corresponds to different behavior 
of the whole cellular automata. Wolfram examined 
hundreds of cellular automata and discovered that 
their behaviors can be divided into four categories 
that are fixed valued behaviors, circular behaviors, 
chaotic random behaviors and complex behaviors. 
The last type obtained people’s attention most as 
they create many ordered structures. These 
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structures are approximately chaotic and not 
completely random. Therefore, they are complex. 
The behaviors of the four types of cellular automata 
are deeply related to each other. Langtong 
discovered the coefficient λ which is defined as the 
rule coefficient at the edge of the chaos. 

Definition 1 Rules Coefficient a state  is 
chosen from the state set ∑ which is called the static 
state. Then, for the rule f of the cellular automata, 
there are 

0q

1+rK  elements among which ∑=K . 
Among these elements, if there are  elements at 
the state of , then the rule coefficient λ of the rule 
f is defined as follows: 

qn

0q

( ) 11 / ++ −= r
q

r KnKλ                          (7) 
As a result, the cellular automaton with different 

rules corresponds to different coefficient λ. Through 
the experiment, Langton discovered that the values 
of λ correspond to the types of the cellular automata 
approximately. Specifically speaking, λ corresponds 
to the fixed valued behavior type when 0<λ<0.2, 
while it corresponds to the circular type when 
0.2<λ<0.4. It corresponds to the complex type when 
0.4<λ<0.6, while it corresponds to the chaotic type 
when >0.6. According to the change of λ, complex 
cellular automata is a state between the chaos and 
the rigid order. Therefore, it is called the edge of 
chaos by Langton. 

Although the concept of the edge of chaos is 
proposed in the research of cellular automata, it is 
meaningful universally. For instance, the 
transformation area of the edge of chaos in random 
network is discussed in literature [10]. The edge of 
chaos in neural network is explored in literature [11]. 
The edge of chaos reveals the common feature of all 
self-organizational complex systems. Namely, a 
large-scaled complex transformation of the whole 
system will happen and a new order and structure 
will emerge when the individual moves and is at the 
edge of chaos. 
 
 
3 The Analysis of Decision-making 
Behavior Based on the Edge of Chaos 
 
 
3.1 The Framework of Decision Agent 
In the real world, the abstract view of an agent 
illustrated in Fig.1, it obtains the inputs from the 
environment and produces the output to the 
environment. The black box in the middle refers to 
the cognition, learning, reaction or autonomous 
decision making components of the agent. In a 
dynamic environment inputs change with time and 

the agent has to decide the required autonomous 
decision for the current status of the environment. 
 

 
Fig.1. the abstract view of an agent 

 
 

The layered conceptual framework of the 
decision agent, which can replace the black box in 
Fig.1, is shown in Fig. 2. It comprises of four layers: 
inheritance (Ψi), training (Ψt), experience (Ψe) and 
unexpected (Ψu). 

 

 
Fig.2. The layered conceptual framework of 

decision agent 
 

In the proposed four-layered conceptual 
framework, each layer corresponds to the behavioral 
cycle of a human being giving a human oriented 
architecture to the agent to make autonomous 
decisions in a dynamic environment. 

Generally the primitive actions taken for survival 
come as pre wired neurons and this phenomenon is 
captured byΨi in the proposed architecture. TheΨt 
builds on top ofΨi provides solidness to the 
brittleness of inheritance layer. What is learnt by a 
human being either through education or training 
programs is mapped to theΨe. This is synonymous 
to the job related training that humans get prior to 
being assigned to work. It is said that the evolution 
of the brain is achieved through genetically defined 
information as well as learning, and therefore, 
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ΨiandΨt are used to model the actual evolution 
process of the brain. With maturity, humans gain 
experience on top of training which allows him/her 
with more suitable methods of handling a situation. 
This is denoted by theΨe and experience makes an 
agent more adaptive to the environment. Once the 
agent hasΨi, Ψt andΨe, ultimately it will become 
capable of reacting to the “unexpected” nature of a 
dynamic environment. This capability is mapped to 
theΨu in the proposed architecture. With time this 
layer can be absorbed intoΨe. 
 
 
3.2 The Analysis of Agent’s Behavior Based 
on the Edge of Chaos 
This section focuses on the introduction of the edge 
of chaos, especially Langton’s coefficients, into the 
general model of decision agent. The edge of chaos 
refers to the state at the edge that the decision-
making behavior is not totally fixed or over-random, 
but between them. In fact, when people observe a 
decision agent from outside, i.e. from the aspect of 
behavior, they can only observe the output behavior. 
Its input information or internal state is unknown. If 
the decision agent takes values randomly from all 
the possible output space, then a judgment can be 
made that the decision agent is at a chaotic state. On 
the contrary, if the behavior of the agent is always 
fixed at a given output state, then the agent shows 
too much order. Only when the behavior of the 
agent remains at a comparatively stable output order 
and make mistakes at a low probability, the agent is 
just at the edge of chaos. In the following part, a 
coefficient that makes judgment about whether the 
decision behavior of an agent stays at the edge of 
chaos is proposed just like the coefficient λ given by 
Langton. 

Definition 2 The coefficient of decision behavior 
(i.e. decision coefficient). For each agent, the output 
behavior obtained through its decision rule ∆ during 
a certain fixed period of time for observation is in 
accordance with the probability distribution F on the 
set O. Specifically, for , in which p 
stands for the probability of the output o of the agent, 
i.e. p implies the possibility that the agent select o as 
its output. Obviously, each element of O 
corresponds to a probability. Then, there is the 

maximum . Suppose , then the 
definition of λ is 

( ) poFOo =∈∀ ,

maxp ( ) maxmax poF =

max

max

1 p
p

pp

Oo
o

Oo
o

−=
−

=
∑

∑

∈

∈λ                 (8) 

in which ∑
∈Oo

op  refers to the probabilities that all the 

elements of set O correspond to and is obviously 
equal to 1. The output behavior  that 
corresponds to the maximum probability  is 
defined as the main behavior of the agent in this 
period of time. When λ takes a very low value, the 
possibility that the system takes a certain value is 
high. When λ takes a very high value, it implies that 
the behavior of the agent is random. When λ is in an 
ideal interval, the decision of the agent is at the state 
of the edge of chaos. At this time, the value of λ 
depends on the specific condition. 

maxo

maxp

 
 
4 Decision Behavior and the 
Adaptability 
 
 
4.1 Experiment of Artificial Life 
People have to face various external environments 
and make decisions in real life. However, what kind 
of decision behavior improves the adaptability of 
the decision agent to the changing environment? 
The answer is that the decision at the edge of chaos 
can improve it. That is, only if λ takes a value from 
a certain interval, the adaptability of the agent is 
possible to be improved. According to the research 
of artificial life, the life system stimulated by 
computer highly resembles the real world [33]. 
Therefore, people can study the concepts and rules 
in the real world by means of computer models [34].  

In the following section, an experiment on 
artificial life is designed to illustrate the relationship 
between the decision at the edge of chaos and its 
adaptability. In the experiment, the world is a 
limited grid area with a periodical boundary. 
Various food and agents are scattered in this area. A 
possible distribution of this world is shown in Fig. 1. 
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Fig.1. the experiment of artificial life 

 
In Figure 1, the blue spots stand for agents and 

the white ones stand for various kinds of food. Each 
agent is an intelligent agent that makes decisions. In 
each stimulation cycle, the agent faces one direction 
among upwardness, downwardness, left and right 

(i.e. an agent is likely to face its upward side, 
downward side, left side, right side and so on). 
Suppose the agent can only observe the conditions 
in the three grids it faces as shown in Fig. 2.  

 
 

 
Fig.2. the directions of an agent face 

 
 

As a result, at any time the environment the 
agent exists in is the combination of the states of the 
three grids. If the grid with food is noted as 1 and 
the grid without food is noted as 0, then, according 
to the discussion in section 2, the input set is 

{ } { } { }1,01,01,0 ××=I                   (9) 

This set is a combination of different rows of 0 
and 1. The eight possible combinations are 000, 001, 
010, 011, 100, 101 and 111. Any one of the 
combinations is a row with 3 characters of 0 and 1. 
For instance, the input rows corresponding to the 
three conditions shown in Figure 2 are respectively 
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010, 001 and 011. Moreover, the three characters of 
each row are arranged in the same direction as the 
rotating hands of a clock. Suppose the internal state 
set of the agent is , i.e. there are 10 
internal states. Then, the output behavior set is 

. There, 0 stands for one step forward, 1 
stands for turning left, 2 stands for turning right. 
Each agent can select one of the three possible 
behavior states at any time, i.e. it can go directly 
forward into the next grid, or turn left and move into 
the next grid, or turn right and move into the next 
grid. The decision rule ∆ of an agent can be shown 
in a table (see Table 1). It instructs the agent to 
select different outputs and the internal state at the 
next moment in different conditions and at different 

internal states. For instance, as shown in Table 1, 
the first term shows that if the internal state of the 
agent is 1 while its input is 000, then it turns left and 
changes its internal state into 2. Obviously, different 
tables correspond to different decision rules. When 
the agent makes a decision, it selects a behavior as 
the output. The environment will then update itself 
according to the behavior of the agent. Suppose 
there is a grid with food in front of the agent, while 
its present output is 0 (i.e. going one step forward), 
then the agent is considered to eat the food. 
Consequently, the state of the present grid changes 
from 1 into 0. The specific update rules of the 
environment (Ø) are not shown here. 

{ 10,,2,1=S }

}{ 2,1,0=O

 
 

Table 1.  The Decision Rule Table 
No. Input e Internal-state s Output o Inter-state s’ 
1 000 1 1 2 
2 010 3 0 1 
3 100 2 2 3 
┇ ┇ ┇ ┇ ┇ 

 
 

In the following section, a group of 50 agents is 
selected and their decision rules are randomly 
produced. Then their decision rule tables are 
disposed with the approach of genetic evolution. 
This group of agent is called the first generation 
population. Each population goes through 10 
different environments (i.e. the densities of the food 
distribution are different). Furthermore, in the 10 
different environments each agent goes through 
1000 stimulation cycles. The average value of the 
total amount of the food the agent eats in different 
environments is taken as its adaptiveness. Then, the 
next generation will be obtained after an operation 
of the genetic algorithm. The agents will be more 
and more intelligent in their digital environments. 
They gradually learn to get adapted to various 
environments. Meanwhile, their average 
adaptiveness is improving. 
 
 
4.2 The Result of the Experiment 
It is not very difficult to obtain λ that makes 
judgments on whether each agent is at the state of 
the edge of chaos. The average values of λ of the 
agent population of each generation and the 
population of the present generation in evolution are 
put in the same coordinate area (see Fig. 3). In the 
figure, the horizontal axis shows the serial number 
of the generation; the vertical axis shows the 

average values of λ in each generation; the dark 
spots show the values of λ of each agent in each 
generation. The light line shows the average values 
of λ in each generation. From Fig. 3, the values of λ 
become stable gradually with the operation of the 
genetic algorithm. The stable interval is 
approximately between 0.2 and 0.4. Therefore, the 
whole agent population is evolving towards the state 
of the edge of chaos. 
 
 

 
Fig. 3.  the relationship between decision 
behavior coefficient and the evolutionary 

generation of agent 
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In order to discover the relationship between the 

value of λ and the adaptiveness, the values of λ in 
different intervals and the comparative average 
adaptiveness of the agent in these intervals (i.e. the 
adaptiveness of this agent is divided by the 
maximum adaptiveness) are put into the same 
coordinate area in this research (see Fig. 4). It is 
easy to discover that there is a convex in the curved 
line of the average adaptiveness. Moreover, the 
convex has its maximum value when λ is about 0.3. 
It implies that when λ is between 0.2 and 0.4, the 
adaptiveness increases. If λ is outside the interval, 
the adaptiveness decreases. According to the above 
discussion, a too high value of λ means that the 
decision behavior of the agent is too chaotic, while a 
too low value of λ means that the decision behavior 
of the agent is too rigid. When λ is between them, 
the decision of the agent is at the edge of chaos. In 
this experiment, when λ is in the interval of [0.2, 
0.4], the agent is at the edge of chaos. Only the 
agents at the edge of chaos have a high adaptiveness. 
 

 
Fig. 4. the distribution of the comparative average 

adaptiveness of decision behavior coefficient 
 

Although this computer experiment analyzes the 
evolution process of the virtual digital life in 
computer and the relationship between their 
decision behaviors and the adaptiveness, it is a 
metaphor of the human decision-making. In this 
experiment, each agent is equivalent to a decision-
maker in real world. It can only sense the limited 
and randomly distributed food, which implies that 
the decision individual faces a completely 
unpredictable complex environment. However, each 
agent obeys its own decision rules, which is 
equivalent to the rules people obey in their decisions. 
In real world there are not decision rules that are 
proved right in advance. Each agent can only learn 
from its errors and make improvements from time to 
time in the complex changing environment, which is 
equivalent to the evolution of the agent. Generally 

speaking, the agent evolves to be more and more 
adaptive to the environment. As the evolution goes 
on, what kind of decision rules will be kept and 
what kind of decision rules will be eliminated? It 
depends on whether the rules are helpful for 
controlling the decision agent and pushing it to the 
edge of chaos. The experiment shows that the 
behavior of the agent has the tendency towards the 
edge of chaos as the evolution goes on. In the area 
of the edge of chaos, the agent is likely to lean and 
evolve its own decision rules further. This is a 
metaphor of the human decision problem, i.e. when 
people are facing a complex varying environment, 
only their behavior at the edge of chaos is helpful 
for the improvement of people’s adaptability. 
 
 
5 Conclusions 
At present, the environment in which people make 
decisions is changing all the time and complex. 
How to make effective decisions in this kind of 
environment has become a significant problem. As a 
general idea on complex system, the concept of the 
edge of chaos has been applied to many subjects. 
Therefore, it can be applied to the analysis of 
individual decision behavior. This research reviews 
the concept of the edge of chaos at first. Then the 
coefficient for the measurement of the decision 
agent staying at the edge of chaos is defined by 
means of agent decision model. With the stimulation 
of artificial life, the adaptiveness of different 
decision rules is researched. The result of the 
experiment shows that only when the agent stays at 
the edge of chaos it can improve its adaptiveness. 
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